Abstract:Current understanding of the ABC program has provided a new set of characters to evaluate floral evolution. However, what is still lacking is a clear assessment of this genetic program across monocots. Here, to investigate the evolution of members of class A and B genes in monocots, we report the sequence characteristic and transcript expression of three new MADS-box genes in Alpinia oblongifolia Hayata. Sequence and phylogenetic analysis reveales that these genes are FUL-like and AP3-like. Therefore, they were termed AoFL1, AoFL2 and AoAP3. AoFL1 contains the FUL motif, but AoFL2 lacks this motif. Their expression revealed by in situ hybridization may reflect the ancestral function of FUL-like genes in the specification of inflorescence and floral meristems. The AoAP3 gene contains two conserved motifs, the PI-derived and paleoAP3 motifs. The AoAP3 transcripts located to the corolla and stamen, and hybridization signals were detected in the central whorl. These expression patterns suggest that the functions of homologous organ identity genes are diversified in Alpinia oblongifolia Hayata. The implications of these findings on the conservation of homologous gene function are discussed.