Abstract:A new economic and efficient DNA polymorphism assay was developed in 1990 that is based on the amplification by polymerase chain reaction (PCR) of random DNA segments using primers of arbitrary nucleotide sequence. Authors have now adapted this type of amplification to rice mitochondrial genome. Using 6 rice varieties in conjunction with 7 of 20–27 mer oligonucleotide primers, the AP-PCR products revealed that the amplified DNA bands fell into two categories, the evolutively conserved the cytoplasmic-specific. It is suggested that AP-PCR assay of mtDNA may help to classify or identify the cytoplasms in rice. By comparing "fingerprints" among the WA type cytoplasmic male sterility (CMS) rice, its Maintainer and Restorer lines, as well as its hybrid, one CMS cytoplasm-specific band (primer R2/630 bp) and one normal cytoplasm-specific segment (primer V5/707 bp) could be directly identified among the set of amplified DNA fragments. Further, some difference in the amplification patterns of mtDNA between CMS line and its hybrid, which infers that rearrangement of mitochondrial genome in hybrid rice probably happened.