免费文献传递   相关文献

Spatial-temporal variance of the intensity of algal bloom and related environmental and ecological factors in Lake Taihu

太湖水华程度及其生态环境因子的时空分布特征



全 文 :第 36 卷第 14 期
2016年 7月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.36,No.14
Jul.,2016
http: / / www.ecologica.cn
基金项目:中国科学院科技服务网络计划项目(STS):长江经济带生态风险预测与保护对策
收稿日期:2014⁃12⁃11;     网络出版日期:2015⁃10⁃30
∗通讯作者 Corresponding author.E⁃mail: li.wf@ rcees.ac.cn
DOI: 10.5846 / stxb201412112468
张艳会,李伟峰,陈求稳.太湖水华程度及其生态环境因子的时空分布特征.生态学报,2016,36(14):4337⁃4345.
Zhang Y H, Li W F, Chen Q W.Spatial⁃temporal variance of the intensity of algal bloom and related environmental and ecological factors in Lake Taihu.
Acta Ecologica Sinica,2016,36(14):4337⁃4345.
太湖水华程度及其生态环境因子的时空分布特征
张艳会1,2,李伟峰2,∗,陈求稳3
1 中国科学院南京地理与湖泊研究所,流域地理学重点实验室,南京  210008
2 中国科学院生态环境研究中心,城市与区域生态国家重点实验室,北京  100085
3 南京水利科学院,南京  210029
摘要:湖泊水华是全世界面临的严重生态环境问题之一,对人类和生态系统健康都有重大影响。 由于湖泊水华受流域面源、点
源污染、气候、水文因子以及湖泊生态系统自身特征等众多因素影响,水华是否爆发、其严重程度及时空分布特征呈现明显的复
杂性。 以我国太湖为研究区域,基于近年的水华及水环境的监测数据,用自组织特征映射神经网络对太湖不同监测点的水华程
度进行了自动聚类分析。 结果表明,太湖水华程度呈现为明显的无水华、轻度、中度和重度水华 4 类。 不同程度水华的叶绿
素 a、水温、CODMn、营养盐、浮游植物生物量以及藻种(蓝藻、绿藻、硅藻)结构的时空差异显著,不同变量间的关系复杂,有助于
深入认识太湖近年水华发生的时空变异特性。
关键词:太湖;水华程度;自组织特征映射神经网络;环境因子;藻种结构
Spatial⁃temporal variance of the intensity of algal bloom and related
environmental and ecological factors in Lake Taihu
ZHANG Yanhui1,2, LI Weifeng2,∗, CHEN Qiuwen3
1 Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
2 State Key Laboratory of Urban and Regional Ecology,Research Center for Eco⁃Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China
3 Nanjing Hydraulic Research Institute, Nanjing 210029, China
Abstract: Algal bloom, which results in significant adverse effects on aquatic ecosystem health, drinking water safety, and
human beings, is one of the most serious environmental problems in lakes. Since many factors, such as non⁃point and point
source pollution, meteorological and hydrodynamic conditions, and morphological features and characteristics of the lake
ecosystem itself, can influence the outbreak of algal bloom, its mechanism is very complex and highly uncertain. In
particular, large water bodies such as Lake Taihu have eco⁃environmental conditions with significant spatial and temporal
variations. In the study, Lake Taihu was selectedand continuous monthly (2008—2010)on⁃site (33 sites) monitoring data
were used. The self⁃organizing map (SOM) neural network approach was applied to automatically evaluate the algal bloom
status according to long⁃term on⁃site monitoring data of the entire Lake. Then, for different intensities of algal bloom, the
spatial and temporal distribution and variation of environmental and ecological factors (Chlorophyll⁃a, water temperature,
CODMn, TN, TP, main algae composition) were analyzed. The relation between the intensity of water bloom and the
environmental and ecological factors were assessed. The intensity of algal blooms in Taihu Lake was classified into four
degrees, no, light, moderate, and severe water blooms. The spatial⁃temporal occurrence of algal bloom in Lake Taihu with
different intensity was clearly different. Spatially, the algal bloom intensity of Lake Taihu decreased from the northwest to
http: / / www.ecologica.cn
the southeast. The most severe bloom occurred in the north and northwest areas, which is the main entrance of major rivers
flowing into Lake Taihu. Moderate bloom occurred in the north, west, and southwest areas but seldom occurred in the east
and central areas. Light bloom appeared across the entire lake, except for the southeast. Temporally, the most severe bloom
outbreaked occurred during July to October. Moderate, light, and no blooms appeared from April to November. For different
degrees of algal blooms, the corresponding environmental⁃ecological variables of chlorophyll⁃a, water temperature, CODMn,
TN, TP, and main algae composition ( Cyanobacteria, Chlorophyta, Bacillariophyta) were clearly varied. The relations
between these environmental⁃ecological variables were very complex. Generally, water temperature and the concentration of
chlorophyll⁃a, CODMn, TN, and TP increased from no algal bloom to severe algal bloom. For all the algal blooms, distinct
variations were observed among the concentrations of chlorophyll⁃a and TP, while there were no marked differences among
the water temperature, CODMn, and TN. In relation to phytoplankton communities, cyanobacteria was dominant in all the
algal blooms with different intensities. These findings are not only important for comprehensively understanding the spatial⁃
temporal variations of algal bloom in Lake Taihu, but also support further identification of the mechanisms of algal bloom. In
addition, this study might help the government and related decision⁃makers in establishing policies and practices on algal
bloom monitoring and prevention.
Key Words: Lake Taihu; intensity of algal bloom; self⁃organizing map (SOM) neural network; environmental factors;
algal composition
湖泊水华是世界各国面临的重要水环境问题之一,对人类和区域生态系统健康都有重要影响[1⁃3],如太
湖,2000年以来,其蓝藻水华发生的次数越来越多、范围逐年扩大、强度逐渐增强,造成重大危害[4]。 由于水
华的爆发机制非常复杂,受流域点源、面源污染、气象条件以及湖泊生态系统自身特征的影响,水华是否爆发
及其强度、频率和范围等具有很大的时空变异性和不确定性,因此,水华的防治一直是个难题。 目前,虽然对
湖泊水华问题开展了大量的研究工作,深入分析了水华的爆发机制及其主要影响因子,但由于水华产生的过
程复杂,且时空变异很大,所以,即使对同一个湖泊水华问题,也难以有明确的定论。
要有效地减少蓝藻水华的发生及其带来的影响,必须全面、深刻地认识湖泊水华爆发的机理和机制。 目
前,湖泊水华研究多集中在以实验为主的定点监测和以模型为主的水华预测。 其中,定点监测有助于分析特
定时空范围内藻类生长和水华的生消过程,但很难揭示不同时空尺度上的水华变化机制;模型方法多集中在
水华的预测预警研究,主要是基于对水华生消过程的认识,来模拟水环境演变及水华的爆发过程,也是有助于
揭示给定时空尺度内水华的生消过程特征,但过程模型对参数变量的要求较高,对于环境多变、复杂的过程,
模型的敏感性很高,很难对不同环境条件进行高精度模拟,不确定性很大。
本研究基于近年来覆盖全太湖的不同监测站点的水环境和水华状况的实测数据,应用基于人工智能的自
组织神经网络方法,对全太湖水华发生特征进行了全面、综合地评价,深入揭示了太湖不同程度水华的环境变
量和藻类组成的时空变异特征。 研究结果对太湖水环境监测和水华灾害防治方案的制定具有一定的支撑
意义。
1  研究区域和数据
太湖地处 30°55′—31°34′N,119°53′—120°36′E,位于长江三角洲的南部,面积约为 2338km2,平均水深不
到 2m[5]。 该地属于亚热带气候类型,四季分明。 20世纪后期以来,太湖蓝藻水华问题日益突出,是国务院指
定重点治理的富营养化水域之一。 本研究所采用的数据是 2008—2010 年太湖每月 1 次的监测数据,监测站
点共 33个,覆盖全太湖各个区域,数据来源于太湖流域管理局水文水资源监测中心。
8334   生  态  学  报      36卷 
http: / / www.ecologica.cn
2  研究方法
2.1  太湖蓝藻水华程度评价
图 1  自组织特征映射神经网络结构
Fig.1  Structure of Self⁃organizing Neural Network
SOFM(Self⁃Organizing Feature Map)是由芬兰学者、
国际著名网络专家 Kohonen于 1982年首次提出[6]。 该
网络能够实现对输入模式特征进行拓扑逻辑映射,和其
它神经网络结构不同的是该网络没有输出层,所有的输
入信号经网络识别后根据其内在的信息结构被组织到
一维或二维的平面图上,形成特征图(图 1),进而具有
很强的可视性。 该方法通过判断输入样本的属性并对
其进行输出,每个输出节点代表某一类样本,根据样本
数据的本质特征以自组织的方式对样本进行聚类。
SOFM已经被广泛地用于模式识别、联想储存、组合优
化和机器人控制等问题的解决,近年来,在生态环境领域,很多复杂、非线性的生态环境过程模拟研究应用了
该方法[7⁃8]。 根据已有研究结果,蓝藻水华发生主要受营养盐、温度等环境要素的共同影响[9]。 同时,鉴于
Chl⁃a与蓝藻的关系,Chl⁃a被看是蓝藻生物量的替代色素[10],本研究选取了 5 个与水华爆发密切相关的因子
作为输入层指标,包括 Chl⁃a、TN、TP、CODMn和 T(水温),将水华分为无水华、轻度水华、中度水华和重度水华
4个等级[11],其中,Chl⁃a 和 CODMn是蓝藻水华发生程度的指示因子,TN、TP 是蓝藻水华发生的主要营养盐因
素,温度(T)是蓝藻水华发生的关键性气象因素,本文所选取的网络结构是 2×3。
2.2  不同程度水华的环境因子及藻种结构时空分布
基于自组织特征神经网络对太湖水华特征的聚类分析结果,应用统计学方法,定量分析不同程度水华对
应的叶绿素 a、水温、营养盐、CODMn、浮游植物生物量和藻类种群结构的时空分布及变异特征及不同环境因子
之间的相互关系。 分析在统计学软件 SPSS支持下完成。
3  研究结果
3.1  太湖蓝藻水华程度的时空分布特征
应用自组织特征映射神经网络,对覆盖全太湖 33个监测站点 2008—2010年 4—11月份的水环境及水华
监测数据的自动聚类分析结果表明,太湖不同区域水华的发生强度明显分为 4 类:无水华、轻度水华、中度水
华和重度水华。 应用 2010年水华状况的巡测数据对聚类结果进行了检验,根据采样现场的调查记录,太湖水
华特征分为无水华、颗粒状、条状和带状,分别对应于无水华、轻度、中度和重度水华,检验结果表明,无水华、
轻度、中度和重度水华的聚类精度分布为 96.1%,78.8%,63.0%和 63.2%。
总体上,太湖水华的严重程度呈现从西北向东南递减的趋势,同 2000 年以来(2004—2008 年)太湖水华
总体空间分布特征一致(图 2—图 5) [4]。 从空间分布上看,重度水华主要发生在太湖北部和西北部等河流入
湖口区域,如梅梁湾(太湖北部)、西五里湖(太湖北)、竺山湖(太湖西北)、大浦口(太湖西北)和夹浦(太湖西
北)等,这些区域营养盐相对较高。 其中,北部(梅梁湾)和西北部(竺山湾和大浦口)的营养盐和 CODMn浓度
最高,揭示入太湖的河流水质对太湖水环境的影响很大,是太湖水污染负荷的重要来源[12⁃13];中度水华和轻
度水华发生范围类似,主要发生在太湖北部、西北部和西南部区域,东部漫山、胥湖和湖心区还未发生过水华;
在不同的监测时间点,全太湖不同监测点都有无水华状态。 总的来说,除太湖的东部和湖心区以外的大部分
湖区均有发生蓝藻水华的可能性,其中,北部和西北部区域有发生重、中、轻度水华的可能性,而西南部和东南
部有发生中度和轻度水华的可能性,这和太湖的营养盐从西北到东南递减的分布趋势一致。 另外,在重度、中
度、轻度以及无水华的监测样本中,即北部及西北部地区,其营养盐和 CODMn的含量相对最高,进一步说明太
9334  14期       张艳会  等:太湖水华程度及其生态环境因子的时空分布特征  
http: / / www.ecologica.cn
湖的外源污染对太湖水环境及水华时空分布具有很大影响[12⁃13]。
图 2  重度水华监测点及其蓝藻分布特征[4]
Fig.2   Spatial distribution of serve water bloom monitoring sites
and blue green algae amount[4]
图 3  中度水华监测点及其蓝藻分布特征[4]
Fig.3  Spatial distribution of middle water bloom monitoring sites
and blue green algae amount[4]
图 4  轻度水华监测样点及其蓝藻分布特征[4]
Fig.4  Spatial distribution of light water bloom monitoring sites and
blue green algae amount[4]
图 5  无水华监测样点及其蓝藻分布特征[4]
Fig.5  Spatial distribution of none water bloom monitoring sites and
blue green algae amount[4]
从时间分布上看,太湖西北部的重度水华集中发生在 7—10 月份,但不同监测点的重度水华出现和结束
的时间有所不同,如太湖西北部竺山湖、大浦和西部的夹浦重度水华出现的时间较早(4、5 月份),而太湖北
部,西五里湖、东五里湖和小湾里,重度水华发生的时间相对较晚(6 月份),但结束的也较晚,11 月份还有重
度水华发生;中度水华发生的时间分布比较广泛,4—11月份都有发生;轻度水华发生的时间主要集中在 4—9
月份;无水华监测到的时间覆盖 4—11月份。
3.2  不同程度水华的环境因子特征分析
不同程度水华的叶绿素 a含量、水温、TN、TP 和 CODMn等因子的分布特征及变化特征不同(表 1)。 总体
上,从无水华到重度水华各因子基本呈现递增的趋势。 但重度水华的水温较中度和轻度水华的水温明显低,
据现场考察可知重度水华大多是片状水华,其可能是跟风的聚集作用导致的结果有关,这与气象和水文条件
0434   生  态  学  报      36卷 
http: / / www.ecologica.cn
是影响太湖藻类漂移与堆积的重要因素等研究结果相一致[14⁃17]。 此外,中度水华时 TN 的含量较低,这个可
能是中度水华时 TN 消耗量达到较大有关,进一步说明,藻类生消过程中对氮磷的吸收和释放是复杂变
化的[18⁃20]。
据表 1可知,各水华等级相对应的叶绿素 a和 TP 变异系数差异较为显著,而水温、TN和 CODMn变异系数
差异相对不明显,这和太湖磷为限制性因子的研究结果一致以及叶绿素 a是蓝藻水华的表征因子的研究结果
一致[11,21],也间接表明 Chl⁃a可表征太湖蓝藻水华的程度等级。
表 1  不同程度水华生态环境变量的范围分布特征
Table 1  Range of major environmental indicators within different degrees of water bloom
水华分级
Degrees of water bloom
叶绿素 a
Chlorophylla /
(μg / L)
水温 / ℃
Temperature
总氮
TN /
(mg / L)
总磷
TP /
(mg / L)
化学需氧量
CODMn /
(mg / L)
无水华 No bloom 样本数量 Number of cases 521 521 521 521 521
平均值 Mean 14.22 22.07 2.25 0.05 3.62
标准差 Standard deviation 10.13 5.23 1.32 0.03 0.91
中间值 Median 11.10 21.70 1.95 0.04 3.51
变异系数 Coefficient of Variation 0.71 0.24 0.59 0.60 0.25
轻度水华 样本数量 Number of cases 75 75 75 75 75
Light bloom 平均值 Mean 25.53 28.20 1.87 0.08 4.52
标准差 Standard deviation 7.44 3.59 1.14 0.07 1.42
中间值 Median 26.00 29.40 1.62 0.07 4.23
变异系数 Coefficient of Variation 0.29 0.13 0.61 0.88 0.31
中度水华 样本数量 Number of cases 85 85 85 85 85
Moderate bloom 平均值 Mean 46.49 27.23 2.33 0.11 5.78
标准差 Standard deviation 15.44 4.22 1.37 0.06 1.93
中间值 Median 44.50 28.60 1.92 0.09 5.54
变异系数 Coefficient of Variation 0.33 0.15 0.59 0.55 0.33
重度水华 样本数量 Number of cases 67 67 67 67 67
Severe bloom 平均值 Mean 122.56 24.19 3.26 0.19 8.96
标准差 Standard deviation 73.58 4.84 1.80 0.13 3.25
中间值 Median 97.30 23.50 3.02 0.16 8.06
变异系数 Coefficient of Variation 0.60 0.20 0.55 0.68 0.36
    CODMn:化学需氧量 Chemical Oxygen Demand
所有监测样本(包括各种程度水华)的叶绿素 a、温度、CODMn和营养盐之间的相关关系分析结果表明,叶
绿素 a、温度、CODMn、TN、TP 和 TN / TP 之间均具有显著的相关性(表 2),叶绿素 a跟 CODMn和 TP 的相关性最
高,相关系数分别是 0.78和 0.6(n样本数 748,∗差异显著(P<0.05), ∗∗差异极显著(P<0.01))。 但不同
程度水华的各影响因子间的关系差异很大,如重度水华的叶绿素 a和 TN、TP、CODMn具有明显相关性,相关系
数分别为 0.42,0.33和 0.60,中度和轻度水华,叶绿素 a 同各变量均无显著相关性,无水华,叶绿素 a 和 TP、
CODMn呈现一定的相关性,相关系数分别是 0.38和 0.61。 结果表明,不同程度水华状态时,水体的藻类生长以
及水华的生消过程非常复杂。
3.3  不同程度水华的藻种结构的时空特征
现阶段,太湖的优势藻明显为蓝藻[22],不同程度水华状态下,蓝藻均有绝对的优势(表 3)。 其中,无水
华、轻度、中度和重度水华时蓝藻数量呈现直线上升趋势,其平均值分别为:761 万个 / L、2192 万个 / L、4074 万
个 / L、9223万个 / L,而绿藻和硅藻仅呈现微弱的上升趋势,绿藻数量依次为:152 万个 / L、138 万个 / L、221 万
个 / L、249万个 / L,硅藻数量依次为:48 万个 / L、69 万个 / L、85 万个 / L、160 万个 / L。 不同程度水华的浮游植
物生物量和藻类构成及变化范围存在显著差异(表 3),其变异系数均大于 0.5,无水华和重度水华的变异系数
1434  14期       张艳会  等:太湖水华程度及其生态环境因子的时空分布特征  
http: / / www.ecologica.cn
大于中度水华和轻度水华,浮游植物生物量和蓝藻、硅藻、绿藻的数量的变异系数大于叶绿素 a 的变异系数,
这也在一定程度上说明,用叶绿素 a表征水华的严重程度相对更为客观。 对于相同程度水华,其藻类组成和
数量分布的空间差异明显,基本上与 3.1节讨论的环境变量的空间分布相似,即太湖北部、西北和西部等有主
要入湖河流处的密度相对更高,说明藻类的生长和营养盐等环境变量密切相关[23⁃24]。
表 2  不同程度水华的的生态环境变量的相关性
Table 2  Correlations of major environmental ecological indicators forall the algal bloom with different intensity
参数 Parameters 等级 Degrees
叶绿素 a
Chlorophylla /
(μg / L)
水温 / ℃
Temperature
总氮
TN /
(mg / L)
总磷
TP /
(mg / L)
化学需氧量
CODMn /
(mg / L)
总氮总磷比
TN / TP
叶绿素 a 所有等级 1
水温 0.114∗∗ 1
总氮 0.251∗∗ -0.280∗∗ 1
总磷 0.600∗∗ -0.035 0.463∗∗ 1
CODMn 0.779∗∗ -0.010 0.383∗∗ 0.712∗∗ 1
TN / TP -0.298∗∗ -0.043 0.332∗∗ -0.438∗∗ -0.355∗∗ 1
叶绿素 a 无水华 1
水温 -0.140∗∗ 1
TN 0.043 -0.338∗∗ 1
TP 0.377∗∗ -0.375∗∗ 0.368∗∗ 1
CODMn 0.612∗∗ -0.408∗∗ 0.260∗∗ 0.608∗∗ 1
TN / TP -0.310∗∗ 0.134∗∗ 0.454∗∗ -0.463∗∗ -0.360∗∗ 1
叶绿素 a 轻度水华 1
水温 -0.130 1
TN -0.123 -0.118 1
TP -0.035 -0.151 0.718∗∗ 1
CODMn 0.088 -0.452∗∗ 0.198 0.275∗ 1
TN / TP -0.191 0.222 0.277∗ -0.331∗∗ -0.172 1
叶绿素 a 中度水华 1
水温 0.056 1
TN 0.019 -0.312∗∗ 1
TP -0.041 -0.141 0.369∗∗ 1
CODMn 0.149 -0.141 0.488∗∗ 0.404∗∗ 1
TN / TP 0.039 -0.068 0.480∗∗ -0.455∗∗ -0.032 1
叶绿素 a 重度水华 1
水温 0.093 1
TN 0.419∗∗ -0.198 1
TP 0.332∗∗ -0.110 0.691∗∗ 1
CODMn 0.600∗∗ -0.090 0.671∗∗ 0.539∗∗ 1
TN / TP 0.097 0.032 0.303∗ -0.342∗∗ 0.191 1
    ∗差异显著(P<0.05), ∗∗差异极显著(P<0.01);样本数 n= 748
表 3  不同程度水华的藻类组成特征
Table 3  Range of major algae composition within different degrees of water bloom
水华等级
Degrees
参数
Parameters
叶绿素 a
Chlorophylla /
(mg / m3)
浮游植物生物量
Phytoplankton
biomass /
(mg / L)
蓝藻数量
Number of
cyanobacteria /
(万个 / L)
绿藻数量
Number of
chlorophyta /
(万个 / L)
硅藻数量
Number of
diatom /
(万个 / L)
无水华 样本数量 521 521 521 521 521
No bloom 平均值 14.22 11.90 761 152 48
2434   生  态  学  报      36卷 
http: / / www.ecologica.cn
续表
水华等级
Degrees
参数
Parameters
叶绿素 a
Chlorophylla /
(mg / m3)
浮游植物生物量
Phytoplankton
biomass /
(mg / L)
蓝藻数量
Number of
cyanobacteria /
(万个 / L)
绿藻数量
Number of
chlorophyta /
(万个 / L)
硅藻数量
Number of
diatom /
(万个 / L)
标准差 10.13 18.51 1372 160 111
中间值 11.10 6.10 252 100 12
变异系数 0.71 1.56 1.80 1.05 2.31
轻度水华 样本数量 75 75 75 75 75
Light bloom 平均值 25.53 12.96 2192 138 69
标准差 7.44 9.17 1476 142 126
中间值 26.00 11.30 1952 90 16
变异系数 0.29 0.71 0.67 1.03 1.83
中度水华 样本数量 85 85 85 85 85
Moderate bloom 平均值 46.49 16.31 4074 221 85
标准差 15.44 16.60 2857 264 161
中间值 44.50 9.70 3646 100 20
变异系数 0.33 1.02 0.70 1.19 1.89
重度水华 样本数量 67 67 67 67 67
Severe bloom 平均值 122.56 27.77 9223 249 160
标准差 73.58 30.99 6600 345 369
中间值 97.30 12.20 7880 112 12
变异系数 0.60 1.12 0.72 1.39 2.31
    样本数量 Number of cases; 平均值 Mean; 标准差 Standard deviation;中间值 Median; 变异系数 Coefficient of Variation
为了深入揭示太湖不同程度水华的叶绿素 a、浮游植物生物量和藻类数量之间的关系,分别分析了所监
测样本的叶绿素 a、浮游植物生物量和藻类数量之间的相关性,以及不同程度水华的这些变量之间的相关性。
结果表明,所有监测样本(包括各种程度水华)的叶绿素 a、浮游植物生物量和藻类数量均具有显著的的相关
性(表 4)。 但不同程度水华时,其对应的叶绿素 a、浮游植物生物量和藻类数量之间的相关性差异很大。 重
度水华时,叶绿素 a只同蓝藻具有显著的相关性,相关系数达 0.685;中度水华时,叶绿素 a同浮游植物生物量
和蓝藻数量呈相关性,相关程度分别为 0.587和 0.616;轻度水华时,叶绿素 a 和浮游植物生物量、蓝藻和硅藻
数量呈相关性,分别为 0.403、0.346和 0.412;无水华时,叶绿素 a和浮游植物生物量、蓝藻、绿藻和硅藻数量均
呈相关性,分别为 0.121、0.446、0.401和 0.440。 这个结果说明,不同程度水华时,其对应的生态环境因子特征
差异很大,即不同程度水华发生的过程与驱动机制存在差异。
表 4  不同程度水华的叶绿素 a和藻类组成的相关性
Table 4  Correlations of chlorophylla and different algae for all thedifferent degrees of algalbloom
水华等级
Degrees
变量
Parameters
叶绿素 a
Chlorophylla
浮游植物生物量
Phytoplankton
biomass
蓝藻数量
Number of
cyanobacteria
绿藻数量
Number of
chlorophyta
硅藻数量
Number of
chlorophyta
所有等级 叶绿素 a 1
All degrees 浮游植物生物量 0.275∗∗ 1
蓝藻数量 0.821∗∗ 0.324∗∗ 1
绿藻数量 0.155∗∗ 0.034 -0.005 1
硅藻数量 0.245∗∗ 0.322∗∗ 0.100∗∗ 0.444∗∗ 1
无水华 叶绿素 a 1
No bloom 浮游植物生物量 0.121∗∗ 1
蓝藻数量 0.446∗∗ 0.273∗∗ 1
绿藻数量 0.401∗∗ 0.017 -0.079 1
3434  14期       张艳会  等:太湖水华程度及其生态环境因子的时空分布特征  
http: / / www.ecologica.cn
续表
水华等级
Degrees
变量
Parameters
叶绿素 a
Chlorophylla
浮游植物生物量
Phytoplankton
biomass
蓝藻数量
Number of
cyanobacteria
绿藻数量
Number of
chlorophyta
硅藻数量
Number of
chlorophyta
硅藻数量 0.440∗∗ 0.118∗∗ 0.036 0.368∗∗ 1
轻度水华 叶绿素 a 1
Light bloom 浮游植物生物量 0.403∗∗ 1
蓝藻数量 0.346∗∗ 0.385∗∗ 1
绿藻数量 0.193 0.148 -0.061 1
硅藻数量 0.412∗∗ 0.565∗∗ 0.244∗ 0.443∗∗ 1
中度水华 叶绿素 a 1
Moderate bloom 浮游植物生物量 0.587∗∗ 1
蓝藻数量 0.616∗∗ 0.488∗∗ 1
绿藻数量 -0.080 -0.244∗ -0.431∗∗ 1
硅藻数量 0.102 0.418∗∗ -0.027 0.118 1
重度水华 叶绿素 a 1
Severe bloom 浮游植物生物量 0.168 1
蓝藻数量 0.685∗∗ 0.177 1
绿藻数量 -0.083 0.061 -0.160 1
硅藻数量 0.064 0.513∗∗ -0.138 0.656∗∗ 1
    ∗差异显著(P<0.05), ∗∗差异极显著(P<0.01)
4  结论
针对太湖水华生消过程的复杂性和明显的时空变异特征,本文运用自组织特征映射神经网络方法,自动
聚类分析了太湖水华程度及其时空分布特征。 结果表明,太湖水华程度可分为 4 类:无水华、轻度水华、中度
水华和重度水华。 不同程度水华发生时,其对应的水环境变量、浮游植物生物量和藻类组成的时空分布特征
变异很大,同时,不同程度水华时,不同生态环境因子之间的关系也存在很大差异。 这个研究结果更加充分地
说明太湖水华生消机理的复杂性和不确定性,因此,要有效地预测、预警和防治水华,必须针对不同程度水华
和生态环境因子特征进行深入分析,即要全面地考虑水华程度及其驱动因子特征的时空变异性。
参考文献(References):
[ 1 ]  商兆堂, 任健, 秦铭荣, 夏瑛, 何浪, 陈钰文. 气候变化与太湖蓝藻暴发的关系. 生态学杂志, 2010, 29(1): 55⁃61.
[ 2 ]   黄漪平. 太湖水环境及其污染控制. 北京: 科学出版社, 2001.
[ 3 ]   秦伯强, 胡维平, 陈伟民. 太湖水环境演化过程与机理. 北京: 科学出版社, 2004.
[ 4 ]   刘聚涛, 杨永生, 高俊峰, 姜加虎. 太湖蓝藻水华分级及其时空变化. 长江流域资源与环境, 2011, 20(2): 156⁃160.
[ 5 ]   孙顺才, 黄漪平. 太湖. 北京: 海洋出版社, 1993.
[ 6 ]   朱大奇, 史慧. 人工神经网络原理及应用. 北京: 科学出版社, 2006.
[ 7 ]   Chon T S. Self⁃Organizing maps applied to ecological sciences. Ecological Informatics, 2011, 6(1): 50⁃61.
[ 8 ]   KaltehA M, Hjorth P, Berndtsson R. Review of the self⁃organizing map ( SOM) approach in water 4 resources: Analysis, modelling and
application. Environmental Modelling & Software, 2008, 23(7): 835⁃845.
[ 9 ]   马健荣, 邓建明, 秦伯强, 龙胜兴. 湖泊蓝藻水华发生机理研究进展. 生态学报, 2013, 33(10): 3020⁃3030.
[10]   马荣华, 孔维娟, 段洪涛, 张寿选. 基于 MODIS 影像估测太湖蓝藻暴发期藻蓝素含量. 中国环境科学, 2009, 29(3): 254⁃260.
[11]   Chen Q W, Han R, Li W F, Zhang Y H. Analysis of algal bloom risk with uncertainties in lakes by integrating self⁃organizing map and fuzzy
information theory. Science of the Total Environment, 2014, 482⁃483: 318⁃324.
[12]   朱广伟. 太湖水质的时空分异特征及其与水华的关系. 长江流域资源与环境, 2009, 18(5): 439⁃445.
[13]   张晓晴, 陈求稳. 太湖水质时空特性及其与蓝藻水华的关系. 湖泊科学, 2011, 23(3): 339⁃347.
[14]   徐恒省, 翁建中, 李继影, 王亚超. 太湖蓝藻水华预警监测与风速风向的关系研究. 环境监控与预警, 2009, 1(2): 5⁃7.
4434   生  态  学  报      36卷 
http: / / www.ecologica.cn
[15]  高龙华, 谢龙. 太湖蓝藻暴发的气象条件影响及其治理措施. 中国资源综合利用, 2011, 29(9): 35⁃38.
[16]   吴挺峰, 朱广伟, 秦伯强, 丁艳青, 吴善锋. 前期风场控制的太湖北部湖湾水动力及对蓝藻水华影响. 湖泊科学, 2012, 24(3): 409⁃415.
[17]   陈黎明, 王成林, 李噙来. 特殊风场条件对太湖蓝藻水华迁移的影响研究. 环境监测管理与技术, 2012, 24(3): 29⁃34.
[18]   崔莉凤, 游亮, 黄振芳, 刘载文. 北京城区水华发生氮磷比变化趋势及原因分析. 环境科学与技术, 2007, 30(10): 47⁃49.
[19]   丰茂武, 吴云海, 冯仕训, 吴云影. 不同氮磷比对藻类生长的影响. 生态环境, 2008, 17(5): 1759⁃1763.
[20]   韩志萍, 邵朝纲, 张易祥, 杨志红, 吴湘, 唐铭, 叶金云. 南太湖入湖口蓝藻生物量与氮营养因子的年变化特征以及相关性研究. 水产学
报, 2012, 36(6): 922⁃929.
[21]   高光, 秦伯强, 朱广伟, 范成新, 季江. 太湖梅梁湾中碱性磷酸酶的活性及其与藻类生长的关系. 湖泊科学, 2004, 16(3): 245⁃251.
[22]   钱奎梅, 陈宇炜, 宋晓兰. 太湖浮游植物优势种长期演化与富营养化进程的关系. 生态科学, 2008, 27(2): 65⁃70.
[23]   顾苏莉, 陈方, 孙将陵. 太湖蓝藻监测及暴发情况分析. 水资源保护, 2011, 27(3): 28⁃32.
[24]   谭啸, 孔繁翔, 曾庆飞, 钱善勤, 张民. 太湖中微囊藻群落的季节变化分析. 生态与农村环境学报, 2009, 25(1): 47⁃52.
5434  14期       张艳会  等:太湖水华程度及其生态环境因子的时空分布特征