免费文献传递   相关文献

A preliminary pharmacophylogenetic study of tribe Cimicifugeae (Ranunculaceae)


The phylogeny, ethnopharmacology, pharmacology and chemical composition of the tribe Cimici-fugeae attributed to the family of Ranunculaceae as used in the North America, Europe and Asia, were reviewed and compared. Furthermore, the pharmacophylogenetics of Cimicifugeae was investigated. A survey of the avail-able literature showed that the main chemical constituents of these species are 9,19-cycloartane triterpenoid gly-cosides and the cinnamic acid derivates. In ethnopharmacology, plants of tribe Cimicifugeae were commonly used as antipyretic, antitoxic, anti-inflammation agents and utilized for the treatment of menopausal symptoms. Recent pharmacology research demonstrated that some of these Cimicifugeae species showed antiosteoporosis, antivirus, anticancer, antiallergic and hormonal-like activities. According to our present research and the literature record for the chemical, pharmacological and phylogeny research of tribe Cimicifugeae, we proposed that Actaea and Cimi-cifuga have a close relationship because of their similarity in chemical constituents and medical use. Actaea and Cimicifuga together could be considered one clade of tribe Cimicifugeae, and Actaea is relatively advanced, considering its diagnostic and karyological characters. Beesia was independent in this tribe since beesioside type triterpenoids had never been found in Actaea and Cimicifuga species. Meanwhile, pentacyclic triterpenoids and beesioside type triterpenoids were both isolated from Beesia, as well as Souliea, but they have not been found in Cimicifuga and Actaea. Indolinone alkaloids were detected in either Souliea or Cimicifuga and Actaea. Therefore, Souliea should be intermediate between Beesia and Cimicifuga. There is a close relationship between the cycloar-tane triterpenoids constituents and the anti-toxic, anti-pyretic effect of tribe Cimicifugeae. Therefore, we proposed the cycloartane triterpenoids constituents to be a new resource of anti-tumor and anti-virus agents.


全 文 :植物分类学报 46 (4): 516–536 (2008) doi: 10.3724/SP.J.1002.2008.07095
Journal of Systematics and Evolution (formerly Acta Phytotaxonomica Sinica) http://www.plantsystematics.com
毛茛科升麻族植物药用亲缘学初探
1,2高璟春 1彭 勇 2,3杨梦苏 1肖培根*
1(中国医学科学院 中国协和医科大学药用植物研究所 北京 100094)
2(香港城市大学深圳研究院 深圳 518057)
3(香港城市大学生物及化学系 香港)
A preliminary pharmacophylogenetic study of tribe Cimicifugeae
(Ranunculaceae)
1,2Jing-Chun GAO 1Yong PENG 2,3Meng-Su YANG 1Pei-Gen XIAO*
1(Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100094, China)
2(Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China)
3(Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China)
Abstract The phylogeny, ethnopharmacology, pharmacology and chemical composition of the tribe Cimici-
fugeae attributed to the family of Ranunculaceae as used in the North America, Europe and Asia, were reviewed
and compared. Furthermore, the pharmacophylogenetics of Cimicifugeae was investigated. A survey of the avail-
able literature showed that the main chemical constituents of these species are 9,19-cycloartane triterpenoid gly-
cosides and the cinnamic acid derivates. In ethnopharmacology, plants of tribe Cimicifugeae were commonly used
as antipyretic, antitoxic, anti-inflammation agents and utilized for the treatment of menopausal symptoms. Recent
pharmacology research demonstrated that some of these Cimicifugeae species showed antiosteoporosis, antivirus,
anticancer, antiallergic and hormonal-like activities. According to our present research and the literature record for
the chemical, pharmacological and phylogeny research of tribe Cimicifugeae, we proposed that Actaea and Cimi-
cifuga have a close relationship because of their similarity in chemical constituents and medical use. Actaea and
Cimicifuga together could be considered one clade of tribe Cimicifugeae, and Actaea is relatively advanced,
considering its diagnostic and karyological characters. Beesia was independent in this tribe since beesioside type
triterpenoids had never been found in Actaea and Cimicifuga species. Meanwhile, pentacyclic triterpenoids and
beesioside type triterpenoids were both isolated from Beesia, as well as Souliea, but they have not been found in
Cimicifuga and Actaea. Indolinone alkaloids were detected in either Souliea or Cimicifuga and Actaea. Therefore,
Souliea should be intermediate between Beesia and Cimicifuga. There is a close relationship between the cycloar-
tane triterpenoids constituents and the anti-toxic, anti-pyretic effect of tribe Cimicifugeae. Therefore, we proposed
the cycloartane triterpenoids constituents to be a new resource of anti-tumor and anti-virus agents.
Key words chemotaxonomy, Cimicifugeae, ethnopharmacology, pharmacophylogenetics, Ranunculaceae.
摘要 本文总结和归纳了在北美、欧洲以及亚洲广泛应用的毛茛科Ranunculaceae升麻族Cimicifugeae药用植物的系统分类、
传统药用价值、现代药理以及化学成分研究结果, 并在此基础上初步探讨了该族植物的药用亲缘学关系。升麻族药用植物主
要含有9,19-阿尔廷烷三萜皂苷以及肉桂酸衍生物两大类化合物。升麻族植物在传统药用中被用来镇痛、解毒、抗炎, 在北美
很早就被印第安人用来治疗妇科疾病。现代药理研究发现升麻族植物还具有抗骨质疏松、抗病毒、抗肿瘤、抗过敏、类雌激
素样作用等。通过对升麻族植物药用亲缘学的初步研究, 我们发现由于类叶升麻属Actaea和升麻属Cimicifuga的疗效和化学成
分相近, 因此两属的亲缘关系也近。考虑它们果实的形态差异, 以及细胞学特征不同, 认为这两属为升麻族植物的一个分支,
且以类叶升麻属较升麻属更为进化。从化学分类学的角度来看, 铁破锣属Beesia含有特殊铁破锣皂苷可以成为一个独立的分
支, 而黄三七属Souliea既和铁破锣属一样含有五环三萜和铁破锣型环阿尔廷烷三萜类化合物, 又和升麻属、类叶升麻属一样
含有吲哚生物碱, 因此可以认为它是铁破锣属和升麻属、类叶升麻属之间的一个过渡类型。升麻族植物特有的清热解毒功效
与其特殊的阿尔廷烷三萜皂苷化学成分密切相关, 因此我们认为阿尔廷烷三萜皂苷可以作为抗肿瘤、抗病毒的新药源进一步
深入研究。
关键词 化学分类; 升麻族; 传统药物学; 药用亲缘学; 毛茛科
———————————
2007-07-12 收稿, 2008-04-21 收修改稿。
* 通讯作者(Author for correspondence. E-mail: xiaopg@public.bta.net.cn)。
高璟春等: 毛茛科升麻族植物药用亲缘学初探

517
升麻族Cimicifugeae植物属于毛茛科Ranun-
culaceae金莲花亚科subfam. Helleboroideae, 包括5
个属: 铁破锣属Beesia Balf. f. & W. W. Smith、黄三
七属Souliea Franch.、升麻属Cimicifuga L.、类叶升
麻属Actaea L.和垂果升麻属Anemonopsis Sieb. &
Zucc., 共40余种植物。升麻族植物为多年生草本,
常生于海拔2000 m左右的山地林缘、林中或路旁草
丛中, 主要分布于北美洲, 亚洲和欧洲北温带地区
(图1)。其中升麻C. foetida L.、兴安升麻C. dahurica
(Turcz. ex Fisch. & C. A. Mey.) Maxim.和大三叶升
麻C. heracleifolia Komar.为我国药典收录品种(肖培
根, 1979)。
铁破锣属包括铁破锣 B. calthifolia (Maxim. ex
Oliv.) Ulbr.和角叶铁破锣B. deltophylla C. Y. Wu ex
Hsiao 2个种, 主要分布于我国西南一带及缅甸北
部 ; 黄三七属只有黄三七 S. vaginata (Maxim.)
Franch. 1个种, 分布于我国西南和秦岭一带以及锡
金、不丹和缅甸; 升麻属为升麻族中最大的一个属,
包括28种, 我国有8个种, 分布于西藏、云南、四川、
贵州、广东、湖南、江西、浙江、安徽、河南、青
海、甘肃、山西、陕西、河北、内蒙古以及东北诸
省区; 类叶升麻属在全世界约有8个种, 主要分布
在北温带 , 在我国有两种 , 类叶升麻A. asiatica
Hara和红果类叶升麻A. erythrocarpa Fisch. ex Fisch.
& C. A. Mey., 主要分布于东北及内蒙古、河北、山
西、陕西、甘肃、青海、湖北、四川、云南和西藏
东部; 垂果升麻属仅有A. macrophylla Baill.一个种,
只在日本本州中部的长野、名古屋、甲府及富士山
等地有分布(图1)(Xiao, 1979)。
近些年来, 关于升麻族植物的化学、分类和系
统演化以及药用等方面的研究取得了不少进展。本
文在对升麻族植物化学、分类学和药理作用进行整
理的基础上, 归纳总结了升麻族药用植物亲缘关
系、化学成分和疗效间的相关性, 即药用亲缘学方
面进行初步探索, 为探讨该族植物的分类、系统演
化提供更多证据, 同时也为本族植物的进一步开发
利用提供线索。
1 升麻族植物的化学成分
目前世界上主要有日本的Kusano A.、Sakurai
N.、Kadota S.、中国的肖培根、张庆文以及陈迪华
领导的研究小组对升麻族植物的化学成分进行了
系统研究, 已从升麻属植物中分离得到大约200个
化合物, 主要含有9,19-阿尔廷烷三萜皂苷(例如:
升麻醇, Actein, 26-deoxyactein)以及肉桂酸衍生物
(例如: 阿魏酸, 异阿魏酸, 咖啡酸)两大类化合物,
另外还有一些色原酮类(如: cimifugin, norcimifugin)
和吲哚类生物碱以及其他含氮化合物(如: 升麻酰
胺, 异升麻酰胺)(Baba et al., 1981)。对于亚洲产的
升麻族植物 , 例如B. calthifolia, S. vaginata, C.
acerina (Siebold & Zucc.) Tanaka, C. simplex (DC.)
Wormsk. ex Turcz., C. dahurica, C. foetida, C. hera-
cleifolia, A. asiatica以及欧洲、北美洲产的C. ra-
cemosa, 其化学成分研究最为广泛。
1.1 9,19-环阿尔廷烷型三萜皂苷
9,19-环阿尔廷烷型三萜皂苷主要分布在豆科
Leguminosae的黄耆属Astragalus L., 毛茛科的升麻
族和唐松草属Thalictrum L.等, 是中药黄芪和升麻
的主要成分。



图1 升麻族植物的地理分布 1. 垂果升麻属; 2. 升麻属; 3. 黄三七属; 4. 类叶升麻属; 5. 铁破锣属。
Fig. 1. Geographic distribution of plants of the tribe Cimicifugeae. 1, Anemonopsis; 2, Cimicifuga; 3, Souliea; 4, Actaea; 5, Beesia.
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 518
迄今为止从升麻族植物中已经分离得到170多
个9,19-环阿尔廷烷三萜皂苷类化合物。这类化合物
的结构中, 在9,19位形成三元环, 其构象A环为椅
式, B环为扭椅式, C环为扭船式, D环为信封式,
A/B、C/D呈反式稠合, B/C呈顺式稠合(图2)。
A、B、C、D环的结构没有太大差异, 但是链
接于D环的侧链却因氧化程度和成环方式的不同有
很大差别, 可以分为11种亚型: 升麻醇型, 24-羟基
升麻醇型, shengmanol type, 16,23-二酮型, cimiacer-
ogenin type, cimifugenin type, 侧链断裂型, neo-
cimicigenoside type, 铁破锣型, 类叶升麻型和
ranunculane type (图3)。此类化合物C-3β常常被苷


图2 9,19-环阿尔廷烷型三萜皂苷母核立体构型
Fig. 2. Stereoscopic view of the aglycone of 9,19-cycloartane
triterpenoids.


化, 一般含有一个或多个糖配体, 最常见的为五碳
糖(多为木糖和阿拉伯糖), 偶尔连有六碳糖(如葡萄
糖, 半乳糖); 有时候C-15位也被苷化。



图3 升麻族植物中9,19-环阿尔廷烷型三萜皂苷结构亚型 A. 升麻醇型。B. 24-羟基升麻醇型。C. Shengmanol type。D. 16,23-二酮型。E.
Cimiacerogenin型。F. Cimifugenin型。G. 侧链断裂型。H. Neocimicigenoside型。I. 铁破锣型。J. 类叶升麻型。K. Ranunculane型。
Fig. 3. Chemical structure types of 9,19-cycloartane triterpenoids in tribe Cimicifugeae. A, Cimigenol type. B, Hydroshengmanol type. C,
Shengmanol type. D, 16,23-dione type. E, Cimiacerogenin type. F, Cimifugenin type. G, Side chain-seco type. H, Neocimicigenoside type. I,
Beesioside type. J, Asiaticoside type. K, Ranunculane type.
高璟春等: 毛茛科升麻族植物药用亲缘学初探

519
由于有着特殊的9,19-环丙烷结构, 在该类化合
物的氢谱高场区出现非常特征的AB系统质子信号,
其化学位移一般出现在δ 0.30和δ 0.50 ppm左右
(J=3.0-4.5 Hz)。在侧链结构中, 通常含有吡喃环
(16:23-环氧), 呋喃环(16:23; 16:24-双环氧, 16:23;
16:25-双环氧; 22:25-环氧, 23:26-环氧), 或者是连
接于C-24和C-25之间的三角环氧环。这些环氧部位
的氢质子(δ 3.0-5.5 ppm)和碳信号(δ 70-120 ppm)成
为该类化合物结构鉴定中的重要信息。
从升麻族分离得到的所有9,19-环阿尔廷烷三
萜皂苷及其分布见图3和表1–7。将这些化合物在升
麻族植物种属间的分布整理归纳, 得到表11。
在11个9,19-环阿尔廷烷三萜皂苷亚型中, 升麻
醇亚型为最大的1个, 包含有70多个化合物。16:23;
16:24-双氧环是升麻醇亚型的重要结构特征(图3),
结构中因为C-16连接有两个氧原子且处在3个环的
桥头位置, 所以其化学位移向低场移动, 一般在δ
112 ppm左右。另外, 在升麻醇亚型中, C-23和C-24
的绝对构型最常见的分别为R和S, 相应的H-23和
H-24在氢谱上表现为双峰和单峰; 也有很少一些升
麻醇亚型化合物其C-23和C-24均为R构型, 其H-23
和H-24在氢谱上也相应地呈现为四重峰和双峰
(Yoshimitsu, 2006)。
24-羟基升麻醇亚型是升麻族环阿尔廷烷三萜
的第二大亚型。这一类型主要的结构特征是C-16和
C-23之间有一环氧环(图3); 另外, 在C-24位常常有
乙酰基取代, H-24也因取代效应向低场位移到δ 5.3
ppm左右。
Cimiacerogenin亚型9,19-环阿尔廷烷三萜主要
存在于升麻属的小升麻种(表5), 在我们对类叶升麻
的化学研究中, 也分离得到该类化合物 (Gao et al.,
2006a)。在该亚型的结构中(图3), C-26和C-27因为
位于五元环上因此甲基质子的化学位移向高场移
动, 一般位于δ 1.70 ppm左右, 呈2个单峰, 这也是
该类型化合物区别于其他类型化合物的主要波谱
特征之一。
Neocimicigenoside亚型目前只有两个化合物 ,
在总状升麻和类叶升麻中都有存在。在该亚型化合
物的结构中(图3), 独特的16:23; 16:25-双环氧结构
是其区别于其他类型化合物的主要特征(Mimaki et
al., 2006)。
类叶升麻三萜皂苷是我们从类叶升麻属分离
得到的1个新的环阿尔廷烷三萜亚型, 其侧链为一
α,β-不饱和酮结构。由于在C-25存在1个–CH(CH3)2
异丙基结构, 所以在氢谱中δ 1.10 ppm左右有3个双
峰甲基峰(21,26,27-3甲基), 且在δ 3.30 ppm有1个多
重峰(异丙基氢质子)。这一波谱特征可以将此亚型
化合物和其他亚型很容易区分开来。
最近一个含有新母核的三萜皂苷从C. podo-
carpa (DC.) Elliott 中 分 离 得 到 , 被 命 名 为
ranunculane型三萜皂苷(Ali et al., 2006)。在这种新
母核中, 没有了经典的9,19-角环, C-19位移连接到
C-11上。鉴于目前只得到1个此类化合物, 不具有代
表意义, 其化学分类学意义还有待考察。
1.2 肉桂酸衍生物
肉桂酸衍生物也是升麻族植物的主要化学成
分之一, 从升麻族分离到的肉桂酸衍生物见图4和
表8。



图4 升麻族植物中肉桂酸衍生物的结构类型
Fig. 4. Structure chemotype of cinnamic acid in tribe Cimicifugeae.

1.3 色原酮类化合物
从升麻族植物分离得到的色原酮类化合物及
其结构类型见图5和表9。



图5 升麻族植物中色原酮类化合物的结构类型
Fig. 5. Structure chemotype of Chromones in tribe Cimicifugeae

1.4 其他
一些含氮化合物在升麻族植物中也有存在, 例
如升麻酰胺, 异升麻酰胺,吲哚类生物碱, carbazol
类生物碱 (Baba et al., 1981); 另外还有核苷、蔗糖
以及长链脂肪酸以及甾醇类化合物。
另外, 有报道从总状升麻C. racemosa分离到1
个木质素actaealactone, 这是首次从升麻族植物中
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 520
表1 升麻族植物中升麻醇亚型环阿尔廷烷三萜皂苷
Table 1 Cimigenol type 9,19-cycloartane triterpenoids in tribe Cimicifugeae
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 cimigenol C30H48O5(488) 1 Corsano et al., 1965
2 cimigenol-3-O-β-D-xyl C35H56O9(620) 2 Sakurai et al., 1972
3 25-O-acetylcimigenol-3-O-β-D-xyl C37H58O10(662) 1 Takemoto et al., 1970a
4 25-O-acetylcimigenol-3-O-β-D-(2-acetyl)-xyl C39H60O11(704) 3 Zhou et al., 2004b
5 25-O-acetylcimigenol-3-O-β-D-glu(1′′-3′)-β-D-xyl C43H68O15(824) 4 Kusano et al., 1994a
6 cimiside A C35H56O10(636) 2 Li et al., 1993a
7 25-O-acetyl-12β-hydroxycimigenol-3-O-α-L-ara C37H58O11(678) 5 Watanabe et al., 2002
8 12β,21-dihydroxycimigenol-3-O-α-L-ara C35H56O11(652) 5 Watanabe et al., 2002
9 12β-hydroxy-7,8-didehydrocimigenol-3-O-α-L-ara C35H54O10(634) 4 Kusano et al., 2001b
10 3-O-α-L-ara-cimigenol-15-O-β-D-glu C30H48O5(488) 2 Zhang et al., 2001b
11 12β-hydroxycimigenol-3-O-α-L-ara C35H56O10(636) 4 Kusano et al., 1995a
12 7β-hydroxycimigenol-3-O-β-D-xyl C35H56O10(636) 4 Kusano et al., 1995a
13 1α-hydroxycimigenol-3-O-α-L-ara C36H58O11(666) 4 Kusano et al., 1999b
14 1α-hydroxycimigenol-3-O-β-D-gal C30H48O5(488) 4 Kusano et al., 1999b
15 25-O-acetyl-7β-cimigenol-3-O-β-D-xyl C37H58O11(678) 4 Kusano et al., 1995a
16 25-O-acetylcimigenol C32H50O6(530) 1 Takemoto & Kusano, 1969
17 7,8-didehydrocimigenol-3-O-β-D-gal C36H56O10(648) 4 Kusano et al., 1996b
18 cimigenol-3-O-β-D-gal C36H58O10(650) 4 Kusano et al., 1996b
19 12β-hydroxycimigenol-3-O-β-D-gal C36H58O11(666) 6 Pan et al., 2003b
20 (23R,24R)cimigenol-3-O-β-D-gal C36H58O10(650) 6 Pan et al., 2003b
21 25-O-methylcimigenol-3-O-β-D-gal C37H60O10(664) 4 Kusano et al., 1996b
22 25-O-acetylcimigenol-3-O-β-D-gal C38H60O10(692) 4 Kusano et al., 1996b
23 25-O-acetylcimigenol-3-O-β-D-glu C38H60O10(692) 4 Kusano et al., 1996b
24 1α-hydroxycimigenol-3-O-β-D-xyl C35H56O10(672) 4 Kusano et al., 1995b
25 25-acetyl-1α-hydroxycimigenol-3-O-β-D-xyl C37H58O11(678) 4 Kusano et al., 1995b
26 5-O-acetylcimigenol-3-O-α-L-ara C37H58O10(662) 2 Ye et al., 1999
27 22-hydroxycimigenol-3-O-β-D-xyl C35H56O10(636) 7 Sakurai et al., 1981
28 25-O-methylcimigenol-3-O-β-D-xyl C36H58O9(634) 1 Takemoto, 1970a
29 25-O-methylcimigenol-3-O-α-L-ara C36H58O9(634) 5 Watanabe et al., 2002
30 cimigenol-3-O-β-D-glu C36H58O10(650) 6 Li et al., 1994d
31 21-hydroxycimigenol-3-O-α-L-ara C35H56O10(636) 5 Shao et al., 2000
32 21-hydroxycimigenol-3-O-β-D-xyl C35H56O10(636) 5 Shao et al., 2000
33 cimigenol-3-O-α-L-ara C35H56O9(620) 2 Ye et al., 1999
34 7,8-didehydrocimigenol-3-O-β-D-xyl C35H54O9(618) 4 Kusano et al., 1999b
35 25-O-acetyl-7,8-didehydrocimigenol-β-D-xyl(p) C37H56O10(660) 4 Kusano et al., 1999b
36 25-O-acetyl-7,8-didehydrocimigenol-3-O-α-L-ara C37H56O10(660) 4 Kusano et al., 1999b
37 25-O-anhydrocimigenol-3-O-β-D-xyl C36H56O9(632) 6 Li et al., 1994c
38 Cimiracemoside G C37H56O10(660) 5 Chen et al., 2002b
39 Cimiracemoside K C37H56O10(660) 5 Chen et al., 2002b
40 25-O-anhydrocimigenol-3-O-β-D-gal C35H54O8(602) 6 Pan et al., 2003a
41 7,8-didehydrocimigenol C30H46O5(486) 8 Li et al., 1993b
42 25-O-acetyl-7,8-didehydrocimigenol C32H48O6(528) 8 Li et al., 1993b
43 12β-acetoxycimigenol-3-O-α-L-ara C37H58O11(678) 5 Shao et al., 2000
44 25-O-acetylcimigenol-3-O-β-D-glu-(1′′–2′)- β-D-xyl C43H68O15(824) 6 Pan et al., 2004
45 cimigenol-3-O-β-D-glu-(1′′′-2′′)-β-D-glul-(1′′-2′)- β-D-xyl C47H76O19(944) 6 Pan et al., 2004

高璟春等: 毛茛科升麻族植物药用亲缘学初探

521
表1 (续) Table 1 (continued)
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
46 cimigol C30H48O5(488) 1 Kusano & Takemoto, 1975
47 24-epi-7,8-didehydrocimigenol C30H46O5(486) 8 Li et al., 1993b
48 3-keto-24-epi-7,8-didehydrocimigenol C30H44O5(484) 8 Li et al., 1993b
49 2′,4′-O-diacetyl-24-epi-7,8-didehydrocimigenol-β-D-xyl(p) C39H58O11(702) 8 Li et al., 1993b
50 3′-O-acetyl-24-epi-7,8-didehydrocimigenol-β-D-xyl(p) C37H56O10(660) 8 Li et al., 1993b
51 24-epi-7,8-didehydrocimigenol-β-D-xyl(p) C35H54O9(618) 8 Li et al., 1993b
52 24-epi-acerinol C30H46O5(486) 8 Li et al., 1993b
53 acerinol C30H46O5(486) 1 Takemoto et al., 1967
54 25-O-methylacerinol C30H48O5(488) 1 Kusano et al., 1976b
55 Dehydroxy-15-O-methylcimigenol C31H48O4(484) 1 Takemoto & Kusano, 1969
56 15-O-methylcimigenol C31H50O5(500) 1 Takemoto & Kusano, 1969
57 25-O-methylcimigenol C31H50O5(500) 1 Takemoto & Kusano, 1968
58 cimifugenol C30H48O (424) 1 Takemoto et al., 1970b
59 25-O-anhydrocimigenol-3-O-α-L-ara C35H54O8 (602) 7 Sakurai et al., 1975
60 cimiside B C40H64O13(752) 2 Li et al., 1993a
61 12β-hydroxycimigenol-3-O-β-D-xyl C35H56O10(636) 4 Kusano et al., 1995a
62 7,8-didehydrocimigenol-3-O-β-D-xyl C35H54O9(618) 4 Kusano et al., 1999b
63 12β-acetoxycimigenol-3-O-β-D-xyl C37H58O11(678) 5 Lai et al., 2005
64 cimicinol C35H52O8(600) 6 Kadota et al., 1995
65 25-O-ethylcimigenol-3-O-β-D-xyl C37H60O9(648) 9 Gao et al., 2006a
66 (23R,24S)-16β,23;16a,24-diepoxycycloartane-3b,12β,25-triol
3-O-β-D-xylopyranoside
C35H56O9(620)

10 Yoshimitsu, 2006
67 (23R,24S)-16β,23;16a,24-diepoxy-cycloart-
7-en-3β,11b,25-triol-3-O-β-D-xylopyranoside
C35H56O9(618)

10 Yoshimitsu, 2006
68 (23R,24R)-16β,23;16a,24-diepoxy-cycloart-7-en-3β,12β,15a,
25-tetraol-3-O-β-D-xylopyranoside
C35H54O10(634)

10 Yoshimitsu, 2006
69 (23R,24R)-16β,23;16a,24-diepoxy-12β-acetoxy-cycloart-7-en-3b,15a,
25-triol 3-O-β-D-xylopyranoside
C37H56O11(676) 10 Yoshimitsu, 2006
70 (23R,24R)-16β,23;16a,24-diepoxy-cycloartane-3β,15a,25-triol
3-O-β-D-xylopyranoside
C35H56O8(620)

10 Yoshimitsu, 2006
1) 本栏的数字分别代表以下种: 1, 小升麻; 2, 兴安升麻; 3, Souliea vaginata; 4, 单穗升麻; 5, 北美升麻; 6, 升麻; 7, C. Japonica (Thunb.)
Speng.; 8, 大三叶升麻; 9, 类叶升麻; 10, 升麻根茎; 11, 南川升麻。
1) The number indicated in the table refers to the following species: 1, Cimicifuga acerina (Sieb. & Zucc.); 2, C. Dahurica (Turcz. ex Fisch. & C. A.
Mey.) Maxim.; 3, Souliea vaginata (Maxim.) Franch.; 4, C. Simplex (Wormsk.); 5, C. Racemosa Nutt.; 6, C. foetida L.; 7, C. japonica (Thunb.)
Spreng.; 8, C. Heracleifolia Komar.; 9, Actaea asiatica Hara; 10, Cimicifugae rhizoma; 11, C. nanchuanensis P. K. Hsiao.

得到木质素类化合物(Nuntanakorn et al., 2006)。升
麻族植物中存在大量肉桂酸衍生物, 而这一类化合
物是木质素类化合物在植物体内合成的前体, 所以
该类化合物的存在从生源途径上可以得到解释。但
是, 鉴于目前只有1个木质素类化合物, 所以, 并不
具有分类学意义。
2 升麻族植物的分类学研究概况
升麻族5个属药用植物的分类学争议由来已
久。
从性状上, 铁破锣属以具单叶, 无花瓣而显得
与金莲花族Trollieae关系接近, 但它具有复杂的花
序又显得与升麻族相似。另外, 该属和黄三七属、
升麻属、类叶升麻属以及垂果升麻属的染色体均为
R型, 核型彼此较为接近, 与金莲花族的驴蹄草属
Caltha L.、金莲花属Trollius L.、鸡爪草属Calathodes
Hook. f. & Thoms.的核型明显不同。杨亲二等(1995)
通过对角叶铁破锣核型的研究认为, 铁破锣属可能
与升麻属等类群关系较近而与金莲花属等类群关
系较远, 因此认为将该属置于升麻族中比置于金莲
花族中合理。李良千(1995)也认为铁破锣属应该属
于升麻族, 但同时它也是金莲花族与升麻族的中间
纽带。汪小全等(1998)通过对包括铁破锣在内的5种
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 522
表2 升麻族植物中24-羟基升麻醇型环阿尔廷烷三萜皂苷
Table 2 Hydroshengmanol type 9,19-cycloartane triterpenoids in tribe Cimicifugeae
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 25-O-methyl-24-O-acetylhydroshengmanol-3-O-β-D-xyl C38H62O11(676) 4 Kusano et al., 1996a
2 25-O-methyl-7β-hydroxy-24-
O-acetylhydroshengmanol-3-O-β-D-xyl
C38H62O12(692) 4 Kusano et al., 1996a
3 25-O-methyl-1α-hydroxy-24-
O-acetylhydroshengmanol-3-O-β-D-xyl
C38H62O12(692) 4 Kusano et al., 1996a
4 24-O-acetylhydroshengmanol-3-O-β-D-xyl C37H60O11(680) 7 Sakurai et al., 1981
5 7,8-didehydro-24-O-acetylhydroshengmanol-3-O-β-D-xyl C37H58O11(678) 4 Kusano et al., 1999b
6 7,8-didehydro-24-O-acetylhydroshengmanol-3-O-α-L-ara C37H58O11(678) 4 Kusano et al., 1999b
7 7,8-didehydro-25-O-methyl-24-O-acetylhydroshengmanol-3-O-β-D-xyl C38H60O11(692) 4 Kusano et al., 1999a
8 3-arabinosyl-24-O-acetylhydroshengmanol-15-O-β-D-glu C43H70O16(842) 2 Sakurai et al., 1994
9 3-xylosyl-24-O-acetylhydroshengmanol-15-O-β-D-glu C43H70O16(842) 2 Sakurai et al., 1994
10 24-epi-7β-hydroxy-24-O-acetylhydroshengmanol-3-O-β-D-xyl C37H60O12(696) 4 Kusano et al., 1996a
11 24-epi-24-O-acetyl-7,8-didehydroshengmanol-3-O-β-D-gal C38H60O12(708) 4 Kusano et al., 1996b
12 24-epi-24-O-acetyl-7,8-didehydroshengmanol-3-O-β-D-xyl C37H58O11(678) 4 Kusano et al., 1999b
13 24-epi-24-O-acetyl-7,8-didehydroshengmanol-3-O-α-L-ara C37H58O11(678) 4 Kusano et al., 1999b
14 24-epi-24-O-acetyl-7,8-didehydroshengmanol-3-
O-(2′-O-malonyl)-β-D-xyl
C40H60O14(764) 4 Kusano et al., 1999a
15 24-epi-24-O-acetylhydroshengmanol-3-O-β-D-gal C38H62O12(710) 4 Kusano et al., 1996b
16 Dahurinol C30H48O5(488) 2 Sakurai, 1972
17 24-acetylisodahurinol-3-O-β-D-xyl C37H58O10(662) 5 Shao et al., 2000
18 Isodahurinol C30H48O5(488) 4 Kusano et al., 1976a
19 25-O-methylisodahurinol C31H50O5(502) 4 Kusano et al., 1976a
20 Dehydroxydahurinol C30H46O5(486) 4 Kusano et al., 1976a
21 soulieoside B C39H60O11(704) 3 Zhou et al., 2004b
22 24-acetoxy-15,16-seco-cycloart-7-en 3- O-β-D-xyl C37H56O12(692) 10 Nishida et al., 2003c
23 15,16-seco-cycloart-7-en 3- O-β-D-xyl C35H54O10(634) 10 Nishida et al., 2003c
24 (23R,24R)-24-epiacetylhydroxyshengmanol-3-O-β-D-xyl-15-O-β-D-glu C43H70O16(842) 2 Li et al., 1994a
25 (23R,24R)-24-epiacetylhydroxyshengmanol-3-O-β-D-xyl-15-O-β-D-glu C43H70O16(842) 2 Li et al., 1994a
26 (22R)-22-hydroxy-24-O-acetylhydroshengmanol 3-O-β-D-xyl C37H60O12(696) 1 Zhang et al., 2001a
1) 注释见表1。The number indicated is the same as in Table 1.


表3 升麻族植物中Shengmanol型环阿尔廷烷三萜皂苷
Table 3 Shengmanol type 9,19-cycloartane triterpenoids in tribe Cimicifugeae
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 acetyl shengmanol xyloside C37H58O10(662) 7 Sakurai et al., 1975
2 23-O-acetyl-7,8-didehydroshengmanol-3-O-β-D-gal C38H58O11(690) 4 Kusano et al., 1999b
3 23-O-acetyl-7,8-didehydroshengmanol-3-O-β-D-(2-O-malonyl)-xyl C40H58O13(746) 4 Kusano et al., 1999a
4 23-O-acetylshengmanol-3-O-β-D-(2′-O-malonyl)-xyl C40H60O13(748) 4 Kusano et al., 1999a
5 23-O-acetylshengmanol-3-O-β-D-(4-O-acetyl)-xyl C30H48O5(488) 5 Chen et al., 2002b
6 23-O-acetylshengmanol-3-α-L-(4-acetyl)-ara C30H48O5(488) 5 Chen et al., 2002b
7 23-O-acetyl-7,8-didehydroshengmanol-3-O-β-D-xyl C37H56O10(660) 4 Kusano et al., 1999a
8 23-O-acetylshengmanol-3-O-β-D-glu(1-3)-β-D-xyl C43H68O15(824) 4 Kusano et al., 1994a
9 23-O-acetyl-7,8-dydehydroshengmanol-3-α-L-ara C37H56O10(660) 4 Kusano et al., 1996b
10 23-O-acetylshengmanol-3-α-L-ara C37H58O10(662) 6 Pan et al., 2002
11 23-O-acetyl-1α-hydroxyshengmanol-3-O-β-D-xyl C37H58O11(678) 4 Kusano et al., 1995b
12 7β-hydroxy-23-O-acetylshengmanol-3-O-β-D-xyl C37H58O11(678) 4 Kusano et al., 1994b
13 Acetylshengmanol C32H50O7(530) 7 Sakurai et al., 1979
14 Shengmanol xyloside C35H58O10(638) 7 Kimura et al., 1982
15 Actaeaepoxide 3-O-β-D-xylopyranoside C37H56O11(676) 5 Wende et al., 2001
1) 注释见表1。The number indicated is the same as in Table 1.

高璟春等: 毛茛科升麻族植物药用亲缘学初探

523
表4 升麻族植物中16,23-二酮型环阿尔廷烷三萜皂苷
Table 4 16,23-dione type 9,19-cycloartane triterpenoids in tribe Cimicifugeae
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 cimicifugoside H-1 C35H52O9(616) 10 Koeda et al., 1995
2 12β-acetoxy-24R,25-epoxy-3β,15α-dihydroxy-16,23-dione-cycloart-7-
ene-3-α-O-L-ara
C37H54O11(674) 4 Kusano et al., 2001b
3 12β-acetoxy-24R,25-epoxy-3β-hydroxy-16,23-dione-cycloart-7-ene-3-
α-O-L-ara
C37H54O10 658) 4 Kusano et al., 2001b
4 cimicifugoside H-5 C35H52O10(622) 10 Koeda et al., 1995
5 cimicidanol-3-O-ara C35H52O9(616) 6 Kadota et al., 1995
6 cimicidanol C30H44O5(484) 6 Kadota et al., 1995
7 cimicifol C37H55O10(658) 6 Kadota et al., 1995
8 cimidahuside E C35H52O8(600) 2 Liu et al., 2003
9 cimidahuside F C35H52O9(616) 2 Liu et al., 2003
10 cimicifugoside H-2 C35H55O10(634) 10 Koeda et al., 1995
11 12β-acetoxy-3β,15α,24R,25-tetrahydroxy-16,23-dione-cycloart-7-ene-3-α-O-
L-ara
C37H56O12(692) 4 Kusano et al., 2001b
12 15α-hydroxycimicidol-3-O-β-D-xyl C35H54O11(650) 6 Kadota et al., 1995
13 cimicidol-3-O-β-D-xyl C35H54O10(634) 6 Kadota et al., 1995
14 24-hydroxy-12β-acetoxy-25,26,27-trinorcycloartan-16,23-dione-3-α-O-L-ara C34H52O10(620) 2 Zhang et al., 2001b
15 cimicifugoside H-3 C32H49O9(576) 10 Sakurai et al., 1995
16 Cimicidol-3-one C30H42O5(482) 5 Dan et al., 2006b
17 2′-O-acetyl cimicifugoside H-1 C37H54O10(642) 5 Dan et al., 2006a
18 3′-O-acetyl cimicifugoside H-1 C37H54O10(642) 5 Dan et al., 2006a
1) 注释见表1。The number indicated is the same as in Table 1.


表5 升麻族植物中Cimiacerogenin型环阿尔廷烷三萜皂苷
Table 5 Cimiacerogenin type 9,19-cycloartane triterpenoids in tribe Cimicifugeae
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 cimiaceroside A C35H54O9(618) 1 Kusano et al., 1998b
2 cimiaceroside B C35H56O9(620) 1 Kusano et al., 1998b
3 Cimiracemoside A C37H56O11(676) 5 Bedir & Khan, 2000
4 Cimiracemoside L C39H60O11(704) 5 Chen et al., 2002b
5 Cimiracemoside M C39H60O10(660) 5 Chen et al., 2002b
6 2’-O-malonylcimiaceroside B C38H58O12(706) 4 Kusano et al., 1999a
7 20(S),22I,23(S),24I-16β:23;22:25-diepoxy-12β-acetoxy-3β,23,24-
trihydroxy-9,19-cycloanost-7ene-3-O-β-xyl
C37H56O11(676) 5 Shao et al., 2000
8 20(S),22I,23(S),24I-16β:23;22:25-diepoxy-12β-acetoxy-3β,23,24-
trihydroxy-9,19-cycloanost-7ene-3-α-L-ara
C37H56O11(676) 5 Shao et al., 2000
9 20(S),22I,23(S),24I-16β:23;22:25-diepoxy-12β-acetoxy-3β,23,24-
trihydroxy-9,19-cycloanost-3-O-β-xyl
C37H58O11(678) 5 Shao et al., 2000
10 20(S),22I,23(S),24I-16β:23;22:25-diepoxy-12β-acetoxy-3β,23,24-
trihydroxy-9,19-cycloanost-3-α-L-ara
C37H58O11(678) 5 Watanabe et al., 2002
11 20(S),22I,23(S),24I-16β:23;22:25-diepoxy-3β,23,24-trihydroxy-9,19-
cycloanost-3-O-β-D-(4-acetyl)xyl
C37H58O11(678) 5 Shao et al., 2000
12 20(S),22I,23(S),24I-16β:23;22:25-diepoxy-cycloartane-3β,23,24-triol-
3-O-β-D-glu-(1′′′-2′′)-β-D-glu-(1′′-2′)-β-D-xyl
C47H76O19(944) 10 Nishida et al., 2003a
13 20(S),22I,23(S),24I-16β:23;22:25-diepoxy-cycloartane-3β,23,24-triol-
3-O-(6′′′-O-trans-isoferuloyl-β-D-glu)-(1′′′-2′′)-β-D-glu-(1′′-2′)-β-D-xyl
C57H84O23(1120) 10 Nishida et al., 2003a
1) 注释见表1。The number indicated is the same as in Table 1.


植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 524
表6 升麻族植物中Cimifugenin型环阿尔廷烷三萜皂苷
Table 6 Cimifugenin type 9,19-cycloartane triterpenoids in tribe Cimicifugeae
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 27-deoxyacetylacteol C32H48O6(528) 5 Linde et al., 1968
2 acetylacetol-3-O-α-L-ara C37H56O11(676) 6 Kadota et al., 1995
3 actein C37H56O11(676) 6 Koeda et al., 1995
4 23-epi-26-deoxyactein C37H56O10(660) 5 Chen et al., 2002a
5 7,8-didehydro-27-deoxyactein C37H54O10(658) 6 Zhao et al., 2003
6 cimicifugoside C37H54O11(674) 4 Kusano et al., 1977
7 26-deoxycimicifugoside C37H54O10(658) 4 Kusano et al., 1999b
8 2′-O-malonylcimicifugoside C40H56O14(760) 4 Kusano et al., 1999a
9 2′-O-acetylactein C39H58O11(702) 6 Zhu et al., 2001
10 2′-O-acetyl-27-deoxyactein C39H58O10(686) 6 Zhu et al., 2001
11 cimiracemoside I C35H52O8(600) 5 Chen et al., 2002b
12 cimiracemoside N C37H56O10(660) 5 Chen et al., 2002b
13 cimiracemoside O C39H58O12(718) 5 Chen et al., 2002b
14 cimiracemoside P C37H54O11(674) 5 Chen et al., 2002b
15 bugbanoside A C35H52O10(632) 4 Kusano et al., 1998a
16 bugbanoside B C35H54O10(634) 4 Kusano et al., 1998a
17 26-deoxyactein C37H56O10(660) 5 Chen et al., 2002a
18 soulieoside C C35H54O10(634) 3 Zhou et al., 2004b
1) 注释见表1。The number indicated is the same as in Table 1.

表7 升麻族植物中侧链断裂型环阿尔廷烷三萜皂苷
Table 7 Sidechain-seco type 9,19-cycloartane triterpenoids in tribe Cimicifugeae
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 foetidinol C27H40O5(444) 6 Li et al., 1994b
2 16α,24α-dihydroxy-12β-acetoxy-25,26,27-trinor-
16,24-cycloartan-23-one 3β-O-α-L-ara
C34H52O10(620) 2 Zhang et al., 2001b
3 cimicifugoside H-4 C32H48O9(576) 10 Koeda et al., 1994
4 12β-acetoxy-3β-hydroxy-24,25,26,27-tetranor-cycloartane-
23,16β-olide3-O-β-D-xylopyranoside
C33H50O9(590) 10 Nishida et al., 2003b
5 12β-acetoxy-3β-hydroxy-24,25,26,27-tetranor-cycloartane-
7-en-23,16β-olide3-O-β-D-xylopyranoside
C33H50O9(590) 10 Nishida et al., 2003b
6 cimicifugoside H-6 C32H48O10(592) 10 Sakurai et al., 1995
7 cimilactone A C33H50O9(590) 2 Liu et al., 2002
8 cimilactone B C33H48O9(588) 2 Liu et al., 2002
9 neocimiside C32H48O9(576) 6 Li et al., 1996
10 foetidinol-3-O-β-D-xyl C32H48O9(576) 6 Kadota et al., 1995
11 15α-hydroxyfoetidinol-3-O-β-D-xyl C32H48O10(592) 6 Kadota et al., 1995
1) 注释见表1。The number indicated is the same as in Table 1.

金莲花亚科植物(均属金莲花族或升麻族)的核糖体
DNA中的ITS序列以及rRNA基因的3′端序列进行测
定, 发现铁破锣属的ITS序列长度及序列均与升麻
属及类叶升麻属相近, 而与金莲花属植物相差甚
远, 更进一步支持铁破锣是升麻族的自然成员, 并
可能是升麻族中一个最原始的类群。
英国植物学家Compton等(1998)通过对升麻属
和类叶升麻属DNA ITS序列的测定, 认为两属系统
分类学地位接近, 应该合并为一属, 即类叶升麻属
Actaea, 并且认为黄三七属也可以并入该属。但是
从形态学观察, 类叶升麻属的果实为浆果, 升麻属
的果实为蓇葖果, 两者明显不同; 从细胞学特征来
看, 类叶升麻属与其他4属, 即铁破锣属、垂果升麻
属、黄三七属和升麻属相比, 类叶升麻及该属其他
种类都具有两条没有短臂的T染色体, 因此类叶升
麻属的核型不对称性程度在升麻族中显得最高。根
高璟春等: 毛茛科升麻族植物药用亲缘学初探

525
表8 升麻族植物含有的肉桂酸衍生物
Table 8 Cinnamic acid derivates in tribe Cimicifugeae and their distribution
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 ferulic acid C10H10O4(194) 4 Zhao et al., 2002
2 isoferulic acid C10H10O4(194) 4 Zhao et al., 2002
3 caffeic acid C9H8O4(180) 4 Takahira,1998b
4 3-acetyl caffeic acid C11H10O5(222) 6 Li et al., 1995
5 caffeic acid dimethyl ether C11H12O4(208) 4 Kondo & Takemoto, 1972
6 caffeic ester glucoside C15H18O9(324) 6 Li et al., 1995
7 2-caffeoyl piscidic acid C20H18O10(418) 4 Takahira et al., 1998b
8 2-feruloyl piscidic acid C21H20O10(432) 4 Takahira et al., 1998b
9 2-isoferuloyl piscidic acid C21H20O10(432) 4 Takahira et al., 1998b
10 2-feruloyl piscidic acid-1-methl ester C22H22O10(446) 4 Takahira et al., 1998b
11 2-isoferuloyl piscidic acid-1-methl ester C22H22O10(446) 4 Takahira et al., 1998b
12 2-feruloyl fukiic acid-1-methl ester C22H22O11(462) 4 Takahira et al., 1998b
13 2-isoferuloyl fukiic acid-1-methl ester C22H22O11(462) 4 Takahira et al., 1998b
14 Cimicifugic acid A C21H20O11(448) 4 Takahira et al., 1998a
15 Cimicifugic acid B C21H20O11(448) 4 Takahira et al., 1998a
16 Cimicifugic acid C C20H18O10(418) 6 Takahira et al., 1998a
17 Cimicifugic acid D C20H18O10(418) 6 Takahira et al., 1998a
18 Cimicifugic acid E C21H20O10(432) 6 Takahira et al., 1998a
19 Cimicifugic acid G C22H22O11(462) 5 Nuntanakorn et al., 2006
20 Fukinolic acid C20H18O11(434) 6 Takahira et al., 1998a
21 Piscidic acid C11H12O7(256) 4 Takahira et al., 1998b
22 Fukiic acid C11H12O8(272) 4 Takahira et al., 1998b
23 P-coumaric acid C9H8O4(180) 4 Takahira et al., 1998a
1) 注释见表1。The number indicated is the same as in Table 1.

表9 升麻族植物中色原酮类化合物及其分布
Table 9 Chromones in tribe Cimicifugeae and their distributions
编号
No.
化合物
Compound
分子式
Molecular formula
植物1)
Plant1)
参考文献
Reference
1 khellol C13H10O5(246) 4 Kondo & Takemoto, 1972
2 norvisnagin C12H8O4(216) 2 Ito et al., 1976
3 visnagin C13H10O4(230) 2 Kondo & Takemoto, 1972
4 ammiol C14H11O6(275) 4 Kondo & Takemoto, 1972
5 cimifugin C16H18O6(306) 4 Kondo & Takemoto, 1972
6 cimifugin glucoside C22H28O11(468) 5 Li et al., 1995
7 norcimifugin C15H16O6(292) 11 Kondo & Takemoto, 1972
8 visamminol C15H16O5(276) 2 Ito et al., 1976
9 6-hydroxylangelicain C15H16O7(308) 5 Cao et al., 2005
1) 注释见表1。The number indicated is the same as in Table 1.

据以上特征, 部分学者认为类叶升麻属可以和其他
属明显区别开来(王文采等, 1999; 杨亲二, 2002)。
3 升麻族植物的药用价值
3.1 升麻族植物的传统药用
在我国传统中医药理论中, 升麻族植物具有清
热解毒, 发表透疹, 升阳举陷的功能, 主要被用来
治疗时疫火毒, 口疮, 咽痛, 斑疹, 头痛寒热, 痈肿
疮毒, 中气下陷, 脾虚泄泻, 久痢下重, 妇女带下,
崩中。例如, 记载于《脾胃论》的升阳散火汤, 用
于阳明风热头痛发热, 或火郁脾胃, 发热倦怠, 肌
热骨据以上特征, 部分学者认为类叶升麻属可以和
其他属明显区别开来(王文采等 , 1999; 杨亲二 ,
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 526
2002)。蒸; 记载于《东垣试效方》的普济消毒饮, 记
载于《本事方》的升麻汤, 用于多种热毒症; 记载
于《阎氏小儿方论》的升麻葛根汤, 用于麻疹初起
透发不畅; 记载于《脾胃论》的补中益气汤, 升举
大补汤 , 用于中期虚弱或气虚下陷症 (肖培根 ,
1979)。
在北美, 早期当地印第安人很早就把升麻属中
的总状升麻C. racemosa (black cohosh, 又叫黑升
麻)用于治疗妇科疾病; 而在德国, 总状升麻的各种
制剂形式也有50多年的药用历史, 主要用于治疗妇
女绝经症状(Borrelli et al., 2003)。大多数情况下, 升
麻族植物的药用部位为根茎, 水煎煮服用。
3.2 升麻族植物的现代药理研究
升麻族植物大多具有药用价值,目前对原产北
美的总状升麻的药理研究较为详尽。现代药理研究
发现升麻有治疗妇女更年期绝经症状, 抗骨质疏
松, 抗炎, 抗病毒, 抗肿瘤, 抗过敏, 保肝, 抑制核
苷转运, 降血脂等作用。
3.2.1 治疗妇女更年期绝经症状 雌激素替代疗
法(hormone replacement therapy, HRT)常用于治疗
妇女更年期症状和预防骨质疏松, 传统的化学药物
增加了乳腺癌和心血管疾病的危险, 天然来源的植
物雌激素能够缓解妇女绝经症状, 并且没有HRT化
学药物的副作用。
体内、体外和临床研究都证实, 总状升麻提取
物能够有效地缓解更年期妇女绝经症状, 例如多
汗、睡眠困难, 情绪不安以及潮红症状, 且没有雌
激素替代治疗的诸多副作用, 因此被广泛地作为一
种植物雌激素来使用(Borrelli et al., 2003)。目前市
售第一位的是一种总状升麻根茎的异丙醇提取物
REMIFEMIN®。
关于总状升麻类雌激素作用的机制, 一直在进
行研究和探讨。最开始认为总状升麻中的成分能够
与雌激素受体相结合从而发挥类雌激素作用, 但
是, 后来的研究发现虽然总状升麻提取物中某些成
分可以和雌激素受体的某个亚型相结合, 但是这种
结合力非常弱, 而且只产生微弱的雌激素样作用,
甚至某些成分可能选择性地抑制这种雌激素样作
用。也有研究认为总状升麻的类雌激素作用与雌激
素受体通路无关(Garita-Hernandez et al., 2006)。虽
然之前有报道表明总状升麻能够使LH(luteinizing
hormone)水平下降, 这与其类雌激素样作用是一致
的, 但是最近的研究表明总状升麻对血清LH、FSH
(follicle-stumulating hormone) 和 泌 乳 刺 激 素
(prolactin)水平没有影响。所以, 总状升麻的雌激素
样作用的机制到底是通过雌激素通路或者其他途
径还有待于进一步研究。
Struck等人通过化学分析发现总状升麻根茎乙
醇、异丙醇提取物不含芒柄花色素(formonoetin)和
山萘酚(kaempferol)这些异黄酮, 因为它们多存在
于植物的地上部分而不是根茎 (Li et al., 2002;
Struck et al., 1997), 至于早期分析研究发现的黄酮,
可能是样品污染的结果。因此, 有一点是肯定的,
即总状升麻不含有异黄酮成分, 更不是因为异黄酮
成分而产生类雌激素样作用。
3.2.2 抗骨质疏松 Nisslein和Freudenstein (2003)
研究了总状升麻异丙醇提取物对摘除卵巢大鼠骨
密度的影响, 发现它能够有效地降低卵巢摘除造成
的骨流失, 改善骨骼形态, 而且其疗效可以与它莫
西芬(Tamoxifen®)相当。
Seidlova-Wuttke等(2003, 2005)持续研究了总状
升麻提取物BNO 1055的抗骨质疏松作用。研究结果
表明BNO 1055能够显著减少卵巢摘除大鼠骨矿物
流失, 降低脂肪蓄积和血清中瘦素(leptin)的水平,
但是对子宫重量和雌激素受体调节基因的表达无
影响。BNO 1055的类雌激素样作用在骨组织和脂肪
组织中最为显著, 在子宫中的作用则不明显。说明
BNO 1055在大鼠体内是一种器官选择性雌激素受
体调节剂。
进一步的临床研究中, Wuttke等(2003)将总状
升麻提取物BNO 1055在62名更年期妇女中进行了
随机双盲实验, 并将其作用效果与结合性雌激素
(conjugated estrogens, CE)以及安慰剂进行对比; 结
果表明BNO 1055和CE都能够缓解绝经症状, 对骨
代谢有益, 且效果优于安慰剂; CE能够明显增加
子宫内膜厚度, BNO 1055对子宫内膜厚度无影响;
这进一步说明BNO 1055是一种选择性雌激素受体
调节剂, 能够在大脑、下丘脑、骨骼、阴道等器官
发挥有益作用, 对子宫无影响。
我们的研究同样发现, 类叶升麻的某些化学成
分能够显著促进体外培养成骨细胞UMR 106的增
殖 , 其作用与雌二醇相当或者更强 (Gao et al.,
2006b)。
3.2.3 抗炎 药理研究发现, 作为升麻族植物的主
高璟春等: 毛茛科升麻族植物药用亲缘学初探

527
要化学成分之一, 肉桂酸衍生物(如阿魏酸和异阿
魏酸)具有很强的抗炎作用, 且阿魏酸的抗炎作用
具有剂量依赖性。这些药理发现为升麻族植物抗炎
镇痛的民间疗效提供了很好的科学解释 (Ou &
Kwok, 2004; Shibata, et al., 1977)。
3.2.4 抗病毒 来源于植物的三萜其抗病毒活性
一直备受关注。有研究报道, 升麻族植物的环阿尔
廷烷三萜皂苷成分具有抗HIV病毒的作用, 它们能
够抑制HIV病毒致病过程中的核苷转运(Hemmi et
al., 1979; 林新等, 1994; Sakurai et al., 2004)。
3.2.5 抗肿瘤 体外研究表明, 总状升麻提取物以
及单体化合物对一些肿瘤细胞的增殖有一定的抑
制作用。Einbond等(2004, 2006)在细胞水平研究了
总状升麻提取物对乳腺癌的生长抑制作用。总状升
麻用乙醇/水提取, 萃取液分为环己烷、石油醚、乙
酸乙酯三部分。通过细胞生长抑制试验发现乙酸乙
酯部分活性最高 , 其对人乳腺癌细胞MCF-7和
ER-MDA-MB-453的IC50值分别为20和10 mg/mL。
另外, 30 mg/mL和60 mg/mL的乙酸乙酯部分能够使
MCF-7细胞周期阻滞在G2/M期和G1期。通过进一
步分离提纯, 发现化合物升麻亭(actein)、23-表-26-
脱氧升麻亭 (23-epi-26-deoxyactein) 和 cimiracem-
oside A能明显使MCF-7细胞周期阻滞在G1期, 其
中最有效的升麻亭能够使MCF-7细胞中cyclin D1、
cdk4和pRb蛋白表达水平下降, 提高p21cip1的表达
水平, 这些蛋白都与细胞周期的G1期阻滞有关。
Hostanska等(2004a)通过WST-1分析研究也发
现, 总状升麻异丙醇和乙醇提取物都能够抑制人乳
腺癌细胞MCF-7和MDA-MB231细胞的增殖。异丙
醇提取物和水提物对MCF-7细胞的 IC50分别是
54.1±11.4 mg/mL 和 80.6±17.7 mg/mL; 对 MDA-
MB231细胞的IC50分别是29.5±3.0 mg/mL和58.6±
12.6 mg/mL。
Hostanska等(2004b, 2005)比较了经过S-9(一种
含有肝脏P450的混和消化酶)处理前后总状升麻提
取物对MCF-7细胞的增殖抑制和凋亡的诱导作用,
同时也研究了总状升麻提取物的两种主要化学成
分(三萜皂甙和苯丙素类化合物)对MCF-7细胞的作
用。实验结果表明, 无论有否经过S-9处理, 总状升
麻干燥浸膏都能抑制MCF-7细胞的增殖, 作用72 h
后的IC50为55.3 μg/mL, 而且能够诱导MCF-7细胞
凋亡, 但是三萜皂苷和桂皮酸酯类化合物对MCF-7
细胞的IC50分别为19.3 μg/mL和2.7 μg/mL。其中以
桂皮酸酯类化合物抑制MCF-7细胞增殖和诱导凋
亡方面作用最强。
Sakurai (2003)等研究了一系列三萜皂苷类化
合物的抗肿瘤作用, 发现其中某些化合物能够抑制
Raji细胞中Epstein-Barr病毒早期抗原的活化, 并且
以升麻醇(cimigenol)的活性最高; 体内实验进一步
证明升麻醇对小鼠皮肤癌有一定的疗效。
我们的研究小组体外研究了兴安升麻地上部
分提取物和单体化合物对几种肿瘤细胞的影响
(HL-60、HepG2、R-HepG2), 发现几个三萜皂苷有
很强的细胞毒作用, 其机制可能与周期抑制有关
(Tian et al., 2005; Gao et al., 2006a)。
3.2.5 抗过敏 《滇南本草》中记载, 升麻能够“表
小儿痘疹, 解疮毒”, 《本草纲目》中也有升麻“消
斑疹”的记录, 最近的药理研究进一步证实了升麻
的抗过敏作用, 并解释了它可能的作用机理。Kim
等(2004)通过体内外模型研究了总状升麻提取物对
过敏反应的作用, 结果发现口服后可明显抑制抗
IgE 诱导的被动皮肤过敏反应 (anti-IgE-induced
passive cutaneous anaphylaxis (PCA) reaction); 其作
用机制可能和抑制组胺释放以及调控肥大细胞中
某些细胞因子基因的表达有关。
3.2.6 其他药理作用 Woo等(2004)研究发现在小
牛嗜铬性细胞中, cimicifugoside能够抑制DMPP (乙
酰胆碱受体)诱导的儿茶酚胺的分泌以及 Ca2+和
Na+增加, 对KCl诱导的离子流变化没有影响, 说明
cimicifugoside能够选择性地抑制乙酰胆碱受体的
调控反应。高氨血、高胰岛素综合症一般与谷氨酸
脱氢酶(GDH)的高度活化有关。Lee等(2004)研究发
现大三叶升麻的总提物能够显著降低体外培养的
小鼠小岛细胞的谷氨酸脱氢酶的含量(45%), 减少
胰岛素分泌(47%), 说明此提取物有望用于调控谷
氨酸脱氢酶活性, 治疗高氨血、高胰岛素综合症。
另外, Winterhoff等(2003)通过动物实验发现,
总状升麻提取物有抗抑郁作用; Nishida等(2003a)从
升麻的根茎中分离得到了3个三萜皂苷, 并发现它
们能够显著抑制淋巴细胞的增殖。
升麻根茎的甲醇提取物能有效地预防小鼠
CCl4诱导引起的肝损伤, 提取物剂量1000 mg/kg能
明显抑制血清中谷草转氨酶(GOT)和谷丙转氨酶
(GPT)的升高。实验表明其有效成分集中在己烷不
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 528
溶物中的乙醚萃取物中, 同时证明升麻醇木糖苷
(cimigenol xyloside)在较大剂量(300 mg/kg, p.o.)时
也能有效地抑制CCl4 诱导引起的小鼠肝损伤
(Yamahara et al., 1985)。这也解释了升麻的传统保
肝疗效。
研究还发现, 异阿魏酸能够降低糖尿病小鼠的
血糖浓度 (Liu et al., 1999); 色原酮类化合物
visamminol和 visnagin具有解痉作用 (Ito et al.,
1976); 升麻中的某些三萜皂苷成分具有降血脂作
用(Muravev et al., 1985)。
另外, 还有研究报道总状升麻提取物具有抗抑
郁作用(Winterhoff et al., 2003)。
3.2.7 安全性 Bodinet和Freudenstein (2004)研究
了市售治疗妇女更年期症状的几种中药制剂对乳
腺癌细胞MCF-7增殖的影响, 结果表明总状升麻异
丙醇提取物抑制MCF-7细胞增殖, 显示雌激素拮抗
剂作用; 含有红苜蓿或大豆提取物的产品则明显诱
导MCF-7细胞增殖, 显示雌激素样作用。所有产品
对雌激素诱导的MCF-7细胞增殖都没有促进作用。
这说明患有乳腺癌或有乳腺癌历史的妇女使用总
状升麻异丙醇提取物相对安全, 而在使用含有红苜
蓿或者大豆提取物的产品时则需要谨慎。
Dog等(2003)、Mahady (2005)以及Huntley和
Ernst (2003)综述了总状升麻治疗绝经症状的安全
性问题, 通过查阅有关总状升麻的文献、FDA和
WHO不良反应报告系统、专论、药厂的内部文献,
发现临床调查的2800名妇女中, 副作用发生率只有
5.4%, 并且97%的这些副作用都非常小, 不影响进
一步的治疗, 而仅有的一项严重的副作用也并不是
服用总状升麻所导致。这说明了至少总状升麻的提
取物, 尤其是异丙醇提取物制剂, 在治疗绝经症状
和雌激素替代治疗方面是安全的。
4 升麻族植物的药用亲缘学初探
4.1 升麻族植物的亲缘关系与疗效之间的联系初

将升麻族植物的民间疗效进行归纳和整理(表
10), 并且把这些资料通过植物亲缘关系来安排, 就
比较容易地看出这一类群植物在疗效方面的倾向
性。
升麻族植物都具一定的镇痛作用, 这与毛茛科
其他植物有一定的相似性, 例如: 驴蹄草属、金莲
花属和铁筷子属植物也均有镇痛功效, 民间常用来
治疗关节肿痛, 牙痛喉痛; 但是升麻族植物的清热
解毒的功效在毛茛科中比较少见, 因此这种功效使
其与毛茛科其他植物族群区别开来成为一个独立
的族群。


表10 升麻族药用植物的民间疗效整理
Table 10 Ethnopharmacology of plants in tribe Cimicifugeae
植物
Plant
民间疗效
Ethnopharmacology
铁破锣属
Beesia



功效: 清热解毒, 凉血, 活血, 消肿, 镇痛, 祛风
Function: antipyretic and antitoxic, cooling blood, promoting blood circulation, lessening swelling, antalgic, dispelling pathogenic wind
主治: 风热感冒, 风湿关节痛, 红白痢疾, 咽喉肿疼, 头痛, 牙痛等病, 外敷治疗疮疗和毒蛇咬伤
Indication: treatment of cold caused by exterior heat, rheumatism ache, diarrhea, swelling and ache of throat, headache, also used exteriorly
to treat toxic snake biting and sores
黄三七属
Souliea



功效: 清热解毒, 燥湿, 清心除烦
Function: antipyretic and antitoxic, eliminating dampness, clearing heart fire and relieving anxiety
主治: 咽炎, 结膜炎, 口腔炎, 骨蒸潮热, 心慌心悸, 烦躁不安, 菌痢, 肠炎, 痈疮肿毒
Indication: inflammation of pharynx, conjunctiva, stomatitis; dampness and heat of bone; nervous and anxiety; diarrhea caused by bacteria;
enteritis; sores, toxic, swelling and carbuncle
升麻属
Cimicifuga


功效: 散风解毒, 喉痛, 透疹, 治疗跌打损伤
Function: expelling wind and antitoxic, ache of throat, excluding anthema, treating physical wounds
主治: 风热头痛, 咽喉肿痛, 斑疹不易透发
Indication: headache caused by heat wind, aching and swelling of throat, anthema
类叶升麻属
Actaea


功效: 清热解毒, 感冒头痛, 治疗百日咳
Function: antipyretic and antitoxic, cold and headache, cough of enfants
主治: 斑疹不透, 风热感冒
Indication: anthema, cold caused by heat wind
高璟春等: 毛茛科升麻族植物药用亲缘学初探

529
在升麻族植物中, 类叶升麻属和升麻属都具有
发表透疹的功效, 在民间某些地方类叶升麻作为升
麻的替代品使用, 因此这两者在疗效上有一定的相
似性; 而铁破锣和黄三七属却没有透疹的药用记
载。黄三七属民间除了治疗各种炎症, 并且有清心
除烦的效果; 铁破锣属的活血凉血功效均为该两属
植物特有, 升麻族其他属中没有记载; 因此从疗效
角度分析其亲缘学关系, 升麻属和类叶升麻属亲缘
关系较为相近。
4.2 升麻族植物亲缘关系与化学成分之间的联系
初探
毛茛科植物普遍含有毛茛苷或木兰花碱。但是
升麻族植物却含有比较特殊的阿尔廷烷三萜皂苷
化合物, 例如升麻醇、升麻亭等, 还含有在毛茛科
植物中并不多见的呋喃色原酮类化合物 , 如
cimifugin、visnagin等, 这使升麻族在毛茛科中比较
特殊。
9,19-环阿尔廷烷型三萜皂苷是升麻族植物的
特征化学成分, 根据其高度氧化的侧链的不同, 又
可以分为几个不同的亚型(图3)。表11显示了阿尔廷
烷三萜皂苷在升麻族植物中的分布情况。铁破锣含
有的铁破锣型三萜皂苷(beesioside type)结构中有一
独特的呋喃氧环(20:24-环氧), 除了在黄三七属发
现2个该类化合物外在升麻族其他3属中均未发现
有存在(Ju et al., 2002a, b; Sakurai et al., 1986, 1990,
1993; Inoue et al., 1985)。
铁破锣属还有蒲公英赛酮(taraxerone)、蒲色英
赛醇(taraxerol)、表木栓醇(epifriedelinol)等五环三
萜, 这种五环三萜在黄三七属也有发现, 但是没有
关于此类化合物在升麻属, 类叶升麻属和垂果升麻
属存在的报道。因此从化学分类学角度, 可以认为
黄三七属是处于铁破锣属和升麻属之间的一个过
渡类型(图6)。
吲哚类生物碱作为升麻族植物含量较低的一
种成分, 最先发现于兴安升麻中(Hata et al., 1978)。
这类化合物随后从黄三七属植物中分离得到(Zhou,
2004a)。到目前为止, 没有报道表明铁破锣属植物
含有此类化合物, 所以, 吲哚类生物碱也可以作为
一种化学分类学标志性物质(图6)。
4.3 升麻族植物的化学成分与药理活性之间的联
系初探
如前面提到, 升麻族植物含有的特殊阿尔廷烷
三萜及其清热解毒的功效使其与其他毛茛科的植
物族群区分开来, 因此, 不难联想到该类化合物与
清热解毒功效之间的关系。将升麻族植物的传统疗
效与其现代药理研究结果相比较, 并与其活性物质


表11 升麻族植物中9,19-环阿尔廷烷型三萜皂苷分布情况
Table 11 Distribution of 9,19-cycloartane triterpenoids in tribe Cimicifugeae
升麻属1)
Cimicifuga1)
类叶升麻属
Actaea
铁破锣属
Beesia
黄三七属
Souliea
化合物类型
Type of compound
合计
Total
1 2 3 4 5 6 7 8 9
Cimigenol type 702) 10 5 8 2 21 7 10 √ 5 1 √ 1
Hydroshengmanol type 26 1 5 √ 1 15 √ 1 × 2 × × 1
Shengmanol type 15 √2) √ 1 3 8 × 3 × √ √ × √
16,23-dione type 17 ×2) 3 5 × 3 √ 3 × 4 × × ×
Cimiacerogenin type 17 2 √ √ √ 1 √ 8 × 2 √ × √
Cimifugenin type 18 √ √ 5 √ 5 √ 7 × √ √ × 1
Side chaine-seco type 11 √ 3 4 √ √ √ v × 4 × × ×
Neocimicigenoside type 2 × × × × × × 2 × × √ × ×
Beesiaoside type 17 × × × × × × × × × × 17 √
Asiaticoside type 2 × × × × × × × × × 2 × ×
Ranunculane type 1 × × × × × × × √ × × ×
总计 192 13 16 23 6 53 7 34 1 17 3 17 3
1) 1. 小升麻, 2. 兴安升麻, 3. 升麻, 4. C. japonica, 5. 单穗升麻, 6. 大三叶升麻, 7. 北美升麻, 8. C. podocarpa; 9. 升麻根茎。2) 表中数字表示
从该种属中分离得到的新化合物数量; “√” 表示该类化合物出现在该种属中; “×” 表示该类化合物没有出现在该种属中
1) 1, Cimicifuga acerina; 2, C. dahurica; 3, C. foetida; 4, C. japonica; 5, C. simplex; 6, C. heracleifolia; 7, C. racemosa; 8, C. podocarpa; 9,
Cimicifuga rhizome. 2) The number in the table indicates the amount of new compounds isolated from the corresponding genus; “√” indicates
compounds that were reported in the corresponding genus; “×” indicates compounds that were not reported in the corresponding genus.
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 530


图6 升麻族植物的化学分类学图示
Fig. 6. Chemotaxonomy map of tribe Cimicifugeae.

基础对应, 可以得到图7的结果。从图7中可以看出,
作为升麻族植物的主要成分之一, 阿尔廷烷三萜皂
苷越来越多被发现具有抗病毒、抗肿瘤的作用。在
传统中医理论中, 无论是肿瘤还是病毒, 对于人的
机体都是一种“异物”, 所以具有解毒功效的物质
便会倾向于将这些异物排除。因此, 可以部分解释
从升麻中分离得到的化合物的抗肿瘤(Liu et al.,
2001; Bodinet & Freudenstein, 2002, 2004; Burdette
et al., 2002; Einbond et al., 2006; Garita-Hernandez et
al., 2006; Hostanska et al., 2004a, b, 2005; Jarry et al.,
2005; Tian et al., 2005, 2006)和抗病毒活性(Lin et
al., 1994; Hirabayashi et al., 1995; Sakurai et al.,
2004)。
另外现代药理研究发现升麻族植物的主要化
学成分之一阿魏酸具有抗炎的活性, 这为升麻族植
物的根茎在古代被广泛用于治疗关节炎、胃肠炎、
结膜炎和痢疾这一事实提供了很好的现代药理解
释(Ou & Kwok, 2004)。升麻根茎含有的肉桂酸衍生
物(fukinolic acid, cimicifugic acids)能够有效地阻止
病理状态(例如伤口愈合、炎症时)下胶原酶或其他
溶胶原酶对胶原质的降解(Kusano et al., 2001a)。考
虑到传统民间药用升麻制剂一般为水煎煮, 其中含
有大量的肉桂酸衍生物, 因此肉桂酸衍生物可能为
升麻族植物抗炎活性的物质基础。
除此之外, 在传统中医中升麻族植物还经常被
用来发表透疹, 治疗斑疹不透。在最近的一项研究
中, 总状升麻和大三叶升麻的提取物能够有效抑制
化合物48/80诱导的小鼠腹膜肥大细胞组胺释放,
具有抗过敏的功效(Shin et al., 1998; Kim et al.,
2004)。因此, 可以考虑升麻属和类叶升麻属作为新
的抗过敏药物先导化合物研究来源。
5 升麻族植物的药用亲缘学研究展望
毛茛科包含有很多很有价值的药用植物, 而升
麻族因其含有特殊的阿尔廷烷三萜皂苷及广泛的
药理活性越来越备受关注。对于该族植物的药用亲
缘学研究方兴未艾。
升麻族包含的5个属: 铁破锣属、黄三七属、升
麻属、类叶升麻属和垂果升麻属, 都有自己独特的
形态学和细胞学特征, 综合考虑Compton等(1998)
的测序结果, 各属的化学成分特征以及各属植物的
药理活性、传统药用, 我们初步认为: 铁破锣属是
升麻族比较原始和保守的一个属, 升麻属、类叶升
麻属和垂果升麻属这3属是比较进化的1个分支, 而
黄三七属则是上述两分支之间的一个过渡类型。
通过升麻族植物传统疗效和现代药理研究的
比较发现, 很多药理活性都能够找到其传统应用,
高璟春等: 毛茛科升麻族植物药用亲缘学初探

531


图7 升麻族植物的传统药用价值与其现代药理研究的关系
Fig. 7 Relationship between ethnopharmacology and modern pharmacology, and their substantial basis of Cimicifugeae plants.


而传统疗效又可以通过现代药理研究得到很好的
解释。根据这一现象, 一方面, 我们可以继续发掘
升麻族植物未研究过的传统功效以期发现其新的
药用价值, 比如升麻族在古代被列为“上品”, 主
要用来提升气血, 有补益作用, 而对于该方面的药
理研究还比较缺乏; 另一方面现代的药理研究为其
传统应用提供很好的科学依据, 为该族植物药用价
值的开发提供了合理的依据, 例如: 升麻族植物抗
炎的应用由来已久, 通过现代药理研究发现阿魏酸
等肉桂酸类成分可能是其抗炎作用的物质基础, 这
一类化合物可以作为抗炎药物研究的先导化合物
重点研究。
通过总结归纳升麻族植物相关药理、化学文献
我们发现, 目前研究最多最为深入的种是总状升
麻, 包括其治疗更年期综合症、抗肿瘤、抗骨质疏
松等等; 但是关于其他种属的深入药理研究还相对
较少。另外, 产于欧美的总状升麻临床上已经广泛
用于治疗妇女更年期症状, 但是关于亚洲产升麻在
该活性方面的研究还是空白。随着人们对生活质量
要求的提高以及老龄化社会的到来, 更年期妇女症
状越来越受到人们的关注, 因此, 对亚洲产升麻族
植物治疗妇女更年期症状的研究很有意义和价值。
肿瘤作为严重威胁人类生命的疾病, 每年夺去
越来越多人的生命。通过对升麻族植物功效与化学
成分关系的探讨, 我们发现其主成分之一9,19-环阿
尔廷烷型三萜皂苷与其抗肿瘤、抗病毒药理作用有
密切联系。因此, 此类来源于天然的三萜类化合物
单体或者总提物有希望发展成为抗肿瘤药物的新
的研究对象。但是目前的研究还仅限于体外筛选,
因此, 更加深入的体内研究有待进行。
虽然目前从升麻族植物中已经分离得到200多
个化合物, 但却只是冰山之一角, 还有更多的未知
成分等待发现和研究; 同时对该族植物传统疗效的
整理研究刚刚起步, 仍有大量工作需要完善。
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 532
致谢 国家自然科学基金(30530860)资助。
参考文献
Ali Z, Khan SI, Ferreira D, Khan IA. 2006. Podocarpaside, a
triterpenoid possessing a new backbone from Actaea
podocarpa. Organic Letters 8: 5529–5532.
Baba K, Kozawa M, Hata K, Ishida T, Inoue, M. 1981. The
structure of yellow pigments from the rhizomes of
Cimicifuga dahurica Maxim. Chemical & Pharmaceutical
Bulletin 29: 2182–2187.
Bedir E, Khan IA. 2000. Cimiracemoside A: a new
cyclolanostanol xyloside from the rhizome of Cimicifuga
racemosa. Chemical & Pharmaceutical Bulletin 48:
425–427.
Bodinet C, Freudenstein J. 2002. Influence of Cimicifuga
racemosa on the proliferation of estrogen receptor-positive
human breast cancer cells. Breast Cancer Research and
Treatment 76: 1–10.
Bodinet C, Freudenstein J. 2004. Influence of marketed herbal
menopause preparations on MCF-7 cell proliferation.
Menopause 11: 281–289.
Borrelli F, Izzo AA, Ernst E. 2003. Pharmacological effects of
Cimicifuga racemosa. Life Science 73: 1215–1229.
Burdette JE, Chen S, Lu Z, Xu H, White BEP, Fabricant DS,
Liu J, Fong HHS, Farnsworth NR, Constantinou AI, Van
Breemen RB, Pezzuto JM, Bolton JL. 2002. Black cohosh
(Cimicifuga racemosa L.) protects against menadione-
induced DNA damage through scavenging of reactive
oxygen species: bioassay-directed isolation and
characterization of active principles. Journal of
Agricultural and Food Chemistry 50: 7022–7028.
Cao P, Pu X-F, Peng S-L, Zhang X-R, Ding L-S. 2005.
Chemical constituents from Cimicifuga foetida. Journal of
Asian Natural Products Research 7: 145–149.
Chen S-N, Fabricant DS, Lu Z-Z, Zhang H-J, Fong HHS,
Farnsworth NR. 2002a. Cimiracemates A-D,
phenylpropanoid esters from the rhizomes of Cimicifuga
racemosa. Journal of Natural Products 61: 409–413.
Chen S-N, Fabricant DS, Lu Z-Z, Zhang H-J, Fong HHS,
Farnsworth NR. 2002b. Cimiracemosides I-P, new
9,19-cyclolanostane triterpene glycosides from Cimicifuga
racemosa. Journal of Natural Products 65: 1391–1397.
Compton JA, Culham A, Gibbings JG, Jury SL. 1998.
Phylogeny of Actaea including Cimicifuga (Ranun-
culaceae) inferred from nrDNA ITS sequence variation.
Biochemical Systematics and Ecology 26: 185–197.
Corsano S, Mellor JM, Ourisson G. 1965. The structure of
cimigenol. Chemical Communications (London) 10:
185–186.
Dog TL, Powell KL, Weisman SM. 2003. Critical evaluation of
the safety of Cimicifuga racemosa in menopause symptom
relief. Menopause 10: 299–313.
Dan C, Wang R, Peng S-L, Bai B-R, Ding L-S. 2006a. Two
new acetyl cimicifugosides from the rhizomes of
Cimicifuga racemosa. Chinese Chemical Letters 17:
347–350.
Dan C, Yu K-B, Peng S-L, Zhou Y, Ding L-S. 2006b.
Cimicidol-3-one: a cycloartenol triterpenoid from the
rhizomes of Cimicifuga racemosa. Acta Crystallographica,
Section E: Structure Reports Online. E62: o1114–o1115.
doi:10.1107/S160053680600599X.
Einbond LS, Shimizu M, Nuntanakorn P, Seter C, Cheng R,
Jiang B, Kronenberg F, Kennelly EJ, Weinstein IB. 2006.
Actein and a fraction of black cohosh potentiate
antiproliferative effects of chemotherapy agents on human
breast cancer cells. Planta Medica 72: 1200–1206.
Einbond LS, Shimizu M, Xiao D, Nuntanakorn P, Lim JTE,
Suzui M, Seter C, Pertel T, Kennelly EJ, Kronenberg F,
Weinstein IB. 2004. Growth inhibitory activity of extracts
and purified components of black cohosh on human breast
cancer cells. Breast Cancer Research and Treatment 83:
221–231.
Gao J-C, Huang F, Zhang J-C, Lu Z-J, Zhu G-Y, Yang M, Xiao
P-G. 2006a. Cytotoxic cycloartane triterpene saponins
from Actaea asiatica. Journal of Natural Products 69:
1500–1502.
Gao J-C, Zhang J-C, Lu Z-J, Zhu G-Y, Yang M, Xiao P-G.
2006b. Chemical constituents of Actaea asiatica Hara and
their anti-osteoporosis activities. Biochemical Systematics
and Ecology 34: 710–713.
Garita-Hernandez M, Calzado MA, Caballero FJ, Macho A,
Munoz E, Meier B, Brattstrom A, Fiebich BL, Appel K.
2006. The growth inhibitory activity of the Cimicifuga
racemosa extract Ze 450 is mediated through estrogen and
progesterone receptors-independent pathways. Planta
Medica 72: 317–323.
Hemmi H, Kusano G, Ishida N. 1980. Selective inhibition of
nucleoside transport into mouse lymphoma L-5178Y cells
by cimifugaside. Journal of Pharmacobio Dynamics 3:
636–642.
Hata K, Baba K, Kozawa M. 1978. The structure of yellow
pigment from the rhizomes of Cimicifuga dahurica
MAXIM. Chemical & Pharmaceutical Bulletin 26:
2279–2280.
Hirabayashi T, Ochiai H, Sakai S, Nakajima K, Terasawa K.
1995. Inhibitory effect of ferulic acid and isoferulic acid
on murine interleukin-8 production in response to
influenza virus infections in vitro and in vivo. Planta
Medica 61: 221–226.
Hostanska K, Nisslein T, Freudenstein J, Reichling J, Salle R.
2004a. Evaluation of cell death caused by triterpene
glycosides and phenolic substances from Cimicifuga
racemosa extract in human MCF-7 breast cancer cells.
Biological & Pharmaceutical Bulletin 27: 1970–1975.
Hostanska K, Nisslein T, Freudenstein J, Reichling J, Saller R.
2004b. Cimicifuga racemosa extract inhibits proliferation
of estrogen receptor-positive and negative human breast
carcinoma cell lines by induction of apoptosis. Breast
Cancer Research and Treatment 84: 151–160.
Hostanska K, Nisslein T, Freudenstein J, Reichling J, Saller R.
2005. Apoptosis of human prostate androgen-dependent
and -independent carcinoma cells induced by an
isopropanolic extract of black cohosh involves degradation
of cytokeratin (CK) 18. Anticancer Research 25: 139–147.
Huntley A, Ernst E. 2003. A systematic review of the safety of
black cohosh. Menopause 10: 58–64.
Inoue T, Sakurai N, Nagai M, Xiao PG. 1985 Constituents of
Beesia calthaefolia and Soulier vaginata. Part 1.
Beesioside III, a cyclolanostanol xyloside from the
rhizomes of Beesia calthaefolia and Souliea vaginata.
高璟春等: 毛茛科升麻族植物药用亲缘学初探

533
Phytochemistry 24: 1329–1321.
Ito M, Kondo Y, Takemoto T. 1976. Spasmolytic substances
from Cimicifuga dahurica Maxim. Chemical &
Pharmaceutical Bulletin 24: 580–583.
Jarry H, Thelen P, Christoffel V, Spengler B, Wuttke W. 2005.
Cimicifuga racemosa extract BNO 1055 inhibits
proliferation of the human prostate cancer cell line LNCaP.
Phytomedicine 12: 178–182.
Ju J-H, Liu D, Lin G, Xu X-D, Han B, Yang J-S, Tu G-Z, Ma
L-B. 2002a. Beesiosides A-F, six new cycloartane
triterpene glycosides from Beesia calthaefolia. Journal of
Natural Products 65: 42–47.
Ju J-H, Liu D, Lin G, Zhang Y-M, Yang J-S, Lu Y, Gong N-B,
Zheng Q-T. 2002b. Beesiosides G, H, and J-N, seven new
cycloartane triterpene glycosides from Beesia calthifolia.
Journal of Natural Products 65: 147–152.
Kadota S, Li J-X, Tanaka K, Namba T. 1995. Isolation and
structures of new cycloartenol triterpenoids and related
compounds from Cimicifuga foetida L. Tetrahedron 51:
1143–1166.
Kim CD, Lee W, Lee M, Cho HS, Lee YK, Roh S. 2004.
Inhibition of mast cell-dependent allergy reaction by
extract of black cohosh (Cimicifuga racemosa). Immuno-
pharmacology and Immunotoxicology 26: 299–308.
Kimura O, Sakurai N, Nagai M, Inoue T. 1982. Shengmanol
xyloside, a new genuine natural product of some
Cimicifuga glycosides. Yakugaku Zasshi 102: 538–545.
Koeda M, Aoki H, Sakurai N, Nagai M. 1995. Three novel
cyclolanostanol xylosides, cimicifugosides H-1, H-2 and
H-5, from Cimicifuga rhizome. Chemical &
Pharmaceutical Bulletin 43: 771–776.
Kondo Y, Takemoto T. 1972. Structure of cimifugin, new bitter
principle from Cimicifuga simplex. Chemical &
Pharmaceutical Bulletin 20: 1940–1944.
Kusano A, Seyama Y, Nagai M, Shibano M, Kusano G. 2001a.
Effects of fukinolic acid and cimicifugic acids from
Cimicifuga species on collagenolytic activity. Biological &
Pharmaceutical Bulletin 24: 1198–1201.
Kusano A, Shibano M, Kitagawa S, Kusano G, Nozoe S,
Fushiya S. 1994a. Two new diglycosides from the aerial
parts of Cimicifuga simplex Wormsk. Chemical &
Pharmaceutical Bulletin 42: 1940–1943.
Kusano A, Shibano M, Kusano G. 1995a. Four new glycosides
from the aerial parts of Cimicifuga simplex Wormsk.
Chemical & Pharmaceutical Bulletin 43: 1167–1170.
Kusano A, Shibano M, Kusano G. 1996a. Four new xylosides
from the aerial parts of Cimicifuga simplex Wormsk.
Chemical & Pharmaceutical Bulletin 44: 167–172.
Kusano A, Shibano M, Kusano G. 1999a. Malonyl
cyclolanostanol glycosides from the underground parts of
Cimicifuga simplex Wormsk. Chemical & Pharmaceutical
Bulletin 47: 1175–1179.
Kusano A, Shibano M, Kusano G, Miyase T. 1996b. Eight new
glycosides from Cimicifuga simplex Wormsk. Chemical &
Pharmaceutical Bulletin 44: 2078–2085.
Kusano A, Shibano M, Tsukamoto D, Kusano G. 2001b. Four
new cycloart-7-enol glycosides from the underground
parts of Cimicifuga simplex Wormsk. Chemical &
Pharmaceutical Bulletin 49: 437–441.
Kusano A, Shimizu K, Idoji M, Shibano M, Minoura K,
Kusano G. 1995b. Three new cycloartane xylosides from
the aerial parts of Cimicifuga simplex. Chemical &
Pharmaceutical Bulletin 43: 279–283.
Kusano A, Takahira M, Shibano M, Miyase T, Kusano G.
1998a. Two new cyclolanostanol xylosides, bugbanosides
A and B from Cimicifuga simplex Wormsk. Chemical &
Pharmaceutical Bulletin 46: 1001–1007.
Kusano A, Takahira M, Shibano M, Miyase T, Kusano G.
1999b. Twelve new cyclolanostanol glycosides from the
underground parts of Cimicifuga simplex Wormsk.
Chemical & Pharmaceutical Bulletin 47: 511–516.
Kusano A, Takahira M, Shibano M, Miyase T, Okuyama T,
Kusano G. 1998b. Structures of two new cyclolanostanol
xylosides, cimiacerosides A and B. Heterocycles 48:
1003–1013.
Kusano G, Hojo S, Kondo Y, Takemoto T. 1977. Structure of
cimicifugoside. Chemical & Pharmaceutical Bulletin 25:
3182–3189.
Kusano G, Idoji M, Yoshie S, Shibano M, Kusano A, Takashi I.
1994b. A new xyloside from the aerial parts of Cimicifuga
simplex Wormsk. Chemical & Pharmaceutical Bulletin 42:
1106–1110.
Kusano G, Murakami Y, Sakurai N, Takemoto T. 1976a.
Isolation and stereostructures of dahurinol, dehydro-
xydahurinol, isodahurinol and 25-O-methylisodahurinol.
Yakugaku Zasshi 96: 82–85.
Kusano G, Takemoto T. 1975. Constituents of Cimicifuga
species: Structure of cimigol. Yakugaku Zasshi 95:
1133–1137.
Kusano G, Uchida H, Murakami Y, Sakurai N, Takemoto T.
1976b. A revised structure of acerinol and the structures of
the related compounds. Yakugaku Zasshi 96: 321–325.
Lai G-F, Wang Y-F, Fan L-M, Cao J-X, Luo S-D. 2005.
Triterpenoid glycoside from Cimicifuga racemosa. Journal
of Asian Natural Products Research 7: 695–699.
Lee KH, Lee WJ, Yang SJ, Huh JW, Choi J, Hong HN, Hwang
O, Cho SW. 2004. Inhibitory effects of Cimicifuga
heracleifolia extract on glutamate formation and glutamate
dehydrogenase activity in cultured islets. Molecules and
Cells 17: 509–514.
Li L-Q (李良千 ). 1995. The geographical distribution of
subfam. Helleboroideae (Ranunculaceae). Acta Phyto-
taxonomica Sinica (植物分类学报) 33: 537–555.
Li C-J (李从军), Chen D-H (陈迪华), Xiao P-G (肖培根).
1993a. Chemical constituents of traditional Chinese drug
Shengma (Cimicifuga dahurica). Acta Pharmaceutica
Sinica (药学学报) 28: 777–781.
Li C-J, Chen D-H, Xiao P-G. 1994a. Chemical constituents of
the traditional Chinese drug “Sheng-ma” (Cimicifuga
dahurica). III. Structures of Cimiside C and Cimiside D.
Acta Pharmaceutica Sinica (药学学报)52: 722–726.
Li C-J (李从军), Chen D-H (陈迪华), Xiao P-G (肖培根).
1995. Chemical constituents of traditional Chinese drug
Shengma (Cimicifuga foetida). Chinese Traditional and
Herbal Drugs (中草药) 26: 288–289.
Li J-X, Kadota S, Hattori M, Yoshimachi S, Shiro M, Oogami
N, Mizuno H, Namba T. 1993b. Isolation and
characterization of ten new cycloartenol triterpenes from
Cimicifuga heracleifolia Komarov. Chemical &
Pharmaceutical Bulletin 41: 832–841.
Li J-X, Kadota S, Pu X-F, Namba T. 1994b. Foetidinol, a new
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 534
trinor-triterpenoid with a novel carbon skeleton, from a
Chinese crude drug “Shengma” (Cimicifuga foetida L.).
Chemical & Pharmaceutical Bulletin 35: 4575–4576.
Li C-J (李从军), Li Y-H (李英和), Chen S-F (陈顺峰), Xiao
P-G (肖培根 ). 1994c. Triterpenoids from Cimicifuga
foetida L. Acta Pharmaceutica Sinica (药学学报) 29:
449–453.
Li C-J, Li Y-H, Xiao P-G. 1994d. Isolation and structure of
cimiside F from Cimicifuga foetida L. Acta Pharmaceutica
Sinica (药学学报) 29: 934–936.
Li C-J, Li Y-H, Xiao P-G, Watson W H, Krawiec M. 1996. An
unusual cycloartane triterpenoid from Cimicifuga foetida.
Phytochemistry 42: 489–494.
Li WK, Chen SN, Fabricant D, Angerhofer CK, Fong HHS,
Farnsworth NR, Fitzloff JF. 2002. High-performance
liquid chromatographic analysis of Black Cohosh
(Cimicifuga racemosa) constituents with in-line
evaporative light scattering and photodiode array
detection. Analytica Chimica Acta 471: 61–75.
Liu I-M, Chi T-C, Hsu F-L, Chen C-F, Cheng J-T. 1999.
Isoferulic acid as active principle from the rhizome of
Cimicifuga dahurica to lower plasma glucose in diabetic
rats. Planta Medica 65: 712–714.
Lin X (林新), Cai Y-Y (蔡有余), Xiao P-G (肖培根). 1994.
Inhibition of SIV in vitro by Cimicifuga dahurica saponin
and its action mechanism. Huaxi Yaoxue Zazhi (华西药学
杂志) 9: 221–224.
Liu Y, Chen D-H, Si J-Y, Tu G-Z, An D-G. 2002. Two new
cyclolanostanol xylosides from the aerial parts of
Cimicifuga dahurica. Journal of Natural Products 65:
1486–1488.
Liu Y, Chen D-H, Si J-Y, Tu G-Z, An D-G. 2003. Cimidahuside
1 and 2, two new cyclolanostanol xylosides from the aerial
parts of Cimicifuga dahurica. Natural Product Research
17: 243–246.
Liu Z, Yang Z, Zhu M, Huo J. 2001. Estrogenicity of black
cohosh (Cimicifuga racemosa) and its effect on estrogen
receptor level in human breast cancer MCF-7 cells.
Journal of Hygiene Research 30: 77–80.
Mahady GB. 2005. Black cohosh (Actaea/Cimicifuga race-
mosa): review of the clinical data for safety and efficacy in
menopausal symptoms. Treat Endocrinol 4: 177–184.
Mimaki Y, Nadaoka I, Yasue M, Ohtake Y, Ikeda M, Watanabe
K, Sashida Y. 2006. Neocimicigenosides A and B,
cycloartane glycosides from the rhizomes of Cimicifuga
racemosa and their effects on CRF-stimulated ACTH
secretion from AtT-20 cells. Journal of Natural Products
69: 829–832.
Muravev IA, Vasikenko YK, Basharov AY, Parfenteva EP,
Skulte IV. 1985. Hypolipidemic properties of cimicilen,
isolated from Cimicifuga dahurica (Tircz) Maxim.
Farmatsiya 34: 38–42.
Nishida M, Yoshimitsu H, Nohara T. 2003a. Three cycloartane
glycosides from Cimicifuga rhizome and their immuno-
suppressive activities in mouse allogeneic mixed
lymphocyte reaction. Chemical & Pharmaceutical Bulletin
51: 354–356.
Nishida M, Yoshimitsu H, Nohara T. 2003b. Two new
tetranor-cycloartane glycosides from Cimicifuga rhizome.
Chemical & Pharmaceutical Bulletin 51: 1117–1118.
Nishida M, Yoshimitsu H, Okawa M, Ikeda T, Nohara T. 2003c.
Two new 15,16-seco-cycloartane glycosides from
Cimicifuga rhizome. Chemical & Pharmaceutical Bulletin
51: 1215–1216.
Nisslein T, Freudenstein J. 2003. Effects of an isopropanolic
extract of Cimicifuga racemosa on urinary crosslinks and
other parameters of bone quality in an ovariectomized rat
model of osteoporosis. Journal of Bone and Mineral
Metabolism 21: 370–376.
Nuntanakorn P, Jiang B, Einbond LS, Yang H, Kronenberg F,
Weinstein IB, Kennelly EJ. 2006. Polyphenolic
constituents of Actaea racemosa. Journal of Natural
Products 69: 314–318.
Ou S, Kwok KC. 2004. Ferulic acid: Pharmaceutical functions,
preparation and applications in foods. Journal of the
Science of Food and Agriculture 84: 1261–1269.
Pan R-L (潘瑞乐), Chen D-H (陈迪华), Si J-Y (斯建勇), Zhao
X-H (赵晓宏), Shen L-G (沈连钢). 2002. Studies on the
triterpenoid constituents from the aerial part of Cimicifuga
foetida L. Acta Pharmaceutica Sinica (药学学报) 37:
272–275.
Pan R-L (潘瑞乐), Chen D-H (陈迪华), Si J-Y (斯建勇), Zhao
X-H (赵晓宏), Shen L-G (沈连钢). 2003a. Studies on the
new triterpenoid saponin of the aerial part of Cimicifuga
foetida. China Journal of Chinese Materia Medica (中国中
药杂志) 28: 230–232.
Pan R-L (潘瑞乐), Chen D-H (陈迪华), Si J-Y (斯建勇), Zhao
X-H (赵晓宏), Shen L-G (沈连钢). 2003b. Studies on the
chemical constituents of the aerial part of Cimicifuga
foetida L. Acta Pharmaceutica Sinica (药学学报) 38:
272–275.
Pan R-L, Chen D-H, Si J-Y, Zhao X-H, Shen L-G. 2004. Two
new cyclolanostanol glycosides from the aerial parts of
Cimicifuga foetida. Journal of Asian Natural Products
Research 6: 63–67.
Sakurai N, Inoue T, Nagai M. 1972. Triterpenes of Cimicifuga
dahurica Maxim. Yakugaku Zasshi 92: 724–728.
Sakurai N, Inoue T, Nagai M. 1979. Acetyl shengmanol, a
possible parental triterpene acetate of cimigenol and
cimigol from Cimicifuga japonica. Chemical &
Pharmaceutical Bulletin 24: 3220–3222.
Sakurai N, Kimura O, Inoue T, Nagai M. 1981. Structures of
24-O-acetylhydroshengmanol xyloside and 22-hydroxy-
cimigenol xyloside. Chemical & Pharmaceutical Bulletin
29: 955–960.
Sakurai N, Koeda M, Aoki Y, Nagai M. 1995. Three new
trinor-9,19-cyclolanostanol xylosides, cimicifugosides
H-3, H-4 and H-6, from Cimicifuga rhizome and
transformation of cimicifugoside H-1 into cimicifugosides
H-2, H-3 and H-4. Chemical & Pharmaceutical Bulletin
43: 1475–1482.
Sakurai N, Koeda M, Inoue T, Nagai M. 1994. Two new
triterpenol bisdesmosides, 3-arabinosyl-24-O-acetylhydro-
shengmanol 15-glucoside and 3-xylosyl-24-O-acetylhy-
droshengmanol 15-glucoside, from Cimicifuga dahurica.
Chemical & Pharmaceutical Bulletin 42: 48–51.
Sakurai N, Kozuka M, Tokuda H, Nobukuni Y, Takayasu J,
Nishino H, Kusano A, Kusano G, Nagai M, Sakurai Y, Lee
KH. 2003. Antitumor agents 220. Antitumor-promoting
effects of cimigenol and related compounds on Epstein-
高璟春等: 毛茛科升麻族植物药用亲缘学初探

535
Barr virus activation and two-stage mouse skin carcino-
genesis. Bioorganic and Medicinal Chemistry 11:
1137–1140.
Sakurai N, Goto T, Nagai M, Inoue T, Xiao PG. 1990. Studies
on the constituents of Beesia calthaefolia and Soulier
vaginata. IV. Beesioside III, a cyclolanostanol xyloside
from the rhizomes of Beesia calthaefolia and Souliea
vaginata. Heterocycles 30: 879–904.
Sakurai N, Nagai M, Goto T, Inoue T, Xiao PG. 1993. Studies
on the constituents of Beesia calthaefolia and Soulier
vaginata. IV. Beesioside I, a cyclolanostanol xyloside from
the rhizomes of Beesia calthaefolia. Chemical &
Pharmaceutical Bulletin 41: 272–275.
Sakurai N, Nagai M, Nagase H, Kawai K, Inoue T, Xiao PG.
1986. Studies on the constituents of Beesia calthaefolia
and Soulier vaginata. II. Beesioside II, a cyclolanostanol
xyloside from the rhizomes of Beesia calthaefolia.
Chemical & Pharmaceutical Bulletin 34: 582–589.
Sakurai N, Nagai M, Inoue T. 1975. Triterpene glycosides from
Cimicifuga japonica and structure of 25-anhydrocimigenol
arabinoside (author’s transl.). Yakugaku Zasshi 95:
1354–1360.
Sakurai N, Wu J, Sashida Y, Mimaki Y, Nikaido T, Koike K,
Itokawa H, Lee K. 2004. Anti-AIDS agents. Part 57:
Actein, an anti-HIV principle from the rhizome of
Cimicifuga racemosa (black cohosh), and the anti-HIV
activity of related saponins. Bioorganic & Medicinal
Chemistry Letters 14: 1329–1332.
Seidlova-Wuttke D, Jarry H, Becker T, Christoffel V, Wuttke W.
2003. Pharmacology of Cimicifuga racemosa extract BNO
1055 in rats: bone, fat and uterus. Maturitas 44s: s39–s50.
Seidlova-Wuttke D, Jarry H, Pitzel L, Wuttke W. 2005. Effects
of estradiol-17b, testosterone and a black cohosh
preparation on bone and prostate in orchidectomized rats.
Maturitas 51: 177–186.
Shao Y, Harris A, Wang M, Zhang H, Cordell GA, Bowman M,
Lemmo E. 2000. Triterpene glycosides from Cimicifuga
racemosa. Journal of Natural Products 63: 905–910.
Shin TY, Seo HM, Chae BS. 1998. Antiallergic effect of
Cimicifuga heracleifolia extract. Yakhak Hoechi 42:
403–407.
Struck D, Tegtmeier M, Harnischfeger G. 1997. Flavones in
extracts of Cimicifuga racemosa. Planta Medica 63:
289–291.
Takahira M, Kusano A, Shibano M, Kusano G, Sakurai N,
Nagai M, Miyase T. 1998a. Three new fukiic acid esters,
cimicifugic acids A, B and C, from Cimicifuga simplex
Wormsk. Chemical & Pharmaceutical Bulletin 46:
362–365.
Takahira M, Kusano A, Shibano M, Kusano G, Miyase T.
1998b. Piscidic acid and fukiic acid esters from
Cimicifuga simplex. Phytochemistry 49: 2115–2119.
Takemoto T, Kusano G. 1968. Constituents of Cimicifuga
acerina. 4. Structure of methyl cimigenol. Yakugaku
Zasshi 88: 623–626.
Takemoto T, Kusano G. 1969. Constituents of Cimicifuga
acerina. 5. Structures of 25-O-acetylcimigenol,
dehydroxy-15-O-methylcimigenol, and 15-O-methylci-
migenol. Yakugaku Zasshi 89: 954–958.
Takemoto T, Kusano G, Kawahara M. 1970a. Structures of
25-O-acetylcimigenoside and 25-O-methylcimigenoside.
Yakugaku Zasshi 90: 64–67.
Takemoto T, Kusano G, Kawahara M. 1970b. Studies on the
constituents of Cimicifuga spp. VII. Structure of
cimicifugenol. Yakugaku Zasshi 90: 68–72.
Takemoto T, Kusano G, Nobuko Y. 1967. Constituents of
Cimicifuga acerina. 3. Structure of acerinol. Yakugaku
Zasshi 87: 1489–1492.
Tian Z, Pan R-L, Si J-Y, Xiao P-G. 2006. Cytotoxicity of
cycloartane triterpenoids from aerial part of Cimicifuga
foetida. Fitoterapia 77: 39–42.
Tian Z, Yang M, Huang F, Li K-G, Si J-Y, Shi L, Chen S-B,
Xiao P-G. 2005. Cytotoxicity of three cycloartane
triterpenoids from Cimicifuga dahurica. Cancer Letters
226: 65–75.
Wang X-Q (汪小全), Deng Z-R (邓峥嵘), Hong D-Y (洪德元).
1998. The systematic position of Beesia: evidence from
ITS (nrDNA) sequence analysis. Acta Phytotaxonomica
Sinica (植物分类学报) 36: 403–410.
Wang W-C (王文采), Li L-Q (李良千), Wang Z (王筝). 1999.
Notulae de Ranunculaceis sinensibus (XXIII). Acta
Phytotaxonomica Sinica (植物分类学报) 37: 209–219.
Watanabe K, Mimaki Y, Sakagami H, Sashida Y. 2002.
Cycloartane glycosides from the rhizomes of Cimicifuga
racemosa and their cytotoxic activities. Chemical &
Pharmaceutical Bulletin 50: 121–125.
Wende K, Mugge C, Thurow K, Schopke T, Lindequist U.
2001. Actaeaepoxide 3-O-beta-D-xylopyranoside, a new
cycloartane glycoside from the rhizomes of Actaea
racemosa (Cimicifuga racemosa). Journal of Natural
Products 64: 986–989.
Winterhoff H, Spengler B, Christoffel V, Butterweck V,
Lohning A. 2003. Cimicifuga extract BNO 1055: reduction
of hot flushes and hints on antidepressant activity.
Maturitas 44 (Suppl 1): S51–S58.
Woo K, Park Y, Jun D, Lim J, Beak W, Suh B, Kim K. 2004.
Phytoestrogen cimicifugoside-mediated inhibition of
catecholamine secretion by blocking nicotinic
acetylcholine receptor in bovine adrenal chromaffin cells.
Journal of Pharmacology and Experimental Therapeutics
309: 641–649.
Wuttke W, Seidlova-Wuttke D, Gorkow C. 2003. The
Cimicifuga preparation BNO 1055 vs. conjugated
estrogens in a double-blind placebo-controlled study:
effects on menopause symptoms and bone markers
Maturitas 44 (Suppl 1): S67–S77.
Xiao P-G (肖培根 ). 1979. Tribe Cimicifugeae. In: Flora
Reipublicae Popularis Sinicae (中国植物志). Beijing.
Science Press. 27: 88–106.
Yamahara J, Kobayashi M, Kimura H. 1985. Biologically
active principles of crude drugs. The effect of Cimicifugae
rhizoma and constituents in preventive action on the
carbon tetrachloride-induced liver disorder in mice.
Shoyakugaku Zasshi 39: 80–84.
Yang Q-E (杨亲二). 2002. Cytology of the tribe Trollieae and
of the tribe Cimicifugeae in the Ranunculaceae: a
comparative study. Acta Phytotaxonomica Sinica (植物分
类学报) 40: 52–65.
Yang Q-E (杨亲二), Gu Z-J (顾志建), Sun H (孙航). 1995. The
karyotype of Beesia deltophylla and its systematic
significance. Acta Phytotaxonomica Sinica (植物分类学
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 536
报) 33: 225–229.
Ye W-C, Zhang J-W, Che C-T, Ye T, Zhao S-X. 1999. New
cycloartane glycosides from Cimicifuga dahurica. Planta
Medica 65: 770–772.
Yoshimitsu H, Nishida M, Sakaguchi M, Nohara T. 2006. Two
new 15-deoxycimigenol-type and 3 new 24-epi-cimigenol-
type glycosides from Cimicifuga rhizome. Chemical &
Pharmaceutical Bulletin 54: 1322–1325.
Zhang Q-W, Ye W-C, Hsiao W-L, Zhao S-X, Che C-T. 2001a.
Cycloartane glycosides from Cimicifuga dahurica. Acta
Pharmaceutica Sinica 36: 287–291.
Zhang Q-W, Ye W-C, Hsiao W-L, Zhao S-X, Che C-T. 2001b.
Cycloartane glycosides from Cimicifuga dahurica.
Chemical & Pharmaceutical Bulletin 49: 1468–1470.
Zhao X-H (赵晓宏), Chen D-H (陈迪华), Si J-Y (斯建勇), Pan
R-L (潘瑞乐), Shen L-G (沈连钢). 2002. Studies on the
phenolic acid constituents from Chinese medicine
“sheng-ma”, rhizome of Cimicifuga foetida L. Acta
Pharmaceutica Sinica (药学学报) 37: 535–538.
Zhao X-H (赵晓宏), Chen D-H (陈迪华), Si J-Y (斯建勇), Pan
R-L (潘瑞乐), Shen L-G (沈连钢), Chen D (陈铎). 2003.
Studies on new trierpenoid constituents from the rhizome
of Cimicifuga foetida. Zhongguo Zhongyao Zazhi (中国中
药杂志) 28: 135–138.
Zhou L. 2004a. Studies on the chemical constituents and
bioactivities of medicinal plant Souliea vaginata and Piper
hancei. Ph.D. Dissertation. Beijing: Chinese Academy of
Medical Sciences and Peking Union Medical College.
Zhou L, Yang J-S, Zou J-H, Tu G-Z. 2004b. Three new
cycloartane triterpene glycosides from Souliea vaginata.
Chemical & Pharmaceutical Bulletin 52: 622–624.
Zhu N, Jiang Y, Wang M, Ho C. 2001. Cycloartane triterpene
saponins from the roots of Cimicifuga foetida. Journal of
Natural Products 64: 627–629.