免费文献传递   相关文献

Mechanism of protein thermostability by analyzing change of ionizable group position in nitrilase from Pyrococcus abyssi

通过分析来自Pyrococcus abyssi的腈水解酶中带电基团位置变化探讨蛋白耐热机制



全 文 :!10
"!

#
2012
$
11
%
A
 
–
 
á
 
Ö
 
u
 
â
ChineseJournalofBioprocessEngineering
Vol.10No.6
Nov.2012
doi:10.3969/j.issn.1672-3678.2012.06.006
STUM
:2011-12-29
OGV!

ãäyåæFçèéêë
(31201296);
ãäg¬­£¤5Vãä
(863
ãä

èéêë
(2012AA020403);
ß1NFÖâãä]È
_£(22ÿŸçèéêë
(KL1009)
WX.Y

“K”
(1987—),
ø

•?–÷û

hý£¤A

£¤"ö

A–ÇZÖâ

ÔFè

– û
):
þÿ!
,Email:xdwang@ecust.edu.cn;
A—˜

– û
),
™ë
,Email:ljzhang@ecust.edu.cn
hüoŠij
Pyrococcusabyssi
‰k™š¿mlm
Onop(†q½¾¸rº‚
|}~
1,

1,2,
IN
1,
‚ƒ)
1,
j/I
1,
cI„

(1.
…I†1./ 78‡ˆ‰YF@ABCD €…78Š‹]^_

Œ
200237;
2.
*+1-./ x=0/12YF@ABCD

*+
210009)
7
 
i

óôÄØÙÚÛèÜÇÍè®ÇÝÞÖóôíÇ^_ï(ßCÇØÙ

àá

ââÀÁóôíÚ¾¾ã



þåæçØÙ

èH¡

­^Ç鹺,áªÊËÖê

¾m1ëB܁ÌX,

ÖÒ,\¯í80Í
2þå

‡Á
DiscoveryStudio
ÖX,80´Bm¾

ýêìIÚ¾

íÈìIÚ¾‡Á
Gromacs
î/â³´BÔ
Ê80þPŽ](MD)
¾¿

™Á
Macrodox
î/ïðóôíÆ(ØÙÍè®ñèÇòóé­*+\ôõ¯öÀ
(SA),
«@â³´BÔÊ

÷þÍè®ØÙèÜÇ
SA
‹ø«k`a’Ä

ù›9:Qäþå1³çÃúúýê
ûüý=ÇÚÛ

þ¯80Žäþå

jkl
:´
Bm¾

þPŽ];
*+\ôõ¯

鹺,
;^
_ï
mnopq
:O62973    
6rsFt
:A    
6u?q
:1672-3678(2012)06-0029-05
Mechanismofproteinthermostabilityby
analyzingchangeofionizablegrouppositioninnitrilasefrom
Pyrococcusabyssi
TANGXiaomang1,ZHANGLujia1,2,CUIDongbing1,YAOZhiqiang1,WANGXuedong1,WEIDongzhi1
(1.NewWorldBiotechnologyInstitute,StateKeyLaboratoryofBioreactorEngineering,EastChinaUniversityof
ScienceandTechnology,Shanghai200237,China;2.StateKeyLaboratoryofMaterialsOrientedChemicalEngineering,
NanjingUniversityofTechnology,Nanjing210009,China)
Abstract:Thepositionoftheaminoacidswithionizablegroupofproteinhadagreatefectonprotein
thermostability.Athermoactivenitrilasewasconstructedandtheheterologousexpressed.Thebasicprop
ertiesweretested.TheenzymewasmodeledbyDiscoveryStudioprograminhomologymodelingprotocol
andsimulatedinGromacsmoleculardynamicsprogramatdiferentgiventemperatures.Finaly,themac
rodoxprogramwasusedtocalculatetheproteinssolventaccesssibility.Thesolventaccessibilityofioniz
ablegroupsinnitrilasewasdiferentatchangingtemperatures.Itwasnecessaryfordynamicanalysisof
protein′sthemrostabilitymechanism.
Keywords:homologymodeling;moleculardynamics;solventaccessibility;nitrilase;thermostability
  
z{|@
(EC3551)
KzGN3–P8XÍ
ZYm«/½

ÌñOYz{|@#äš
(nitrilasesu
perfamily)[1-2]
O‘¨9:]¾Î›

[α β β αí
CvԬ
,Cys、Glu、Lys3
pYœ½«Ù4Ì G
È

§4§¾W

z{|@OÖgA6

:“Ë‹–
YÉÊ/•–…pAU§¨¡],YîA
[3]。
  
@r:.ŒYì³9¶¶·

@Ygì9¶
GOA–îN:]hY`a
[4]。
£¤BC>
?tu§ÁW@xµZgì
[5]:
]½«O>?€
t~9YvÔ
[6-7];
€tC-V8êYGH
[8]、
>?H™¦n

u…‘¨²ã
[9]
A

ÌU

.p
],YÊgW ž4

>?HY}~½«-V
Yͪ‘~%[n>?Y…`ŒG:],rs

ؘ

O§Án>?°|…`ŒGYÊGò㟎
U¥[™§pÚÝn‘~%[°|ãà
[10-13]:Tan
ford
A
[14]
¡6™
TK SA
ÚÝ
,Mathew
A
[15]

>?HYÍn<=Sç G
(solventaccessiblity),
SA
%xB›o.rsDn€³°|<±
,Schweiker
A
[10-12]
ÌïOo"êŽv™hJÖ%

MN™>?
H9rÈVY~¡%[ãà"â

  Schweiker
A
[10]
¥[/9Êgn§p>?HY
…`ŒG°|™vw

¢ò™€¢Y‘œ

j#¥
[Y>?H‘¨½å§xy‹Œ’W‘¨

q>?
HO{<¯UY_¨£#.pL£Y ‡

½
«Y‚Ž€(`N

Ogì¾

½«Y‚
`NZyḤ

ñ/3OŸŽ#:[v¦Ú[T
-°|L£Ú[NòL£‘œ

¤[:[&
Lee
A
[16]
ñ¡6YãàŸŽY
MacroDox
MDãà
Ðu
MD
ïYv¦¨G
SA
%
[17]
°|¥èYvw

¡)/
Mueler
A
[18]
÷øY

hg³9…Yz{|
@
(GenBank
¦§Z
AJ248287)
4nG

h¸Blü


NòS
D£¤n̑¨`Œ4˜
F²%[Y½«O{<¯UY<=Sç GY
`N¨£

1 
vw%xy
11 
zÆ]s|¿á@…
111 
]˜H1¨ñ
  
O
NCBI
Yð/N¢
Mueler
ñ÷øYz{|
@Ø¡k
(GenBank
¦§Z
AJ248287),
Ø$¨
Q€3X

3Xï¢ç9ç
pET11a¨
ñ]˜B
lH1

tu…rPN˜h©ªB
BL21(DE3)
pLysS,¨
ñ]˜Bh

112 
ÖâBðh„…
  
Á¦„…
:LB
„…

  
‹W„…

O
LB
„…Uáè
2%
Yßà

  
5-„…
(g/L):
+>?Þ
10,
-.¡¢–
5,NaCl5,MgSO42,N*1。
  
K¨ñ)Yh©ªBçÁ˜:
100μg/mL
½«¬¹f/
34g/mL
­¹fY
LB
Æ9
,37℃
„…
12h
,aQB#瘐:
100μg/mL½«¬
¹f/
34g/mL
­¹fY
LB
„…U
,37℃
„…
8h
;<[
10%
N*Y‹BÁ

  
Kh©ªBç˜
100μg/mL½«¬¹f/34
g/mL
­¹fY5-„…U„…Ã
OD600O06;
<

áè
IPTG,
ä³áÃ
01mmol/L,20℃

20h
ï

K5-¯™ó

×NBW

113 
®@¯†Ê⯠
  
ø†
PBS
F¯
(NaCl8g/L,KCl02g/L,
Na2HPO4144g/L,KH2PO4024g/L,pH74)/
K3PO4F¯(20mmol/L,pH70)。¢™óïY
BW

[
PBS
F¯Ø

Ñ

KBW>?˜
K3PO4
F¯U

#¯À‚
5min,
ڎ
100Hz,
#¯§V

V°§V
=1∶1,
À‚Y®¯O
10000r/min
™ó
20
min,
D[
SDSPAGE
N¯BlJ

v¥O
60、70、
80、90
/
100℃
¾¯@ 
,(1U
4Dv.îNRS
1μmolYÇqduzñ¾Y@J)。@ Y¯Œ/
Çqduz40–

"“4! Ñ­«û“
[17]
12 
oàs©
  
&z{|@Ø¡k

¥[(±€¡Y
discoverystudio25
MDy}Y
nr95
½åð°|
Blast,
²—˜¡k.“G
(sequenceidentity)

844%
xy³5J…ýB
(Pyrococcushorikoshi)
Y>
?
hypotheticalproteinPH0642(PDB
êZ
1J31)
%4
ÚÆ

O
proteinmodelingprotocol
U°|t¸ñÚñ
X
10
pÚÝ

aóJ3•YÚÝ
(PDFTotal
Energy=262553,DOPESCORE=-6738537),
¥
[

3ï¥[
VERIFY 3D
Ö[nÚÝ°|´µ

5
^ÚÝY
VERIFYSCORE
YÍn%4
24905,
,g
&ÚÆ
1J31
Y
24812,
ñ/S/wCÚÝ#3ÊY

13 
oà1⩪
131 
½å®ÉÊ
  
¥[
Gromacs45
MD°|v¦LÄF
(MD)
Ú[

nhÁè>?D°|

ÉÊ

 ïáÁ
Am
ber99SB
Ķ

òŒ{v¦GÝ4
TIP3P;
òŒ
sol
ventbox
GÝ4
dodecahedron,D=09;
á{

™¦

03
A
 
–
 
á
 
Ö
 
u
 
â
  
!
10
"
 
Ý~¡

m†™¦ä³4
01mol/L;
3ïhï¥
[3M¾}“/s·¸³“°|J3¿Nï

°
|
2ps
Y{Ý

132 
ãàuâ
  
v¥K>?íF‘¨O
300、340
/
370K3
p
ì³¾Ú[

ÌfCD.“

Ú[§V
8ns,

2fs,4000
¹

D
2ps
¡¢.Ñ

Y‹4.¹
),
:#
Gº8òŒ4
pbc,
ì³m†:#4
01、
\k
、05
ps
YkÄm†:#¾
),
¥[
berendsen
à“°|v
¦LÄFÚ[

133 
vwâq6
  
¡¢
300、340
/
370K
¾v¦LÄFÚ[ò˜
Y»¼)D

)9q6Y
RMSD


a¢¡É&
`ŒY
4ns
v¥q64
300knitpdb、340knitpdb
/
370knitpdb
)D

°|ïUY
SA
ãà

14 
»¼A€t£‰Ðu
  
¥[
macrodox
MD°|>?®ÉÊï

¥[
surface
¥N


richard
"“°|DpÙY<=
Sç G
(SA),
 ïO
tk
¥NðUhï¥[
site,
burial,site
¥Nò˜Dp´G½«YϾŽ
(buri
alratio),
tuzQYÉÊ

…Sãàò˜
SA。
2 
‹Œ%)
21 
zÆ]s|¿á@…‹Œ
  
>?Bl]^

ñO
,¯
ŒÖâ@ G5^
90℃
¾² Ä3g
(324U/g),
Ìfì³¾² Ä
B
1。
22 
o੪‹Œ
  
v¦Ú[‘œ]^

ñO

¥[
Chimera
MD
6^
)。
n
1 
Jz¡v|¿½¾mwn
Fig.1 Geneticengineeringbacteriaandprotein
electrophoresisofenzyme
¡
1 
xË̱k™š¿‰á£
Table1 Enzymeactivityindiferenttemperatures
ÇZì³
/℃ 60 70 80 90 100
Ín@ 
/% 35 50 60 100 70
 
,

/
90℃
¾z{|@ 4
100%。
n
2 

DiscoveryStudio
s©¶y©Õ‹]n
Fig.2 NitrilasemodelbuildingbyDiscoveryStudio
23 
oà1⩪‹Œ
  
^

4v¦LÄFÚ[
6ns
Y
RMSD


$^

S_

GE¡¢

wC>?¨G–С
`


4ns
§Y¨GDq64
pdb
)D

24 
»¼A€t£Ðu‹Œ
  
²~

p>?Yãà‘œ

5^>?`WԬ
Y<=Sç êƒ5A`N

v¥4
14235140、
14393970
/
14737254A2,`
WY<=Sç ê
ƒ(áá+ð

wC ¡ì³Yáá

>?Ԭ(
^6ðAY+ð

  
<=Sç G
(SA),
ŽË-4¿Ž

#1K
È_YY<=Sç êƒz/üÙ2O
Ala X Ala
í»UY<=Sç êƒYŠv²

OvwQpY½«Y
SA
%§5^

O
300
˜
370

Yì³`NuâU

:dvÙY
SA
%Âål
:CžY`N

jâUAì³
340K
¾Y
SA
%Ͳ
~

B
2),
oÈ_Y9#O¸¤Y

ÀL
”。
/
Asp336,Glu313
B^ò34Cž

]
ASP336
9Y
OD2
\¦Âå”
300
¾˜
340K
<=Sç GÁ5

2%
YÓ¿`N

jO
340K
YuâU

Ì¿
Ž6^™ÂhYÀL

¿Ž”
300K
¾Y
59%
¾

8%
Y

qO
370K
§S˜
57%
Y{

K

pì³¾
SA
Y`N
(340~300K,370~300K)
Y
Ín%Íá

B
2),
žOÌ
SA
YÀL¶·l˜™
100%。
owCü\¦O¢ìuâU5A™@\¸
¤YÀL

13 
!

# “K”A

tuvwxy
Pyrococcusabysi
Yz{|@U}~€‚`Nƒ„>?9…;†
n3 
§¨Ë̱oà1⩪‰
RMSD
nz
Fig.3 RMSDfiguresfromMDsimulationat
diferenttemperatures
  
z™oÁ¸¤Y

ÀL
”,
k:dv€Y
SA
# ¡ì³YÀáqŒöY5A`N

.½«
Y}~€Y
SA
žŸáh

B
3)。
$B

S_

Glu218
9Y
OE2
O
370K
¾Y¿²Ž#
300K
¾Y
13´ ,
o.ÂhY`NB›ü\¦$¡de
V>?HÏÃP`4>?BêY‚

Ž:dv½«Y}~ŀY
SA
 ¡ì³Y
¢gžŸ}•

B
4)。
$B

S_

&
Glu218、
Asp340
Y
OE1
â
OD2
\¦Y¿O^·²Žhh
¢g
,Asp340
9Y
OD2
\¦O
370K
¾Y¿²Ž
Á:
300K
¾Y
1/21,
wCO¢ìuâU

o
€”>?^:žŸYAL˜™d

tu/9£¤5^

€t½«Y
SA,
OÚ[
_Y{WXYL£uâU

D€#T7`ŒY

:§ÄÃs5A@\hY`N

ã]

O¢ìuâ
U‹O.}~€
SA
%

ÀL

Î¥Cž

Asp366
9
OD2
€Y
SA
`N\³l˜™
100%。
k:.€

]
Glu218,Asp340
O¢ìuâU`
N+ð.“

jo€O¢ìdXï
SA
%:
™xhY`N
:Glu218
9Y
OE2
O
370K
¾Y
SA
%#
300K
¾Y
13´ ;Asp340
9Y
OD2
\¦O
370

¾Y
SA
%Á:
300K
¾Y
1/21。
ؘ

Oãà
o€O€tì³¾Y>?Bê‘~%[§

¥
[†‡‘£Y
SA
%D€¡:Y‘~Ú[ã
    ¡2 ǧ¨Ë̱SA{“|1”=K‰lmOn
Table2 IonizablegroupwithSAvalue“swing”greatlyatdiferenttemperatures
\¦¡Z \¦GÝ ½« ñOÅl
SA300/% SA340/% SA370/% ΔSA1/% ΔSA2/% IΔSA/%
5399 OD2 Asp336 B 59 8 57 -51 49 100
5031 OE1 Glu313 B 28 75 29 47 -46 93
4120 OE2 Glu258 A 24 4 73 -20 69 89
4696 OE1 Glu291 B 5 57 22 52 -35 87
275 OD1 Asp17 A 4 65 44 61 -21 82
5398 OD1 Asp336 B 26 70 34 44 -36 80
   
,
:SA300,SA340,SA340v¥4O300,340,370K¾MDÚ[ïY@Y<=Sç G;ΔSA1,ΔSA2v¥4SA340âSA300,
SA340âSA340YP;SumΔSA4ΔSA1/ΔSA2YÍn%-/,[x´µO€tì³¾YSç êƒY`N。
¡
3 
Ç}Ëüm»¼A€t£~}-‰lmOn
Table3 IonizablegroupwithSAvalueriseinggreatlyatdiferenttemperatures
\¦¡Z \¦GÝ ½« ñOÅl
SA370/% SA300/% ΔSA3/% SA370/SA300
3467 OE2 Glu218 A 78 6 72 13
4697 OE2 Glu291 B 72 10 62 72
8313 OE1 Glu519 B 60 9 51 667
4120 OE2 Glu258 A 73 24 49 304
4484 OD1 Asp279 B 61 12 49 508
   
,
:SA300,SA340v¥4O300/370K¾MDÚ[ïY@Y<=Sç G;ΔSA34SA370âSA300YP。
23
A
 
–
 
á
 
Ö
 
u
 
â
  
!
10
"
 
¡4 
Ç}Ëüm»¼A€t£~€‰lmOn
Table4 IonizablegroupwithSAvaluefalinggreatlyatdiferenttemperatures
\¦¡Z \¦GÝ ½« ñOÅl
SA370/% SA300/% ΔSA4/% SA300/SA370
5461 OD2 Asp340 B 3 63 -60 21
5662 OD1 Asp355 B 23 72 -49 313
   
,
:SA300,SA340v¥4O300/370K¾MDÚ[ïY@Y<=Sç G;ΔSA44SA370âSA300YP。
à

¾,¥[yáÆ3_Y­©Y‘3™v¦LÄ
FY
SA
%

ò˜yáÇ:Y‘œ

”q¡y
:

gY…`ŒGÊGòã"š

3 
‹
 
)
  
/

h9…Yz{|@%4£¤nG
,¨
ñD
h¸Bl™ü@

DnÌ@FGH°|±}vw

f[
DiscoveryStudio
nü@°|t¸ñÚ

ò˜’
WԬ

K˜‘V‘¨f[
Gromacs
MDO€tì
³¾°|v¦LÄF
(MD)
Ú[

¥[
Macrodox
M
Dãà>?Hñ:}~½«ÙYϾŽâ<
=Sç êƒ
(SA),
5^O€tì³¾

dv½
«}~€Y
SA
%s5AžŸ`N

wCtu‘
£YvwD€.Œ°ò˜@\:Y‘œ

qZ
°|L£Yvw

;ïKf[ñ¨ñYz{|@
BlBh//9YÊg2V°.}YÖ%

Q·6r

[1] PiotrowskiM.Primaryorsecondary:versatilenitrilasesinplant
metabolism[J].Phytochemistry,2008,69:26552667.
[2] PaceHC,BrennerC.Thenitrilasesuperfamily:classification,
structureandfunction[J].GenomeBiology,2001,2(1):19.
[3] 
Õ­È

åñ/

z{|@Om«3XUY£¤°V
[J].
A
–áÖuâ
,2009,7(1):712.
[4] 
ÔÉÊ

Ë

ÔëÌ

A

ͅ@YÎGEÌZ[
[J].
ÓA
–FF÷
,2002,42(2):259262.
[5] 
ŠÎC

[ÏÐ

Ï­Ñ

ͅ@9…;†Y£¤°V
[J].
æ
F¬­âÖâ
,2004,4(9):804809.
[6] YokotaK,SatouK,OhkiSY.Comparativeanalysisofprotein
thermostability:diferencesinaminoacidcontentandsubstitution
atthesurfacesandinthecoreregionsofthermophilicandmeso
philicproteins[J].SciTechAdvMater,2006,7(3):255262.
[7] PackSP,YooYJ.Proteinthermostability:structurebaseddifer
enceofaminoacidbetweenthermophilicandmesophilicproteins
[J].JBiotech,2004,111(3):269277.
[8] BaldasseroniF,PascarelaS.Subunitinterfacesofoligomerichy
perthermophilicenzymesdisplayenhancedcompactness[J].IntJ
BiolMacromol,2009,44(4):353360.
[9] SzilágyiA,ZávodszkyP.Structuraldiferencesbetweenmesophil
ic,moderatelythermophilicandextremelythermophilicprotein
subunits:resultsofacomprehensivesurvey[J].Structure,2000,
8(5):493504.
[10] SchweikerKL,MakhatadzeGI.Proteinstabilizationbythera
tionaldesignofsurfacecharge:chargeinteractions[J]Methods
MolBiol,2009,490:261283.
[11] IbaraMoleroB,LoladzeVV,MakhatadzeGI,etal.Thermal
versusguanidineinducedunfoldingofubiquitin:ananalysisin
termsofthecontributionsfromchargechargeinteractionstopro
teinstability[J].Biochem,1999,38(25):81388149.
[12] MalakauskasSM,MayoSL.Desion,structureandstabilityofa
hyperthermophilicproteinvariant[J].NatStructBiol,1998,5
(6):470475.
[13] PaceCN,AlstonRW,ShawKevinI.Chargechargeinteractions
influencethedenaturedstateensembleandcontributetoprotein
stability[J].ProteinSci,2000,9(7):13951398.
[14] TanfordC,KirkwoodJG.Theoryofproteintitrationcurves.I.
generalequationsforimpenetrablespheres[J].JAmChemSoc,
1957,79(20):53335339.
[15] MathewJB,HananiaGI,GurdFR.Electrostaticefectsinhe
moglobin:hydrogenionequilibriainhumandeoxyandoxyhemo
globinA[J].Biochem,1979,18(10):19191928.
[16] LeeB,RichardsFM.Theinterpretationofproteinstructures:esti
mationofstaticaccessibility[J].JMolBiol,1971,55(3):
379400.
[17] NorthrupS.Generaloverviewofmacrodox[EB/OL].[201201
06].htp://iweb.tntech.edu/macrodox/macrodox.html.
[18] MuelerP,EgorovaK,VorgiasCE,etal.Cloning,expressionand
characterizationofathermoactivenitrilasefromthehyperthermo
philearchaeonPyrococcusabysi[J].ProteinExprPurif,2006,47
(2):672681.
33 
!

# “K”A

tuvwxy
Pyrococcusabysi
Yz{|@U}~€‚`Nƒ„>?9…;†