全 文 :AccumulationCharacteristicsofCdinPolygonum
pubescensBl.
DENGHua1, 2, 3 , LIMing-shun1, 3* , CHENYing-xu2 , YUFang-ming1, 3
1.SchoolofEnvironmentandResources, GuangxiNormalUniversity, Guilin541004;2.SchoolofEnvironmentandResources, Zhejiang
University, Hangzhou310029;3.GuangxiKeyLaboratoryofEnvironmentalEngineering, ProtectionandAssessment, Guilin541004
Abstract [ Objective] TheresearchaimedtostudytheresponseandaccumulationcharacteristicsofCdinPolygonumpubescensBl.[Method]
TakingHoaglandnutritionalsolutionastheculturesubstrate, eightkindsofCdconcentrations(0, 25, 50, 100, 200, 500, 800, 1 000mg/L)
weresetup.[ Result] UnderlowconcentrationsofCd(25and50mg/L), thebiomassofP.pubescenshadnosignificantdiferencewithCK
(P<0.05).UnderalthetestconcentrationsofCd, CdcontentintherootsandshootsofP.pubescensexceeded100mg/kgandtheenrich-mentcoeficientsofCdwereover1.WiththeincreasingofCdconcentration, CdcontentandCdaccumulationamountinP.pubescensin-
creasedsignificantly.WhenCdconcentrationexceeded50mg/L, translocationcapacitycoeficientwasgreaterthan1.[Conclusion] Polygonum
pubescenshashightoleranceandaccumulationcapacityofCd, anditmayhassomepotentialonthephytoremediationofCd-contaminated
soil.
Keywords Polygonumpubescens;Cd;Accumulation;Phytoremediation
Received:January25, 2010 Accepted:March24, 2010
SupportedbyNationalScienceFoundationofChina(30560032)
andGuangxiKeyLaboratoryFoundation(0702k023).
*Correspondingauthor.E-mail:denghua@mailbox.gxnu.edu.cn
Cadmiumisaheavymetalelementwithhightoxic, most
ofitscompoundsaretoxicsubstances, andaverysmal
amountofcadmiumcancauseharmtohumans[ 1-2] .Because
themigrationofcadmiumisstronganditiseasilyabsorbed
andaccumulatedbyplants, thegovernanceofcadmiumpolu-
tioninsoilhasbeenpaidmoreatentions.Becausethephy-
toremediationtechnologyhassomeadvantagessuchashigh
eficiencyandlowenergyconsumption, waterandsoilconser-
vation, landscapingandotherfeatures, itisknownasGreen
RemediationTechnology, theuseofhyperaccumulatorfor
thephytoremediationofsoilthatpolutedbyheavymetalisthe
hotpointoftheresearchesofenvironmentalscienceinrecent
years.Screeningofhyperaccumulatoristhefoundationand
keyissueinthephytoremediationofheavymetalcontamina-
tedsoil, inthenearly500 hyperaccumulatorspeciesthathave
beenfound, thespeciesofcadmiumhyperaccumulatorisless
than10, theBrassicajunica[ 3] andThlaspicaenclescensare
foundinabroad[4] , becauseofitsgrowthhasastrongterito-
riality, itisdificulttobegrewinlargescale, thedomesticdis-
coveredthereistherape, blacknightshade, BaoshanViola,
RadixPhytolaccae, Betavulgarisvar.ciclaL., Scirpusvali-
dusandsoon[5-10] , mostoftheseplantsarenotsuitablefor
popularizationandapplicationbecauseofslowgrowth, stun-
tedplantsandsmalbiomassofaboveground, sothescreen-
ingofCdhyperaccumulatorisstilaveryimportantbasic
work.
PolygonumpubescensBl.isanewlydiscoveredmanga-
nesehyperaccumulator[11] , whichownsawidegeographical
distribution, afastgrowthspeedandalargerbiomass, itcan
growwelinthesoilintheabandonedminingareawhichthe
concentrationofMn, CdandCrarelarger, anditnotonly
ownsastrongvitality, butalsocanbecutingsurvived, itisa
moresuitablephytoremediationspecie, therefore, thesolution
cultureexperimentwasconductedinthisstudyinordertoin-
vestigatethegrowthstatusofP.pubescensunderdifferent
concentrationsofCdpolutionandthetoleranceandaccumu-
lationcapacityofheavymetalCd, aswelastostudythesuit-
abilityoftheuseofP.pubescensinrepairingtheheavymetal
Cdcontaminatedsoil.
MaterialsandMethods
Experimentalmaterials
TheseedlingsofP.pubescenswerecolectedfrom a
certainMnminingareainQuanzhouCounty, GuangxiProv-
ince, afterwashedwiththetapwater, theHoaglandnutritional
solutionwasusedforpreincubate, whenithadgrowntoa
certainheight, thebranchesthatwithleavesandabout5 cm
longinterceptedfrom thetopoftheplantswasputintothe
secondpreincubate, aftertheplantshadgrownmorevigorous
roots, theywereusedastheexperimentalmaterials.
Experimentalmethods
Theexperimentalseedlingsthatofthesamesizeandwel
grownweretransplantedtothecultivationpotthatcontained
theHoaglandnutrientsolution, eachpotcontainedthree
plants, 8 dlater, theCdwasadded, andeightkindsofCd
concentrations0 (CK), 25, 50, 100, 200, 500, 800, 1 000
mg/Lweresetup, theCdwasaddedintheformofCdCl2 ,
eachtreatmentwasrepeatedforthreetimes.Duringtheincu-
bationperiod, thenutrientsolutionwasreplacedonceevery4
d, andthepHvaluewasadjustdailyto5.8 orsowith0.1
mol/LNaOHor0.1 mol/LHCl, maintaining24 haerated.
Plantswereharvestedat30 daftertheCdtreatment.
TreatmentofsamplesanddeterminationofCd
Theharvestedplantswerewashedwithwater, andatthe
sametimetheplantheightandrootlengthwererecorded, and
thentherootswereimmersedinto20 mmol/LEDTA-Nasolu-
tionfor15 minofexchangetoremovethemetalionsthathad
beenabsorbedbyrootsurface, finaly, theywerewashes
threetimeswithde-ionizedwater, subsequentlydriedwithab-
sorbentpaper.Plantsweredividedintoroots, stemsand
leaves, andthenbothofthemwereputinovenforgreenre-
AgriculturalScience&Technology, 2010, 11(3):135-138
Copyright 2010, InformationInstituteofHAAS.Alrightsreserved. ResourcesandEnvironment
moving30minat105 ℃, andthentheywereputintoovenfor
48hat70 ℃, thedryweightofvariouspartsofplantwas
measured, finaly, theyweregrindedwithstainlesssteelpul-
verizer, thentheywerethroughthe60 meshnylonsieve.The
microwavedigestionmethodwasusedforthedigestionof
plantsampleswithHNO3 +H2O2 , microwavedigestionmeth-
od.Flameatomicabsorptionspectrophotometry(WFX-110)
wasusedforthedeterminationofheavymetalCdcontent.
DataAnalysis
EnrichmentCoefficient[ 12] =Massfractionofelementsof
plantsinabovegroundparts/ConcentrationofCdinnutrient
solution.Translationcapacitycoeficient[ 13] =(Massfraction
ofelementsofplantsinabovegroundparts× biomassof
abovegroundparts)/(Massfractionofelementsofplantsin
undergroundparts×biomassofundergroundparts).
ExcelandSPSSsoftwarewereusedforanalysisand
processingoftheexperimentaldata.
ResultsandAnalysis
ThegrowthconditionsofP.pubescensunderdifferent
concentrationsofCd
DiferentconcentrationsofCdcertainlyhadacertainim-
pactonthegrowthofP.pubescens.At200 mg/LCdtreat-
ment, theleavesofP.pubescensturnedtoyelowonthe25th
dayafteraddingtheCd, andtherewereapparentpoisoning
symptoms, folowedbyyelowingleavesgradualyincreased.
However, theleavesdidnotwiltandthestemsweremaintai-
ninggrowing.Thenewrootsgrewwelinthewholeprocess.
At500 mg/LCdtreatment, theleavesofP.pubescens
turnedtoyelowonthe15thdayafteraddingtheCd, folowed
byyelowingleavesgradualyincreasedandtheleaveswilted.
Thestemsmaintainedgrowingthroughoutthetreatment.The
rootsgrewwelintheearlyperiod, whiletherewerefewernew
rootsproducedinlaterperiod.At800 mg/LCdtreatment, the
leavesofP.pubescensturnedtoyelowonthe8thdayafter
addingtheCd, folowedbyyelowingleavesgradualyin-
creasedandtheleavesgradualywilted, butthestemscould
stilmaintaingrowing.Therewerefewernewrootsproduced
inearlyperiod, whiletherewereonnewrootproducedinlater
period.At1 000 mg/LCdtreatment, theleavesofP.pu-
bescensbegantodrooponthe2nddayafteraddingtheCd.
Therewerenonewrootproducedinthewholecultivationperi-
od, andtherootsofplantsturnedtoblack.However, the
stemscouldstilmaintaingrowing.Theseresultssuggested
thattoxiceffectsofCdonP.pubescensgradualyincreased
withtheincreasingoftheconcentrationofCd.
Table1 InfluenceofdiferentCdtreatmentsonthegrowthofP.pubescens
Treatment∥mg/L Plantheight∥cm Rootlength∥cm Dryweighofshoot∥gDryweightofroot∥g Totaldryweight∥g
0 24.1a 66.7a 1.858 0a 0.282 9a 2.140 9a
25 23.2a 62.3a 1.665 3ab 0.264 5a 1.929 8ab
50 23.5a 57.1ab 1.535 2abc 0.253 5a 1.788 7abc
100 21.2ab 53.0b 1.299 8bcd 0.233 1a 1.532 9bc
200 18.7b 51.3b 1.254 3bcd 0.224 4a 1.478 7bc
500 16.3b 37.7c 1.117 2cd 0.220 0a 1.337 2c
800 15.3b 18.3d 1.059 8de 0.219 1a 1.278 9c
1 000 12.8c 15.8d 0.609 9e 0.077 8b 0.687 7d
ThedateinTable1 istheaveragevalueofthreetimesofrepeat;thediferentoflowercaseletersrepresentsthesignificantlydiferent.
Table1showedthatthewiththeCdconcentrationinthe
culturemediumincreasing, theplantheight, rootlengthand
biomassofP.pubescensshowedadecliningtrend, butthere
wasnosignificantdifferencebetweenthetreatmentgroupand
thecontrolunderthelowerconcentrations(25 and50 mg/L)
(P>0.05), atahigherconcentration(100mg/Lorabove),
thetotaldryweightofP.pubescensshowedasignificantly
decreased, andthereweresignificantdifference(P<0.05),
indicatingthatP.pubescenswasobviouslyaffectedbyCd.
TheaccumulationcharacteristicsofCdinP.pubescens
underdifferentconcentrationsofCd
Fig.1 SuggestedthatP.pubescenshadstrongcapacity
toabsorbCd.Underaltreatments, Cdcontentintheroots
andshootsofP.pubescensexceeded100 mg/kg.There
weresignificantdifferencesorextremelysignificantdiferences
amongtheCdcontentsinplanttissuesataltheCdtreat-
ments.WiththeincreasingofthesupplylevelofCd, Cdcon-
tentintherootsandshootsofP.pubescensincreasedgradu-
aly.WhentheCdconcentrationintheculturemedium was
1 000mg/L, theCdcontentintheshootswasupto3 070.069
mg/kg, whilethatofrootswasupto4 863.96 mg/kg.
Fig.1 CdcontentinPolygonumpubescensBl.grewinnutrient
solution
Table2 CadmiumaccumulationinP.pubescensunderdiferentCdtreatments
Treatment∥mg/L Cdabsorption∥mg/plantShoot Root
Enrichmentcoeficient
Shoot Root
Translationcapacity
coefficient
0 - - - - -
25 271.47 369.51 6.52 55.88 0.73
50 334.69 380.08 3.85 29.99 0.88
100 570.19 431.49 4.39 18.51 1.32
200 942.79 531.07 3.76 11.83 1.78
500 1 633.87 725.39 2.92 6.59 2.25
800 2 302.91 878.88 2.72 5.01 2.62
1 000 1 872.44 378.42 3.07 4.86 4.95
136 AgriculturalScience&TechnologyVol.11, No.3, 2010
Table2 suggestedthatwiththeCdconcentrationinthe
culturemedium increasing, theCdabsorptionofP.pu-
bescensappearedafirstincreasingandthendecreasing
trend.At800 mg/LCdtreatment, theCdaccumulationinthe
shootsandrootsofP.pubescensalachievedtheirhighest
values, whichwere878.88 and2 302.91 mgperplant, re-
spectively.UnderaltheCdtreatments, therootsandshoots
ofP.pubescensshowedstrongCdaccumulationability.The
enrichmentcoeficientofrootwasof4.86 -55.88, whilethat
ofshootwasof2.72-6.52.WiththeincreasingofCdconcen-
tration, theenrichmentcoeficientofrootandshootshoweda
decliningtrend.Exceptforthecontrol, thetranslationcapacity
coefficientofeachleveloftreatmentwasof0.73 -4.95.When
theCdconcentrationwashigherthan50mg/kg, thetranslation
capacitycoeficientwasmorethan1.
ConclusionandDiscussion
ThewidelyusedreferencevalueproducedbyBakerand
Brooks[ 14] wasusedastheidentifiedstandardsforhyperaccu-
mulators, namely, thecriticalcontentofZnandMninplant
leaveswas10 000mg/kg, whilethatofPb, Cu, Cr, Ni, Co
andAswere1 000mg/kgandCdwas100mg/kg.Theresults
inthisstudyshowedthatP.pubescensappearedhighaccumu-
lationcapacityofCdwhichculturedinnutrientsolution.Underal
theCdtreatments, theCdcontentsinthestemsandleavesof
P.pubescenswerehigherthan100 mg/kg.WhentheCdcon-
tentintheculturemediumwas1 000mg/L, theCdcontentin
leavesachieved3 076.5 mg/kg.Itcouldbeconcludedthat
theP.pubescenshadhighaccumulationcapacityofCd, and
itwasapotentialCdenrichmentplant.Anotherevaluationcri-
terionforphytoremediationisthattheEnrichmentCoeficient
(EC)isgreaterthan1[ 12].Inthisstudy, underaltheCd
treatments, theECofshootandrootofP.pubescenswasup
tothiscriterion, whichalsoindicatedthattheP.pubescens
hadhighaccumulationcapacityofCd.
BakerandBrooks[ 15] proposedthatthetranslationcoefi-
cientofhyperaccumulatorshouldmeettherequirementthat
S/R>1 (SandRrepresenttheheavymetalcontentofplant
shootandroot), buttheindexdidnotfulytakeintoaccount
thelackofbiomassofplants.Onthisbasis, NIEFa-hui[ 13]
proposedtheconceptoftranslationcapacitycoefficient, which
combinesthevitalfactor———growthincrement, whichcan
beterreflectthedistributionlawofthegrowthincrementand
absorptionintheshootandroot.Hyperaccumulatorsthata-
chievethisevaluationindexhavebetteraccumulationefficien-
cy, whichmaybemorevaluabletobeusedinphytoremedi-
ation.Inthisstudy, theplanttranslationcapacitycoeficient
wasof0.73-4.95, whentheCdtreatmentconcentrationsex-
ceeded50 mg/L, thetranslationcapacitycoeficientwas
greaterthan1, thatwas, Cdthatabsorbedbyplantsenriched
mainlyintheshoot.
TheabsorptionamountofCdinshootisanindicatorto
evaluatethepotentialofP.pubescensremediatingtheheavy
metalcontaminatedsoil[ 16] .TheCdcontentinshootofP.pu-
bescensincreasedwiththeincreasingofexogenousCdcon-
centrations, however, biomassofP.pubescensdecreased
owingtotheincreasingtoxicityofCdonit.Theabsorptiona-
mountinshootofP.pubescensappearedafirstincreasing
andthendecreasingtrend, andat800 mg/LCdtreatment,
Cdabsorptionamountpeakedat2 302.91 mgperplant.Be-
causeP.pubescensappearedapparentpoisoningsymptoms
whentheCdconcentrationswasexceeding100 mg/L, thebi-
omassalsodecreasedsignificantlycomparedtothecontrol,
therefore, 100mg/LmightbetheCdtolerancelimitofP.pu-
bescens, andatthisleveltheCdabsorptionamountinshoot
ofP.pubescensreached570.19 mgperplant.Itcouldbe
concludedthattheP.pubescensisapotentialCdhyperaccu-
mulator.Combiningwithitsstrongaccumulationpropertiesof
Cd, P.pubescensmaybepromisingtobeusedinphytore-
mediation, anditismeaningfultobestudiedfurther.
References
[ 1] CARROLLRE.Therelationshipofcadmiumintheairtocardiovas-
culardiseasedeathrates[ J] .TheJournaloftheAmericanMedical
Association, 1966, 198(3):267-269.
[ 2] LIUWC(刘伟成), LIMY(李明云).Researchadvanceoftoxicolog-
icalefectsandtoxigenictitymechanismofcadmium(镉毒性毒理学研究进展)[J] .GuangdongTraceElementsScience(广东微量元素
科学), 2005, 12(12):1-5.
[ 3] SALTDE, PRINGCERC, PICKERINGIJ, etal.Mechanismsof
cadmiummobilityandaccumulationinIndianMustard[ J].Plant
Physiol, 1995, 109:1427-1433.
[ 4] BROWNSL, CHANEYRL, ANGLEJS, etal.Phytoremediation
potentialofThlaspicaerulescersandbladercampionforzincandcadmiumcontaminatedsoil[J].JournalofEnvironmentalQuality,
1994(23):1151-1157.
[ 5] WEISH(魏树和), ZHOUQX(周启星), WANGX(王新), etal.
SolanumnigrumL.:anewcadmium-hyperaccumulatorplant[一种
新发现的镉超积累植物龙葵(SolanumnigrumL.)] [ J].Chinese
ScienceBuletin(科学通报), 2004, 49(24):2568-2573.
[ 6] LIUW(刘威), SHUWS(束文圣), LANCY(兰崇钰).Vialabaos-
hanensis:anewcadmium-hyperaccumulatorplant(宝山堇菜(Vialabaoshanensis)———一种新的镉超富集植物)[ J].ChineseScience
Buletin(科学通报), 2003, 48(19):2046-2049.
[ 7] NIEFH(聂发辉).Cdhyper-accumulatorPhytolaccaacinosaRoxb
andCd-accumulativecharacteristics(镉超富集植物商陆及其富集效
应)[ J].EcologyandEnvironment(生态环境), 2006, 15(2):303-
306.
[ 8] SUDC(苏德纯), HUANGHZ(黄焕忠).Thephytoremediationpo-tentialofoilseedrape(B.juncea)asahyperaccumulatorforcad-
miumcontaminatedsoil(油菜作为超累积植物修复镉污染土壤的潜
力)[ J].ChinaEnvironmentalScience(中国环境科学), 2002, 22
(1):48-51.
[ 9] LISY(李双玉), SUNLN(孙丽娜), SUNTH(孙铁珩), etal.Cad-
miumhyperaccumulatorBetavulgarisvar.ciclaL.anditsaccumu-
latingcharacteristics(超富集植物叶用红菾菜(Betavulgarisvar.ciclaL.)及其对 Cd的富集特征)[J].JournalofAgro-Environ-
mentScience(农业环境科学学报), 2007, 26(4):1386-1389.
[ 10] LIS(李硕), LIUYG(刘云国), LIYL(李永丽), etal.Thehyper-
accumulatingofScirpustabernaemontanitoCdanditspotential
forphytoremediation(水葱对镉的超富集作用及其用于植物修复的
潜力)[ J].Guihaia(广西植物), 2007, 27(2):180-185.
[ 11] DENGH(邓华), LIMS(李明顺), CHENYX(陈英旭).Accumula-tingcharacteristicsofmanganese byPolygonum pubescens
Blume(超富集植物短毛蓼对锰的富集特征)[ J].ActaEcologica
Sinica(生态学报), 2009, 29(10):5450-5454.
[ 12] SALTED, BLAYLOCKM, KUMARNP, etal.Phytoremediation:
anovelstrategyfortheremovaloftoxicmetalsfromtheenviron-
mentusingplants[J] .Biotechnology, 1995, 13(5):468-474.
[ 13] NIEFH(聂发辉).Newcomprehensionsofhyperaccumulator(关
于超富集植物的新理解)[ J] .EcologyandEnvironment(生态环境), 2005, 14(1):136-138.
[ 14] BAKERAJM, BROOKSRR.Terestrialhigherplantswhichhyper-
accumulatemetalicelements———areviewoftheirdistribution, e-
cologyandphytochemistry[J].Biorecovery, 1989, 1:81-126.
[ 15] REEVESRD, BAKERAJM.Metal-accumulatingplants[ C] //
RASKINI, ENSLEYBD.Phytoremediationoftoxicmetals:using
plantstocleanuptheenvironment.NewYork:JohnWiley&Sons, Inc., 2000:193-229.
[ 16] REEVESRD.Thehyperaccumulationofnickelbyserpentine
plants[M] //INTERCEPTL.Bakervegetationofultramatic(ser-
pentine)soil.AndoverUK:Hampshire, 1992:253-277.
137DENGHuaetal.AccumulationCharacteristicsofCdinPolygonumpubescensBl.
[ 17] QIANY(钱翌), YANGLJ(杨立杰).Efectsofcadmiumpolution
insoilonphysiologicalandbiochemicalindexofAliumsativumL.
(土壤镉污染对大蒜生理生化指标的影响)[ J].AgriculturalSci-
ence&Technology(农业科学与技术), 2009, 10(3):7-10[ 18] CHENHG(陈华国), CAOGH(曹桂红), ZHAOC(赵超), etal.
DeterminationofPb, Cd, As, Hg, CuinPeriplocaforestiSchltr.
andevaluationonitsqualitystandard(黑骨藤药材中铅·镉·砷·
汞·铜的含量及其质量标准评价)[J].JournalofAnhuiAgricultur-
alSciences(安徽农业科学), 2010, 38(8):217-218, 229.
[ 19] YUB(余波).Determinationoftraceamountsofgoldinsoilsam-
pleusingplasticfoamEnrichment-ICP-MSmethod(泡塑富集 ICP
-MS测定土壤中痕量金)[ J].AgriculturalScience&Technology
(农业科学与技术), 2008, 9(4):149-152.
[ 20] CHENX(陈曦).ContentDeterminationofheavymetalsinCla-
doniaamaurocraea(地衣类药材黑穗石蕊的重金属含量测定)[J].
JournalofAnhuiAgriculturalSciences(安徽农业科学), 2010, 38
(10):159-160.
[ 21] WANGBS(王宝申), WANGBH(王炳华), GAOSQ(高树青), et
al.Bioremediationofsoilpolutioninorchard(果园土壤污染的生物修复)[ J] .AgriculturalScience&Technology(农业科学与技术),
2009, 10(5):154-157.
[ 22] JIXS(季相山), ZHAOY(赵燕), DINGL(丁雷), etal.Research
oncadmiumbioaccumulationinArgopectenirradians(海湾扇贝对
海水中镉的富集规律研究)[J].JournalofFisheriesofChina(水产
学报), 2006, 30(6):801-805.
[ 23] SONGSH(宋志慧), ZHAOSG(赵世刚).Studyontoxicefectsof
CuandCdonCeratophylumdemersumL.(铜和镉对金鱼藻的毒
性影响研究)[ J].JournalofAnhuiAgriculturalSciences(安徽农
业科学), 2010, 38(7):386-387, 391.
Responsibleeditor:LITing-ting Responsibleproofreader:WUXiao-yan
短毛蓼对 Cd的富集特性研究(摘要)
邓 华 1, 2, 3 ,李明顺 1, 3* ,陈英旭 2 ,于方明 1, 3 (1.广西师范大学环境与资源学院 ,广西桂林 541004;2.浙江大学环境与资源学
院 ,浙江杭州 310029;3.广西环境工程与保护评价重点实验室 ,广西桂林 541004)
[目的 ]研究锰超富集植物短毛蓼(PolygonumpubescensBl.)对重金属镉的响应和富集特征。
[方法]采用 Hoagland营养液为培养基质 ,设定 8种镉处理浓度(0、25、50、100、200、500、800、1 000mg/L)。植株收获后用自来水洗净 ,记录植
物株高、根长 ,然后将根浸入 20mmol/LEDTA-Na溶液中交换 15min,以去除根系表面吸附的金属离子 ,最后再用去离子水冲洗 3次 ,用吸水
纸吸干表面水分。将植物分为根 、茎、叶放至烘箱内 ,在 105℃下杀青 30min,然后在 70℃下烘 48h,测定植物各部分干质量 ,最后用不锈钢
粉碎机磨细 ,过 60目尼龙网筛。植物样品采用微波消解法用 HNO3 +H2O2 消解。重金属镉含量的测定采用火焰原子吸收分光光度法
(WFX-110型)。
[结果 ] 随着培养液中镉浓度的增加 ,短毛蓼的株高 、根长及生物量均呈下降趋势 ,但在较低浓度(25、50mg/L)下与对照相比差异均不显著
(P>0.05),在较高浓度下(100 mg/L以上)短毛蓼总干重明显减少 ,差异显著(P<0.05),表明短毛蓼受 Cd毒害影响较明显;在试验设定的
各种镉处理水平下 ,短毛蓼根和地上部Cd含量均超过 100mg/kg, Cd富集系数均大于 1,当培养液中镉浓度为 1 000mg/L时 ,地上部镉含量
高达 3 070.069mg/kg,根中镉含量高达4 863.96mg/kg。随着镉处理浓度的增加 ,短毛蓼对镉的吸收量呈现先增加后降低的趋势 ,当镉处理浓
度为 800mg/L时 ,根和地上部的镉吸收量均达最大值 ,分别为 878.88mg/株和 2 302.91mg/株。在试验各处理水平下(CK除外)短毛蓼根和
地上部均表现出较强的镉富集能力 ,根对镉的富集系数为 4.86~ 55.88,地上部富集系数为 2.72 ~ 6.52;从转运量系数来看 ,除对照外 ,各处
理水平下转运量系数为 0.73~ 4.95;当 Cd处理浓度大于 50mg/kg时 ,转运量系数超过 1。
[结论 ]短毛蓼对镉具有较强的耐受性和富集能力 ,在镉污染土壤的植物修复中具有一定的应用潜力。
关键词 短毛蓼;镉;富集;植物修复
基金项目 国家自然科学基金资助项目(30560032);广西重点实验室基金资助项目;广西师范大学青年基金资助项目(0702k023)。
作者简介 邓华(1977-),女 ,湖南祁阳人,硕士 ,讲师 ,从事污染土壤植物修复研究。 *通讯作者。
收稿日期 2010-01-25 修回日期 2010-03-24
(上接第 109页)
利用 HPLC建立油菜蜂花粉指纹图谱
郝晓莉1* ,周艳明 2 ,张馨予 1 (1.辽宁省农业科学院检测中心 ,辽宁沈阳 110161;2.沈阳农业大学 ,辽宁沈阳 110161)
摘要 油菜蜂花粉中黄酮类物质是一大类复杂的混合物 ,槲皮素是油菜蜂花粉黄酮类物质中的主要成分。以槲皮素为标准样品 ,利用高效
液相色谱的分离技术和统计学方法 ,将中药色谱指纹图谱技术引入到食品领域 ,建立了药食两用食品———油菜蜂花粉的色谱指纹图谱。色
谱条件:色谱柱为ODS-C18、键合相 4.0mm×250mm、5μm紫外检测器、检测波长 260nm、进样量 8μl、控制柱温 35℃、流速 1ml/min,流动
相为乙腈+0.5%磷酸体系。在上述试验条件下 ,对 20个油菜蜂花粉样品的甲醇提取液进行 HPLC分析 ,同时利用国家药典委员会提供的中
药色谱指纹图谱相似度评价系统 ,对各试验条件下得到的油菜蜂花粉色谱图进行评价。结果表明 ,该方法稳定性相似度为 0.943~ 0.957, 重
复性相似度为 0.941~ 0.989,精密度相似度为 0.964~ 0.984, 20种样品结果相似度为 0.900~ 0.997。该方法将成为现行的质量控制方法的
有益补充 ,并最终保证产品的安全性和有效性。
关键词 HPLC;油菜蜂花粉;指纹图谱;槲皮素
作者简介 郝晓莉(1972-),女 ,辽宁朝阳人 ,硕士,副研究员,从事农产品质量检测与分析工作。 *通讯作者。
收稿日期 2010-03-01 修回日期 2010-04-17
138 AgriculturalScience&TechnologyVol.11, No.3, 2010