免费文献传递   相关文献

翻白草中的黄酮类成分(英文)



全 文 : 2009 年 9 月 第 7 卷 第 5 期 Chin J Nat Med Sep. 2009 Vol. 7 No. 5 361








Flavones from Potentilla discolor Bunge

WANG Qi1,2, XU De-Ran2, SHI Xin-Hong2, QIN Min-Jian1 *
1Research Department of Traditional Chinese Medicinal Resources;
2Department of Pharmaceutics of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210038, China
【ABSTRACT】 AIM: To study the flavones from Potentilla discolor Bunge. METHODS: Extracted with 70% ethyl
alcohol, the constituents were isolated by Chromatography of silica gel, Sephadex LH-20 and ODS and their structures
were identified on the basis of the physical properties and spectral analysis. RESULTS: Nine flavanoids were isolated
from Potentilla discolor Bunge and identified as quercetin (1), kaempferol (2), quercetin-3-O-α-L-rhamnpyranoside (3),
quercetin-3-O-β-D-glucopyranoside (4), quercetin-3-O-α-D-arabinfuranoside (5), rutin (6),
quercetin-3-O-β-D-glucuronide (7), kaempferol-3-O-β-D-glucuronide (8),
quercetin3-O-β-D-galactoside-7-O-β-D-glucoside (9). CONCLUSION: Compounds 4-7 were obtained from this plant
for the first time and compounds 8 and 9 were isolated from this genus for the first time.
【KEY WORDS】 Rosaceae; Potentilla discolor Bunge; Flavones
【CLC Number】 R284 【Document code】 A 【Article ID】1672-3651(2009)05-0361-04
doi: 10.3724/SP. J. 1009.2009.00361
Potentilla discolor (Rosaceae), has long been used as
a traditional Chinese medicine to treat diabetes mellitus[1].
Modern pharmacological research shows that its decoction
has notable protective effect on islet B cell[2].and the fla-
vones have significant effect on hypoglycemic activity[3].
So it is necessary to identify the flavones of Potentilla dis-
color Bunge and confirm whether it is the active com-
pounds or not.
Nine flavanoids were isolated from Potentilla dis-
color Bunge and identified as quercetin (1), kaempferol (2),
quercetin-3-O-α-L-rhamnpyranoside (3), quercetin-3-O-β-
D-glucopyranoside (4), quercetin-3-O-α-D-arabinfurano-
side (5), rutin (6), quercetin-3-O-β-D-glucuronide (7),
kaempferol-3-O-β-D-glucuronide (8), quercetin3-O-β-D-
galactoside-7-O-β-D-glucoside (9). Compounds 4-7 were
obtained from this plant for the first time and compounds 8
and 9 were isolated from this genus for the first time.
1 Apparatus and Reagents
X-4 micro melting point apparatus (uncorrected);
UV-2450 spectrometer (Shimadzu); Agilent 1100 Series
LC/MSD Trap; NMR spectra were measured on Bruker
ACF-300 and Bruker ACF-500 instrument ;Silica gel
(Qingdao Marine Chemical Factory)was used for column
chromatography and silica gel GF254 for TLC; Macroporous

【Received on】 09-Oct-2008
【 *Corresponding author 】 Qin Min-Jian, Prof., Tel:
025-85391290, E-mail: minjianqin@sina.com
resin D101 (Anhui Sanxing Resin Technology Co. Ltd.)
was used for column chromatography; polyamide (Shanghai
Chemical Factory)was used for column chromatography;
Sephadex LH-20 (Pharmacia) was used for column chro-
matography; Octadecyl silica (Merck) was used for column
chromatography; All solvents used were of analytical grade.
2 Plant Material
The Potentilla discolor Bunge were collected in
Mancheng, Hebei Province, China in June, 2007. The plant
material was identified by researcher Xu De-Ran, Depart-
ment of Department of Pharmaceutics of Traditional Chi-
nese Medicine, China Pharmaceutical University. The
voucher specimen is deposited at Research Department of
Traditional Chinese Medicinal Resources, China Pharma-
ceutical University, Nanjing, China.
3 Extraction and Isolation
Air-dried aerial parts of Potentilla discolor Bunge (16
kg) percolation process with 70% ethanol (90 L) at room
temperature. The ethanol extract was dissolved in 3L of
H2O to form a suspension and then extracted successively
with petroleum ether, CHCl3, EtOAc and n-BuOH.
CHCl3-soluble fraction (65 g) was subjected to a series of
chromatographic techniques, such as silica gel column,
polyamide, Macroporous resin, Sephadex LH-20, ODS,
yielding compounds 1 (124 mg) and 2 (115 mg), and from
n-BuOH-soluble fraction(120 g) compounds 3(210 mg) , 4
(185 mg) , 5 (206 mg) , 6 (157 mg) , 7 (986 mg) , 8 (453
WANG Qi, et al. /Chinese Journal of Natural Medicines 2009, 7(5): 361−364
362 Chin J Nat Med Sep. 2009 Vol. 7 No.5 2009 年 9 月 第 7 卷 第 5 期

mg) , and 9 (35 mg) were obtained.
4 Identification
Compound 1 C15H10O7, yellow crystal, mp 310-312
oC. The reaction of HCl-Mg was positive. The reaction of
ferric chloride is positive. UV λmax(nm): 256, 371 (MeOH).
IR (KBr) υ (cm-1): 3 400, 1 640, 1 600, 1 500. ESI-MS m/z:
301 [M – H]-. Compound 1 was identified as quercetin by
comparison of the physical and spectral data with the re-
ported data[4].
Compound 2 C15H10O6, yellow needles, mp 271-273
oC. The reaction of HCl-Mg was positive.The reaction of
ferric chloride is positive .UV λmax (nm): 256, 364 (MeOH).
IR (KBr) υ (cm−1): 3 402, 1 658, 1 609, 1 503. ESI-MS m/z:
285 [M – H]-. Compound 2 was identified as kaempferol by
comparison of the physical and spectral data with the re-
ported data[5].
Compound 3 C21H20O11, yellow crystal, mp 182
-184 oC. The reaction of Molish is positive. Rhamnose was
checked out by lamella acid hydrolysis. UV λmax (nm): 204,
256, 358 (MeOH). ESI-MS m/z: 447 [M – H]-, 301 [M – H
– Rha]-. 1H NMR (300 MHz, CD3OD)δ: 6.20 (1H, d, J =
2.1 Hz, H-6), 6.37 (1H, d, J = 2.1 Hz, H-8), 7.28 (1H, d, J =
2.1 Hz, H-2′), 6.91 (1H, d, J = 8.2 Hz, H-5′), 7.32 (1H, dd,
J = 2.1, 8.3 Hz, H-6′), 5.34 (1H, brs, H-1′′), 3.38-4.20 (4H,
m), 0.93 (3H, d, J = 6.0 Hz, CH3-C6′′); 13C NMR (75 MHz,
CD3OD) δ: 158.6 (C-2), 136.3 (C-3), 179.8 (C-4), 163.3
(C-5), 99.9 (C-6), 166.0 (C-7), 94.8 (C-8), 159.4 (C-9),
106.0 (C-10), 122.9 (C-1′), 116.5 (C-2′), 146.5 (C-3′), 149.9
(C-4′), 117.0 (C-5′), 123.1 (C-6′), 103.6 (C-1′′), 72.1 (C-2′′),
72.2 (C-3′′), 73.4 (C-4′′), 72.0 (C-5′′), 17.7 (C-6′′). Com-
pound 3 was identified as
quercetin-3-O-α-L-rhamnpyranoside by comparison of the
spectral data with the reported data[6].
Compound 4 C21H20O12, yellow crystal, mp 180-182
oC. The reaction of HCl-Mg was positive. The reaction of
ferric chloride is positive. The reaction of Molish is positive.
Glucose was checked out by lamella acid hydrolysis. UV
λmax(nm):204, 256, 358 (MeOH). ESI-MS m/z: 463 [M –
H]-, 301[M – H – Glc]-. 1H NMR (500 MHz, CD3OD)δ:
6.20 (1H, d, J = 2.1 Hz, H-6), 6.40 (1H, d, J = 2.1 Hz, H-8),
7.83 (1H, d, J = 2.2 Hz, H-2′), 6.86 (1H, d, J = 8.5 Hz,
H-5′), 7.58 (1H, dd, J = 2.2, 8.5 Hz, H-6′), 5.16 (1H, d, J =
7.8 Hz, H-1′′), 3.45-3.84 (6H, m); 13C NMR (125 MHz,
CD3OD) δ: 158.5 (C-2), 135.9 (C-3), 179.6 (C-4), 163.1
(C-5), 100.0 (C-6), 166.2 (C-7), 94.8 (C-8), 158.9 (C-9),
105.7 (C-10), 123.0 (C-1′), 116.2 (C-2′), 145.9 (C-3′), 150.0
(C-4′), 117.8 (C-5′), 123.0 (C-6′), 105.5 (C-1′′), 73.3 (C-2′′),
75.2 (C-3′′), 70.1 (C-4′′), 77.3 (C-5′′), 62.0 (C-6′′). Com-
pound 4 was identified as
quercetin-3-O-β-D-glucopyranoside by comparison of the
spectral data with the reported data[7].
Compound 5 C20H18O11, amorphous yellow powder,
mp 241-243 oC. The reaction of HCl-Mg was positive. The
reaction of ferric chloride is positive. The reaction of Mol-
ish is positive. Arabinose was checked out by lamella acid
hydrolysis. UV λmax (nm): 206, 256, 355 (MeOH). ESI-MS
m/z: 433 [M – H]-, 301[M – H – Ara]-. 1H NMR (300 MHz,
CD3OD)δ: 6.20 (1H, d, J = 2.1 Hz, H-6), 6.39 (1H, d, J =
2.1 Hz, H-8), 7.52 (1H, d, J = 2.0 Hz, H-2′), 6.89 (1H, d, J
= 8.3 Hz, H-5′), 7.49 (1H, dd, J = 2.0, 8.3 Hz, H-6′), 5.46
(1H, d, J = 1.4 Hz, H-1′′), 3.31-4.16 (5H, m); 13C NMR (75
MHz, CD3OD) δ: 158.7 (C-2), 135.0 (C-3), 180.1 (C-4),
163.2 (C-5), 100.0 (C-6), 166.1 (C-7), 94.8 (C-8), 159.4
(C-9), 105.7 (C-10), 123.0 (C-1′), 116.5 (C-2′), 146.5 (C-3′),
150.0 (C-4′), 116.9 (C-5′), 123.2 (C-6′), 109.6 (C-1′′), 83.4
(C-2′′), 78.8 (C-3′′), 88.1 (C-4′′), 62.7 (C-5′′). Compound 5
was identified as quercetin-3-O-α-D-arabinfuranoside by
comparison of the spectral data with the reported data[8].
Compound 6 C27H36O16, amorphous yellow powder,
mp 190-192 oC. The reaction of HCl-Mg was positive. The
reaction of ferric chloride is positive. The reaction of Mol-
ish is positive. UV λmax (nm): 257, 356 (MeOH). IR (KBr) υ
(cm-1): 3 420, 1 653, 1 604, 1 506, 1 456. ESI-MS m/z: 609
[M – H]-, 463 [M – H – Rha]-, 301 M – H – Rha – Glc]-.
Compound 6 was identified as rutin by comparison of the
physical and spectral data with the reported data[4].
Compound 7 C21H18O13,amorphous yellow powder,
mp 213-215 oC. The reaction of HCl-Mg was positive. The
reaction of ferric chloride is positive. The reaction of Mol-
ish is positive. Glucuronate was checked out by lamella
acid hydrolysis. It cues that the compound was flavonoid
glycoside. UV λmax(nm): 259, 356 (MeOH). ESI-MS m/z:
477 [M – H]-, 301 [M – H – glucuronide]-, 1H NMR (500
MHz , DMSO-d6)δ: 6.16 (1H, d, J = 2.1 Hz, H-6), 6.35 (1H,
d, J = 2.1 Hz, H-8), 8.00 (1H, d, J = 2.2 Hz, H-2′), 6.82 (1H,
d, J = 8.4 Hz, H-5′), 7.43 (1H, dd, J = 2.2, 8.4 Hz, H-6′),
5.32 (1H, d, J = 7.1 Hz, H-1′′); 13C NMR (125 MHz ,
DMSO-d6)δ: 156.4 (C-2), 133.8 (C-3), 177.4 (C-4), 161.0
(C-5), 99.0 (C-6), 164.8 (C-7), 93.7 (C-8), 157.0 (C-9),
103.6 (C-10), 120.6 (C-1′), 115.4 (C-2′), 144.8 (C-3′), 148.5
(C-4′), 117.3 (C-5′), 121.0 (C-6′), 102.3 (C-1′′), 74.7 (C-2′′),
76.5 (C-3′′), 71.7 (C-4′′), 74.0 (C-5′′), 172.6 (C-6′′). Com-
pound 7 was identified as quercetin-3-O-β-D-glucuronide
by comparison of the spectral data with the reported data[9].
Compound 8 C21H18O12, amorphous yellow powder,
mp 207-209 oC. The reaction of HCl-Mg was positive. The
reaction of ferric chloride is positive. The reaction of Mol-
ish is positive. Glucuronate was checked out by lamella
acid hydrolysis. It cues that the compound was flavonoid
glycoside. UV λmax (nm): 265, 354 (MeOH). ESI-MS m/z:
461 [M – H]-, 285 [M – H – glucuronide]-, 1H NMR (500
MHz , DMSO-d6) δ: 6.11 (1H, d, J = 2.1 Hz, H-6), 6.33 (1H,
d, J = 2.1 Hz, H-8), 8.01 (2H, d, J = 8.8 Hz, H-2′, 6′), 6.85
(2H, d, J = 8.8 Hz, H-3′, 5′), 5.44 (1H, d, J = 7.1 Hz, H-1′′);
13C NMR (125 MHz , DMSO-d6)δ: 156.2 (C-2), 133.3
(C-3), 177.2 (C-4), 160.1 (C-5, C-4′), 98.9 (C-6), 165.1
WANG Qi, et al. /Chinese Journal of Natural Medicines 2009, 7(5): 361−364
2009 年 7 月 第 7 卷 第 4 期 Chin J Nat Med July 2009 Vol. 7 No. 4 363

(C-7), 93.7 (C-8), 156.4 (C-9), 103.5 (C-10), 120.7 (C-1′),
130.9 (C-2′, C-6′), 115.1 (C-3′, C-5′), 101.2 (C-1′′), 74.8
(C-2′′), 76.3 (C-3′′), 71.9 (C-4′′), 73.9 (C-5′′), 172.9 (C-6′′).
Compound 8 was identified as
kaempferol-3-O-β-D-glucuronide by comparison of the
spectral data with the reported data[10].
Compound 9 C27H30O17, yellow crystal, mp 216-218
oC. The reaction of HCl-Mg was positive. The reaction of
Molish is positive. Glucose was checked out by lamella
acid hydrolysis. UV λmax (nm): 204, 256, 358(MeOH).
ESI-MS m/z: 625 [M – H]-, 463 [M – H – Gal]-, 301 [M – H
– Gal – Glc]-. 1H NMR (300 MHz, DMSO-d6) δ: 6.41 (1H,
d, J = 2.0 Hz, H-6), 6.73 (1H, d, J = 2.0 Hz, H-8), 6.82 (1H,
d, J = 8.3 Hz, H-5′), 7.53 (1H, d, J = 2.1 Hz, H-2′), 7.56
(1H, dd, J = 2.1, 8.3 Hz, H-6′), 5.06 (1H, J = 7.1 Hz, H-1′′′),
5.45 (1H, J = 7.3 Hz, H-1′′), 12.64 (1H, s, H-5), 3.38-4.20
(4H, m); 13C NMR (75 MHz, DMSO-d6) δ: 156.8 (C-2),
133.5 (C-3), 177.6 (C-4), 160.8 (C-5), 99.3 (C-6), 162.8
(C-7), 94.3 (C-8), 155.9 (C-9), 105.6 (C-10), 121.6 (C-1′),
115.1 (C-2′), 144.8 (C-3′), 148.6 (C-4′), 116.4 (C-5′), 121.0
(C-6′), 100.7 (C-1′′), 74.0 (C-2′′), 76.5 (C-3′′), 69.5 (C-4′′),
77.1 (C-5′′), 60.6 (C-6′′) , 99.7 (C-1′′′), 73.1 (C-2′′′), 76.4
(C-3′′′), 69.9 (C-4′′′), 77.6 (C-5′′′), 60.9 (C-6′′′). Compound
9 was identified as quercetin3-O-β-D-galactoside-7-O-β-D-


R1 R2 R3
1: OH OH OH
2: OH H OH
3: OH OH ORha
4: OH OH OGlu
5: OH OH OAra
6: OH OH OGlu(6→1)Rha
7: OH OH

8: OH H

9:

OH


Fig. 1 Structures of compounds in Potentilla discolor
Bunge purified in this study

glucoside by comparison of the spectral data with the re-
ported data[11].
5 Discussion
Compound 9 was rare in the nature, it was reported in
the Rosaceae sanguisorba, scammony dodder and sau-
ruraceae heartleaf[11-13], and was a characteristic chemical
constituent of dodder. It was the first time found in the Po-
tentilla, which was a strong evidence to prove the genetic
relationship of plant chemotaxonomy among Rosaceae it-
self with Rosaceae and scammony.
References
[1] Xiao PG, Lian WD. Chinese medicine plant primary color
illustrated [M]. Beijing: Chinese Agriculture Publishing
house, 1999: 159.
[2] HanYM, Duan YJ, Yuan F, et al. The function of Potentilla
Discolour Bunge(PDB) on the pancreatic islet B cells of the
DM rat [J]. J Hubei Coll Tradit Chin Med, 2005, 7(3): 28-29.
[3] Wang QX, Jia MY, Tang RP, et al. The chemical constituents
review of decreasing blood glucose in natural products [J].
Chin J Ethnomed Ethnopharm, 2005, 75(4): 190-193.
[4] Deng YH, Xu KP, Zhang W, et al. Chemical study on
Sophora tonkinensis [J]. Nat Prod Res Dev, 2005, 17(2):
172-174.
[5] Hu XL, Zhu H, Liu CH, et al. Study on the chemical con-
stituents of the flowers of Impatiens balsamina L. [J]. Chin
Tradit Pat Med, 2003, 25(10): 833-834.
[6] Fossen T, Larsen A, T. Kiremire B, et al. Flavonoids from
blue flowers of Nymphaea caerulea [J]. Phytochemistry,
1999, 51(8): 1133-1137.
[7] Jia Z,Zhang PF,Tao BQ, et al. Study on flavones of the
flower of Juglans regia [J]. Chin Pharm J, 2009, 44(7):
496-497.
[8] Seetharaman TR, Manjula K. Flavonoid pattern of semi-
parasite Taxillus bracteatus growing on Lannea coroman-
delica and Psidium guajava [J]. J Indian Chem Soc, 1996, 73:
499-500.
[9] Bulatovic V, Gorunovic M. Flavonoids of wood anemone
(Anemone nemorosa L., Ranunculaceae) [J]. Pharm Acta
Helv, 1995, 70 (3): 219-221.
[10] Amal EK, Mariam HG, Ramzia IB, et al. Chemical and bio-
logical study of the residual aerial parts of Sesamum indicum
L. [J]. J Food Drug Ana, 2007, 15(3): 249-257.
[11] Meng J, Dong XP, Jiang ZH, et al. Study on chemical con-
stituents of flavonoids in fresh herb of Houttuynia cordata
[J]. Chin Pharm J, 2006, 31(16): 1335-1337.
[12] Ye M, Yan YN, Qiao L, et al. Studies on chemical constitu-
ents of Cuscuta chinensis [J]. Chin Pharm J, 2002, 27(2):
115-117.
[13] Jin X, Li JS, Yan WM. Studies on flavonoids in the seed of
Cuscuta chinensis Lam. [J]. Chin Pharm J, 1992, 17(5):
292-294.
WANG Qi, et al. /Chinese Journal of Natural Medicines 2009, 7(5): 361−364
364 Chin J Nat Med Sep. 2009 Vol. 7 No.5 2009 年 9 月 第 7 卷 第 5 期

翻白草中的黄酮类成分
王 琦 1,2, 徐德然 2, 石心红 2, 秦民坚 1*
1 中国药科大学中药资源学研究室, 南京 210038;
2 中国药科大学中药制剂教研室, 南京 210038
【摘 要】 目的:对翻白草(Potentilla discolor Bunge)的黄酮类成分进行研究。方法:采用 70%乙醇提取, 利用硅胶、
Sephadex LH-20、ODS 柱层析等方法分离化合物, 根据理化性质及光谱技术鉴定结构。结果:分离并鉴定了 9 个黄酮类化
合物, 经光谱方法分别鉴定为槲皮素(1)、山柰酚(2)、槲皮素-3-O-α-L-吡喃鼠李糖苷(3)、槲皮素-3-O-β-D-葡萄糖苷(4)、槲
皮素-3-O-α-D-阿拉伯糖苷(5)、芦丁(6)、槲皮素-3-O-β-D-葡萄糖醛酸苷(7)、山柰酚-3-O-β-D-葡萄糖醛酸苷(8)和槲皮素
-3-O-β-D-半乳糖-7-O-β-D-葡萄糖苷(9)。结论:化合物 4~7 为首次从翻白草中分离得到的化合物, 8、9 为首次从委陵菜属
植物中分离得到的化合物。
【关键词】 蔷薇科; 翻白草; 黄酮

·信 息·

近期 Planta Medica 高被引文章题录
作 者:Greger, H.
文 题:Structural relationships, distribution and biological
activities of Stemona alkaloids
文 献:Planta Medica, 2006, 72(2): 99-113.
被引次数:34
文章类型:综述
作 者:Efferth, T.
文 题:Willmar Schwabe award 2006: antiplasmodial
and antitumor activity of artemisinin - from bench to bedside
文 献:Planta Medica, 2007, 73(4): 299-309.
被引次数:27
文章类型:综述
作 者:Ammon, H.P.T.
文 题:Boswellic acids in chronic inflammatory diseases
文 献:Planta Medica, 2006, 72(12): 1100-1116.
被引次数:26
文章类型:综述
作 者:Zhang, W.-D., Chen, H., Zhang, C., Liu, R.-H.,
Li, H.-L., Chen, H.-Z.
文 题:Astragaloside IV from Astragalus membranaceus
shows cardioprotection during myocardial ischemia in vivo and in
vitro
文 献:Planta Medica, 2006, 72(1): 4-8.
被引次数:25
文章类型:论文
作 者:Rau, O., Wurglics, M., Paulke, A., Zitzkowski, J.,
Meindl, N., Bock, A., Dingermann, T., Abdel-Tawab, M., Schu-
bert-Zsilavecz, M.
文 题:Carnosic acid and carnosol, phenolic diterpene
compounds of the labiate herbs rosemary and sage, are activators
of the human peroxisome proliferator-activated receptor gamma
文 献:Planta Medica, 2006, 72(10): 881-887.
被引次数:21
文章类型:论文
作 者:Holmes, E., Tang, H., Wang, Y., Seger, C.
文 题:The assessment of plant metabolite profiles by
NMR-based methodologies
文 献:Planta Medica, 2006, 72(9): 771-785.
被引次数:20
文章类型:综述
作 者:Han, Q., Yang, L., Liu, Y., Wang, Y., Qiao, C.,
Song, J., Xu, L., Yang, D., Chen, S., Xu, H.
文 题:Gambogic acid and epigambogic acid, C-2
epimers with novel anticancer effects from Garcinia hanburyi
文 献:Planta Medica, 2006, 72(3): 281-284.
被引次数:20
文章类型:论文
作 者:Zhao, Z., Hu, Y., Liang, Z., Yuen, J.P.-S., Jiang,
Z., Leung, K.S.-Y.
文 题:Authentication is fundamental for standardization
of Chinese medicines
文 献:Planta Medica, 2006, 72(10): 865-874.
被引次数:17
文章类型:论文
作 者:Rasmussen, B., Cloarec, O., Tang, H., Stærk, D.,
Jaroszewski, J.W.
文 题 : Multivariate analysis of integrated and
full-resolution 1H-NMR spectral data from complex pharmaceuti-
cal preparations: St. Johns wort
文 献:Planta Medica, 2006, 72(6): 556-563.
被引次数:17
文章类型:论文
作 者:Wang, C.-Z., Aung, H.H., Ni, M., Wu, J.-A.,
Tong, R., Wicks, S., He, T.-C., Yuan, C.-S.
文 题:Red American ginseng: Ginsenoside constituents
and antiproliferative activities of heat-processed Panax quinque-
folius roots
文 献:Planta Medica, 2007, 73(7): 669-674.
被引次数:16 times.
文章类型:论文
Scopus EXPORT DATE: 15 September 2009
网址:http://www.scopus.com/inward