全 文 :第 35 卷第 19 期
2015年 10月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.19
Oct.,2015
http: / / www.ecologica.cn
基金项目:中国科学院生态环境研究中心“一三五冶项目(YSW2013B02鄄4); 中国科学院生态环境研究中心城市与区域生态国家重点实验室自主
项目(SKLURE2013鄄1鄄05); 海河流域水资源调蓄区水质保障及生态修复关键技术研究与示范(2014ZX07203010)
收稿日期:2014鄄03鄄02; 摇 摇 网络出版日期:2014鄄12鄄04
*通讯作者 Corresponding author.E鄄mail: xyli@ rcees.ac.cn
DOI: 10.5846 / stxb201403020357
王晓学, 沈会涛, 周玥, 景峰, 李叙勇, 陈国鹏.半干旱地区不同森林类型土壤水分动态模拟.生态学报,2015,35(19):6344鄄6354.
Wang X X, Shen H T, Zhou Y, Jing F, Li X Y, Chen G P.Modeling soil moisture dynamics in different forest types in semiarid areas.Acta Ecologica
Sinica,2015,35(19):6344鄄6354.
半干旱地区不同森林类型土壤水分动态模拟
王晓学1,2, 沈会涛3, 周摇 玥4, 景摇 峰5, 李叙勇1,*, 陈国鹏6
1 中国科学院生态环境研究中心城市与区域国家重点实验室, 北京摇 100085
2 中国科学院大学研究生院, 北京摇 100049
3 中国科学院遗传与发育生物学研究所农业资源研究中心, 石家庄摇 050021
4 北京林业大学水土保持学院, 北京摇 100083
5 中国国际工程咨询公司, 北京摇 100048
6 甘肃省白龙江林业管理局林业科学研究所, 武都摇 746010
摘要:采用暖温带落叶阔叶次生林、油松人工林和华北落叶松人工林样地土壤水分的生长季内观测数据和其他辅助观测数据,
检验了 Georgakakos等提出的土壤水分模型在半干旱林地的适用性。 结果表明,该模型用于模拟半干旱林地日尺度土壤水分动
态具有一定的可信度,且能够较好的反映不同森林类型的水文效应。 模型参数的敏感性分析表明,不同目标函数的参数敏感度
信息反映了该模型“异参同效冶现象不显著,模型结构不确定性也较小。 各参数的敏感度结果揭示了各参数在降雨入渗、深层
渗漏和蒸散部分中的控制作用。 从模型模拟的土壤水分变化通量来看,油松人工林地实际年蒸散发量大于其他林地,落叶阔叶
林地年入渗量大于其他林地,而 3种森林类型林地深层渗漏所占生长季降雨量的比例都较小。 研究半干旱地区多年生人工林
土壤水分的情况,不仅有助于从根本上认清半干旱地区土壤鄄大气鄄植被连续体的复杂作用关系,也为半干旱地区树种选择及造
林后的生态水文效应研究提供理论依据。
关键词:土壤水分模型; 蒸散发; 水量平衡; 林下土壤含水量; 半干旱
Modeling soil moisture dynamics in different forest types in semiarid areas
WANG Xiaoxue1,2, SHEN Huitao3, ZHOU Yue4, JING Feng5, LI Xuyong1,*, CHEN Guopeng6
1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco鄄Environmental Sciences, Chinese Academy of Sciences, Beijing
100085, China
2 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
3 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Shijiazhuang 050021, China
4 School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
5 China International Engineering Consulting Corporation, Beijing 100048, China
6 Institute of Forestry Sciences, Bailongjiang Forestry Management Bureau of Gansu Province, Wudu 746010, China
Abstract: Soil moisture is widely recognized as an important variable in studies related to ecology, meteorology, hydrology,
agriculture and climate change. From a hydrological viewpoint, soil moisture content controls the partitioning of rainfall into
runoff and infiltration, thereby affecting the runoff response in catchment areas. In recent decades, the role of soil moisture
in a number of hydrological processes has been extensively studied on slope or catchment areas and has received increasing
attention from the hydrological community. However, soil moisture is one of the most difficult variables to estimate because
http: / / www.ecologica.cn
of factors such as vegetation, soil and topography. Accurate estimation of spatial and temporal variation in soil moisture is
therefore required to improve both the predictive capabilities of runoff models as well as to validate representations of
hydrological processes. Datasets of observed in situ moisture measurements are crucial. Unfortunately, measured soil
moisture time series are not widely available and therefore simulated soil moisture series are used. We apply and test a
simple parametric water balance model to simulating soil moisture conditions in different forest types ( natural secondary
forest, evergreen needleleaf and deciduous / coniferous plantation forest) in semiarid regions of southwestern Beijing, China.
Model calibration and validation were performed using a dataset comprising averaged soil moisture content measured at
depths of 0—75 cm in the growing seasons of 2006, 2007, and 2010. The models performed reasonably well in simulating
the patterns and magnitudes of daily average soil moisture content in the upper 75 cm soil layer in all three forest types.
Using different parameters in the model did not significantly alter the results and the model structure exhibited a relatively
small amount of uncertainty. Sensitivity analysis revealed that four parameters (Wmax(the maximum water capacity of the soil
layer), m ( a parameter linked to the non鄄linearity of the infiltration process ), Ks ( the field鄄saturated hydraulic
conductivity), 姿 (the pore size distribution index linked to the structure of soil layers)) played important roles in rainfall
infiltration, deep percolation and evaporative processes. In addition, differences in soil moisture flux among forest types
suggested that both annual evapotranspiration in deciduous / coniferous forest plantations and infiltration in deciduous broad鄄
leaved forest were greater than those in other forestlands; in addition, deep percolation in all three forestlands was low. We
demonstrate that a simple, robust, parametric model is capable of simulating the temporal dynamics of soil moisture content
in different forest types. The study of soil moisture in forest plantations in semiarid regions helps researchers clearly
recognize the fundamental role of the soil鄄atmosphere鄄vegetation continuum. In addition, it provides a theoretical basis for
selecting forest plantation species. It also aids the selection and design of studies that analyze the ecohydrological effects of
plantations in semiarid regions. Moreover, due to its simple structure and good performance the proposed model may be
incorporated in continuous鄄time rainfall runoff models. Similar thorough investigations should also be conducted in other
basins.
Key Words: soil moisture model; evapotranspiration; water balance; forest soil moisture; semiarid area
土壤水分是研究环境、气象、水文、农业和气候变化科学的关键要素。 就森林生态系统而言,土壤水分动
态影响林地径流产生、蒸散过程等水分循环过程[1],同时土壤水也是森林生态系统物质循环的载体,对土壤
中养分和能量的分配格局起着重要的调节作用[2]。 近年来,关于土壤水分影响生态水文过程的研究已有大
量报道,但土壤水分仍然是其中最难估计的变量之一,主要是因为其与植被、土壤和地形的复杂作用关系[3]。
准确估算土壤水分状况对于再现水文过程,提高水文模型的预报精度具有重要意义。 获取土壤水分长期变化
的实测数据要投入的大量人力物力,且土壤水分时空演变的复杂性加大了监测难度,而模型模拟是获取长时
间序列土壤水分动态的重要手段。
目前,国内外学者根据不同假设提出的有关土壤水分动态模型,包括指数消退模型[4]、人工神经网络模
型[5]、水量平衡模型[3,6鄄7]、水热耦合传输模型等[8]。 但是,这类研究大多集中在农田方面[1],有关林地土壤水
分运动的研究相对较少。 赵玉娟等利用 EPIC(Erosion鄄productivity Impact Calculator)模型定量模拟研究了延
安油松人工林 45a来逐日的 10 m土层土壤有效含水量的动态变化,发现随着油松人工林生长年限的延长和
根系扎深,林下土壤干层逐年加深,并认为延安油松人工林地水分持续利用的最大年限为 15a 左右[9]。 张岩
等采用 SWUF(Soil Water Under Forest)模型模拟 3种林地(刺槐人工林、油松人工林、天然次生林)土壤水分
动态发现,该模型适合模拟油松人工林和天然次生林的不同深度土壤水分的日变化趋势,但模拟耗水量较大
的刺槐林还需做改进[10]。 上述研究中所采用的模型结构都较为复杂,输入变量和需要率定参数较多,在观测
数据相对有限时较难获得推广和应用。 因此,有学者尝试通过建立简化的物理过程模型来模拟土壤水分动
5436摇 19期 摇 摇 摇 王晓学摇 等:半干旱地区不同森林类型土壤水分动态模拟 摇
http: / / www.ecologica.cn
态[7,11],如 SWAT(Soil and Water Assessment Tool)、HSPF(Hydrological Simulation Program鄄FORTRAN)、GWLF
(Generalized Watershed Loading Function)等都是基于水量平衡法模拟土壤水分动态变化,但上述模型都将土
壤水分变化视为中间过程变量,独立输出土壤水分动态变化较为困难,另外也未对土壤水分变量做校正。
Georgakakos等通过多年实地观测数据提出了湿润地区月尺度的土壤水分概念模型,并用 40a 的月观测数据
模拟自然流域土壤水分动态,结果表明其模拟精度明显优于利用遥感手段反演的土壤含水量[7]。 Brocca等进
一步发展该模型,建立了适合湿润地区林地占主导类型的流域土壤水分动态模型[6]。 Venkatesh 等采用该模
型研究半湿润地区天然林和退化林 150 cm深度土壤水分每周的变化情况,发现其具有较高的可信度[3]。 然
而,针对干旱半干旱地区多年造林区林内土壤水分的模拟研究相对较少,这些地区大规模的植树造林可能会
引起土壤干层[12]、下游生态环境以及区域水文循环的变化[13],因此这些地区林下土壤水分变化一直是研究
热点[14鄄15]。
本研究采用 Georgakakos等的土壤水分模型思想[7],基于样地观测数据率定不同林源下(人工林和次生
林)森林类型的土壤水分模型参数,模拟半干旱山区的典型森林类型(暖温带次生阔叶混交林、油松人工林和
华北落叶松人工林)土壤水分的日尺度变化特征。 研究半干旱地区多年生人工林土壤水分的情况,不仅有助
于从根本上认清半干旱地区土壤鄄大气鄄植被连续体的复杂作用关系,也为半干旱地区树种选择及造林后的生
态水文效应研究提供理论依据。
1摇 研究区概况和数据收集
1.1摇 研究区概况
研究区位于北京东灵山地区的中国科学院北京森林生态系统定位站(40毅00忆—40毅03忆N,115毅26忆—115毅
30忆E)(图 1)。 该区地处暖温带大陆性季风气候区,1993—2010年平均降水量为 554 mm,其中 6—8月降雨量
占全年降雨量的 74%;多年平均气温 5 益,最热的 7月平均气温为 18—25 益,最冷的 1 月平均气温为-4—10
益。 该地区的主要土壤类型有褐土、棕壤、亚高山草甸土等。 该区森林类型主要由人工林(落叶松林和油松
林)和次生林(落叶阔叶混交林)组成。 暖温带落叶阔叶混交林为该区地带性植被,在历经砍伐和人工造林
后,现有植被群落主要为典型的暖温带落叶阔叶次生林(主要森林类型有辽东栎(Quercus liaotungensis)、大叶
白蜡(Fraxinus rhynchophylla)、五角枫(Acer elegantulum)、糠椴(Tilia mandschurica)、黑桦(Betula dahurica)
等)、人工针叶林(主要是油松(Pinus tabulaeformis)纯林和华北落叶松(Larix principis-rupprechtii)纯林,种植于
20世纪 60年代初期)、针阔混交林和退化灌丛等[16]。 落叶阔叶林和华北落叶松林两种落叶森林群落的叶面
积指数均随生长季的到来而呈现增长的趋势,到 11月达到最小值。 油松是常绿树种,其群落叶面积指数变化
程度不很明显[17]。 这样不同森林起源(人工林和次生林)、不同冠层结构(针叶林和阔叶林、常绿林和落叶
林)为研究半干旱地区森林生态系统生态水文功能的提供理想样地。
1.2摇 观测样地
在 3种主要森林类型林地上选择具有相同扰动历史和树种群落结构的坡面建立永久观测样地,同时开展
其生态水文过程的长期监测。 自动气象站位于华北松人工林样地旁的开阔地带(图 1b)。 样地特征见表 1。
1.3摇 土壤水分采样及其他辅助数据
在每个样地内在坡上位、中位、下位分别安装 3个中子管,共 9 根(位置示意见图 1c)。 从每年 4 月底开
始至 10月底结束,每隔 5—20 d用中子仪监测一次土壤水分,在主要雨季加密监测次数,观测土壤水分的剖
面深度为 75 cm。 此外,采用烘干法测定与中子管对应位置的土壤含水量。 土壤水分观测以及气象观测从
2003年生长季开始,由于观测仪器故障等问题,造成部分数据缺失。 为保证年度土壤水分监测数据典型性及
便于模型模拟,本研究主要采用 2006、2007和 2010 年生长季土壤含水量实测数据。 主要用到气象数据包括
日降水量、温度、湿度、风速和太阳辐射等气象因子。 本研究采用的其他数据,如日蒸散发、土壤有机质等数据
都来源于《中国生态系统定位观测与研究数据集鄄森林生态系统卷鄄北京站(2000—2006)》 [17]。
6436 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
图 1摇 研究区概况: 研究区所在位置 (a);研究区的地形特征及森林观测样地所在位置 (b);油松人工林观测样地及土壤水分中子管位置,
其他样地中子管位置类似 (c)
Fig.1摇 Location of study area (a), topography of study site (b), and Pinus plantation observation field showing locations of surface runoff
monitoring plots and soil moisture probe, and the layout of monitoring devices in other forest types was simailar to this field (c)
表 1摇 各森林样地特征
Table 1摇 Summary of experimental forest plot characteristics
环境变量
Environmental variables
华北落叶松人工林
Planted Larix
principis鄄rupprechtii Mayr
落叶阔叶混交林
Warm鄄temperate mixed
deciduous broadleaved
油松人工林
Planted Pinus tabulaeformis
地形 Topography 摇 摇 摇
坡度 Slope / (毅) 39 36 29
坡向 Aspect 西南 西北 东南
坡位 Slope position 中 中下 下
土壤特征 Soil characteristicsa
砂粒 2—0.05 mm Sand / % (38.0依9.1) b (32.0依9.9) (46.9依6.0)
粉粒 0.05—0.002 mm Silt (41.7依7.5) (45.2依8.2) (37.3依6.0)
粘粒<0.002 mm Clay / % (20.2依5.3) (23.0依4.7) (15.8依2.6)
土壤类型 Textual class 棕壤 棕壤 棕壤
容重 Bulk density / (mg / m3) (0.86依0.15) (0.91依0.13) (1.15依0.13)
7436摇 19期 摇 摇 摇 王晓学摇 等:半干旱地区不同森林类型土壤水分动态模拟 摇
http: / / www.ecologica.cn
续表
环境变量
Environmental variables
华北落叶松人工林
Planted Larix
principis鄄rupprechtii Mayr
落叶阔叶混交林
Warm鄄temperate mixed
deciduous broadleaved
油松人工林
Planted Pinus tabulaeformis
孔隙度 Porosity / % (53.82依4.13) (56.33依2.92) (47.18依3.85)
植被 Vegetation
林下盖度 Understory layers cover / % 80 70 80
郁闭度 Canopy density 0.3 0.5 0.4
胸径 Diameter at breast height (DBH) / cm (10.6依1.6) (7.8依0.9) (10.9依1.1)
平均树高 Mean tree height / m (13.0依1.3) (9.6依1.7) (16.0依2.1)
枯落物现存量 Litter stcok / (g / m2) (760.0依487) (1190.0依805) (1116.0依900)
林分密度 Tree density / hm-2 c 3294 2333 1333
摇 摇 a: 0—75 cm深度土壤性质的平均值; b: 标准差; c: 所有乔木胸径>1 cm的乔木个体数
2摇 模型结构和参数率定
图 2摇 根系层土壤水分动态概化图[17]
Fig.2摇 The root zone as a lumped hydrological system[17]
2.1摇 模型理论
本研究采用 Georgakakos等提出的基于水量平衡的
土壤水分动态计算模型。 其基本假设为:以地表层至深
度 L处的土壤剖面为研究对象,其水分收支状态受降雨
入渗、深层渗漏和蒸散发控制(图 2) [7]。 不考虑土壤属
性的空间异质性。 本研究的土壤水分模拟深度定为
75 cm。
W( t) = W( t -1) + INF( t) - EVP( t) - PER( t) 伊 W( t),
且 W( t) < Wmax (1)
式中,W( t)是 t时刻土壤含水量(mm);W( t-1)是上一时刻
的土壤含水量(mm);INF( t)是降雨入渗量(mm);EVP( t)
是实际蒸发量(mm);PER( t)是土壤深层渗漏率(mm);
Wmax是 L深度土壤的最大含水量(mm)。
入渗过程用下面的公式估算[3]:
INF( t) = P( t) 伊 (1 -
W( t)
Wmax
)
m
(2)
式中,P( t)是 t时刻的降雨量(mm);m是关于水分入渗非线性过程的参数,m 值越大,表明入渗过程的非线性
特征越明显。
PER( t) = Ks 伊 (
W( t)
Wmax
)
(3+ 2姿 )
(3)
式中,姿是与土壤层结构相关的孔隙度大小分布指数[18];Ks是田间饱和导水率。
EVP( t) = Ep( t) 伊
W( t)
Wmax
,EVP( t) < Ep( t) (4)
式中,EP( t)是潜在蒸散发(mm / d),其计算公式采用李艳等修正的 Penman鄄Monteith公式[19]:
EP( t) =
驻
驻 + 酌
伊 (Rn - G) + 4.3
酌
驻 + 酌
伊 (1 + 0.6U2) 伊 (es - ea)
姿
(5)
式中,Rn是净辐射(MJ m
-2 d-1);G 土壤热通量(MJ m-2 d-1),在日时间步长上可以忽略;u2为 2 m 高处风速
8436 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
(m / s);es是饱和水汽压(kPa),ea是实际水汽压(kPa),es -ea是饱和水汽压差(kPa);驻 是水汽压曲线斜率
(kPa / 益);酌是干湿表常数(kPa / 益)。
2.2摇 模型参数率定及验证
模型待估参数包括 Wmax、Ks、姿 和 m。 其中,Wmax取值范围分别为 370—450 mm;Ks 取值范围参考了桑卫
国等关于相同研究样地上 0—60 cm土壤饱和含水量值,取值范围为 3—16[17];姿的取值范围为 0.3—20;m的
取值范围为 0—1。 初始土壤含水量在很大程度上影响模型结果,而不同年份生长季土壤初始含水量差异显
著,本研究将年度第一次土壤水分观测数据作为模拟的初始含水量。 以 2006、2007 年生长季土壤含水量的观
测值进行参数率定,并用 2010 年生长季土壤含水量的观测值来进行模型验证。 采用粒子群算法优化各模型
参数,采用多目标函数优化算法[20]。 目标函数为 1-R2、RMSE 和 1-d,见公式 6—8。 其中 RMSE 根据 3 种森
林类型模拟的 RMSE的最大值分别做归一化处理[20],保证每个目标函数的取值范围都介于 0—1之间,每个
目标函数的权重为 0.33。 程序共运行 10000次。 主要用到的 R语言包有 hydroGOF包[21](用于评估观测变量
和模拟变量的各种水文拟合优度指数),pso包[22](用于模型参数率定的粒子群算法实现)。
R2 =
移Ni = 1(P i - 軈P)(Oi - 軍O)
移Ni = 1 (P i - 軈P) 2移
N
i = 1
(Oi - 軍O) 2
(6)
RMSE = 1
N移
N
i = 1
(Oi - P i) 2 (7)
d = 1 -
移Ni = 1 (Oi - P i) 2
移Ni = 1 ( | P i - 軍O | +| Oi - 軍O | ) 2
(8)
式中,O和 P分别是时间步长上的观测值和模拟值,N是模拟次数。
2.3摇 模型参数敏感性分析
利用 Sobol法对模型参数进行全局敏感性分析。 Sobol法的核心是把模型分解为单个参数和参数之间相
互组合的函数,关于该方法的理论介绍见[23鄄25]。 以确定性系数(EC) 和一致性系数(d)为目标函数,计算模
型参数的一阶敏感度和总敏感度。 首先应用 Montecarlo抽样法对参数空间采样,然后评价模型参数对输出结
果的影响。 主要使用 R语言的 sensitivity包完成[26],其基于 Jansen[27]和 Saltelli等[28]对空间采样公式的改进,
运行模型 n(p+2)次,其中 n 是 Montecarlo 样本数,p 是模型参数个数。 本文中 n = 10000,p = 4。 对于 Sobol 指
数大于 0.1为高敏感;小于 0.01为不敏感;在 0.01和 0.1之间为敏感。
3摇 结果与讨论
3.1摇 模拟结果及参数率定
3种森林类型的土壤含水量模拟效果总体都是 R2> 0.7,RMSE < 29.57 且 d > 0.6,表明该模型能够较好
的模拟日尺度的土壤水分收支过程(表 2)。 Henninger等研究发现,表层土壤水分与降雨息息相关,二者表现
出相似的季节动态趋势[29]。 降水作为干旱半干旱地区土壤水分的唯一来源,必然对土壤含水量变化起着重
要作用。 在我国西北地区祁连山林地[18]、黄土高原[30]等半干旱区林地也都发现林下土壤含水量较多的受到
降雨脉冲事件的影响,这与本研究结果一致(图 3)。
表 2摇 不同森林类型林下土壤含水量的拟合优度对比
Table 2摇 Model performance statistics in different forest type
森林类型 Forest type RMSE R2 d
暖温带落叶阔叶林 warm鄄temperate mixed deciduous broadleaved 20.61 0.72 0.76
华北松人工林 planted Larix principis鄄rupprechtii Mayr 29.57 0.71 0.83
油松人工林 planted Pinus tabulaeformis 22.06 0.73 0.78
9436摇 19期 摇 摇 摇 王晓学摇 等:半干旱地区不同森林类型土壤水分动态模拟 摇
http: / / www.ecologica.cn
图 3摇 2006、2007和 2010年生长季不同森林类型土壤水分观测值与模型模拟值对比情况
Fig.3摇 Observed and simulated soil moisture under different forest type
摇 摇 相同模型结构的不同参数组效果表明,该模型能够反应不同森林类型的水文效应(表 3),而且这些参数
值具有明确的物理意义[3]。 对不同森林类型土壤水分入渗过程的研究发现,一般初渗速率和稳渗速率均表
现为阔叶林> 针叶林[31鄄32]。 不同森林植被群落土壤水分入渗速率随时间的增加而递减,但这种入渗速率的递
减差异不尽相同,这与土壤中有机碳含量有密切关系[30]。 3 个样地的 0—20 cm 土壤有机质的测定发现[17]:
落叶阔叶混交林(37.2 g / kg) > 华北松(28.96 g / kg)> 油松林(18.91 g / kg)。 同样,姿取值是次生林大于人工
林(表 3)。 控制下渗的参数 Ks在次生落叶阔叶林、华北落叶松人工林中和油松人工林下取值分别为 14.66、
11.63、9.92 mm / h。 不同林地入渗差异的主要原因是造林后,林下堆积一定厚度的枯落物,给表层土壤提供了
大量的有机质来源,而有机质在一定的土壤环境中通过理化作用分解转化进而改善土壤结构[31,33]。 本研究
Ks值范围在 9.92—14.66 mm / h,这与马履一等[34]在京西山地的棕壤和淋溶褐土研究结果相一致。 魏玲娜等
对 40多年的油茶林和马尾松林下饱和土壤导水率的测定发现该值分别为 15.12、9.96 mm / h[35],与本研究中
人工林下模拟的土壤导水率值相当。 这些都表明该模型参数具有一定的物理意义,能够捕捉不同森林类型的
生态水文效应。
3.2摇 参数敏感性分析
模型参数的全局敏感性分析见图 4。 可以看出,不管选择哪种目标函数进行分析,m 和 姿 总为高敏感度
参数,而 m的敏感度较高,两个目标函数得到的敏感度结果都超过 0.5以上;Ks 和 Wmax为敏感参数,其总敏感
度值均稍大于临界值 0. 01。 从总敏感度、一阶敏感度及其误差棒反映出 m和 Wmax存在交互敏感度,表明这两
0536 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
个参数间有一定关联性;Wmax的交互敏感度较小,与其他 3 个参数的关联性弱,表明该模型的“异参同效冶、模
型结构不确定性也较小。 各参数的敏感度结果揭示了参数在降雨入渗、深层渗漏和蒸散部分中的控制作用。
表 3摇 不同森林类型的最优参数
Table 3摇 Optimized parameters of the model
森林类型
Forest type
Wmax /
mm
m Ks /(mm / h) 姿
生长季初始土壤含水 / mm
The initial soil water content in growing season
2006 2007 2010
暖温带落叶阔叶混交次生林
Warm鄄temperate mixed
deciduous broadleaved
420 7.28 14.66 0.78 72 95 175
华北落叶松人工林
Planted Larix principis鄄rupprechtii Mayr 405 6.29 11.63 0.31 67 87 145
油松人工林
Planted Pinus tabulaeformis 378 6.82 9.92 0.6 45 69 87
图 4摇 模型参数的敏感性分析
Fig.4摇 Sensitivity analysis of the model parameters (the objective function d, and the objective function R2)
圆圈表示参数的一阶敏感度,三角形表示参数的总敏感度
不同目标函数进行参数敏感度的分析结果表明,两个目标函数对 m、Ks 和 Wmax的分析结果基本一致,而
对 姿的敏感度结论有差异。 其原因主要是由于:就目标函数 R2来讲,只考虑了日土壤含水量为控制条件,而
目标函数 d既考虑了日土壤含水量的误差,也考虑了对日含水量变化过程的拟合,这与孟碟等[25]选择多个目
标函数做水文模型敏感性分析比较的结论类似。
1536摇 19期 摇 摇 摇 王晓学摇 等:半干旱地区不同森林类型土壤水分动态模拟 摇
http: / / www.ecologica.cn
3.3摇 3种森林类型林下土壤水分通量估算
在 3种森林植被中,蒸散发是土壤水分支出的最主要形式,而入渗是土壤水分收入的主要形式,深层渗漏
量占到降雨量的比例较少,详见表 4。
入渗是土壤水分收入的一个重要方面。 暖温带落叶阔叶混交次生林的土壤水分收入大于针叶林地,可能
原因是:1)森林起源差异造就的林下土壤吸持水特征的差异。 就土壤孔隙度而言(表 1),暖温带落叶林(次
生林)明显优于从人工林;2)森林类型差异导致的土壤结构差异。 就枯落物的分解速率而言,研究地落叶阔
叶树种多样,枯落物的混合分解能加快分解速率,而华北松林和油松林都是人工纯林,且针叶林下枯落物本身
分解较为迟缓。 因此对土壤结构的改善就较为缓慢[36];3)地表滞流时间的差异。 针叶树种枯落物形状大部
分为细长针状或柱状,而阔叶树种枯落物则多为大小不等的片状或由叶片卷曲而成的完全筒状和不完全筒
状,因此阔叶树种枯落物比针叶树种枯落物对地表径流的摩擦阻力要大[37],增加降雨在地表的滞留时间,从
而延长了水分渗入土壤时间。
在模拟期内,油松人工林地实际蒸散发大于华北落叶松人工林和暖温带落叶阔叶混交次生林,约占生长
季内总降雨量的 43%—71%。 从表 4可以看出,3a 生长季的油松林入渗量小而蒸发量大,其主要可能原因,
如前文所述油松林对土壤理化性质改善作用有限,加上棕壤本身的导水率相对较低[38],导致了油松林地入渗
量相对较小。 在研究区主要降雨季节 6—8月,林地蒸散作用同样十分强烈,各样地平均日蒸散量为油松人工
林(1.04—5.55 mm)> 次生阔叶混交林(0.64—5.16 mm)> 华北落叶松人工林(0.75—5.08 mm) [17],入渗的水
分将很快被消耗掉,甚至会出现“入不敷出冶的现象,这与陈洪松等对黄土高原半干旱地区林地土壤水分循环
特征研究结论相一致[30]。
蒸发蒸腾作用层深度是影响土壤水分循环强度的主要因子,降雨只有超过蒸发蒸腾作用层深度才能形成
深层渗漏,否则降雨转化成土壤水后,不参与地下水循环,而是直接通过蒸发蒸腾作用重新返回大气层中,无
法发挥补充调节深层土壤水分[39]。 由表 4可知,年降雨量多的年份深层渗漏也相对较高些,3 种森林类型深
层渗漏所占生长季降雨量的比例都较小,仅占到生长季年降雨量的 2.7%—5.7%。 需要说明的是由于本研究
研究的土壤剖面深度为 75 cm,其可能远低于土壤的深层渗漏深度,甚至还没达到林地蒸发蒸腾作用层的完
整深度,如陈洪松等人的研究发现,荒草地和裸地蒸发蒸腾作用层深度分别为 200 cm和 180 cm[30],但依然可
以从模拟结果中理解半干旱地区人工林地和次生林地土壤水分循环通量情况。
表 4摇 模拟期生长季 3种典型森林类型的水分通量
Table 4摇 Simulated water balance component for three forest type
模拟期
Simulation period
森林类型
Forest type
降雨量 / mm
Rainfal
入渗量 / mm
Infiltration
实际蒸散发 / mm
Actual evaporation
深层渗漏 / mm
Deep percolation
2006 暖温带落叶阔叶混交次生林 506 233 255 29
华北落叶松人工林 231 276 34
油松人工林 197 297 24
2007 暖温带落叶阔叶混交次生林 437 212 210 12
华北落叶松人工林 197 260 15
油松人工林 184 312 13
2010 暖温带落叶阔叶混交次生林 500 269 184 14
华北落叶松人工林 263 200 21
油松人工林 248 218 16
4摇 结论
本文提出的模型结构简单,仅有 4个参数,用于模拟半干旱林地日尺度土壤水分动态具有一定的可信度,
且能够较好的反映不同森林类型的水文效应。 不同目标函数给出的敏感度信息反映了模型“异参同效冶较
2536 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
小,模型结构不确定性也较小。 m和 姿总为高敏感度参数,Ks和 Wmax为敏感参数。 各参数的敏感度结果揭示
了各参数在降雨入渗、深层渗漏和蒸散部分中的控制作用。 从模型模拟的土壤水分变化通量来看,油松人工
林地实际年蒸散发量大于其他林地,落叶阔叶林地年入渗量大于针叶林地,而 3 种森林类型林地深层渗漏所
占生长季降雨量的比例都较少。
参考文献(References):
[ 1 ]摇 王力, 邵明安, 王全九. 林地土壤水分运动研究述评. 林业科学, 2005, 41(2): 147鄄153.
[ 2 ] 摇 刘效东, 乔玉娜, 周国逸. 土壤有机质对土壤水分保持及其有效性的控制作用. 植物生态学报, 2011, 35(12): 1209鄄1218.
[ 3 ] 摇 Venkatesh B, Nandagiri L, Purandara B K, Reddy V B. Modelling soil moisture under different land covers in a sub鄄humid environment of Western
Ghats, India. Journal of Earth System Science, 2011, 120(3): 387鄄398.
[ 4 ] 摇 马孝义, 王君勤, 李志军. 基于土壤消退指数的田间土壤水分预报方法的研究. 水土保持研究, 2002, 9(2): 93鄄96.
[ 5 ] 摇 宰松梅, 郭冬冬, 韩启彪, 温季. 基于人工神经网络理论的土壤水分预测研究. 中国农学通报, 2011, 27(8): 280鄄283.
[ 6 ] 摇 Brocca L, Melone F, Moramarco T. On the estimation of antecedent wetness conditions in rainfall鄄runoff modelling. Hydrological Processes, 2008,
22(5): 629鄄642.
[ 7 ] 摇 Georgakakos K P, Baumer O W. Measurement and utilization of on鄄site soil moisture data. Journal of Hydrology, 1996, 184(1 / 2): 131鄄152.
[ 8 ] 摇 胡国杰, 赵林, 李韧,吴通华,肖瑶,焦克勤,乔永平,焦永亮. 基于 COUPMODEL模型的冻融土壤水热耦合模拟研究. 地理科学, 2013,
33(3): 356鄄362.
[ 9 ] 摇 赵玉娟,李军,王学春,李小芳,邵明安. 延安油松人工林地水分生产力与土壤干燥化效应模拟研究. 西北农林科技大学学报: 自然科学
版, 2007, 35(7): 61鄄68.
[10] 摇 张岩, 朱岩, 张建军, 卢路. 林地土壤水分模型 SWUF在晋西黄土高原的适用性. 林业科学, 2012, 48(5): 8鄄14.
[11] 摇 林耀明. 黄淮海地区土壤水分动态模拟模型. 自然资源学报, 1997, 12(1): 72鄄77.
[12] 摇 李军, 王学春, 邵明安, 赵玉娟, 李小芳. 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟. 植物生态学报,
2010, 34(3): 330鄄339.
[13] 摇 王晓学, 沈会涛, 李叙勇, 景峰. 森林水源涵养功能的多尺度内涵、过程及计量方法. 生态学报, 2013, 33(4): 1019鄄1030.
[14] 摇 赵文智, 程国栋. 干旱区生态水文过程研究若干问题评述. 科学通报, 2001, 46(22): 1851鄄1857.
[15] 摇 何其华, 何永华, 包维楷. 干旱半干旱区山地土壤水分动态变化. 山地学报, 2003, 21(2): 149鄄156.
[16] 摇 苏宏新, 白帆, 李广起. 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较. 植物生态学报, 2012, 36(3): 231鄄242.
[17] 摇 桑卫国,苏宏新,白帆. 中国生态系统定位观测与研究数据集鄄森林生态系统卷:北京森林站(2000鄄2006) . 北京:中国农业出版社, 2010.
[18] 摇 Maidment D R. Handbook of Hydrology. New York: McGraw鄄Hill Inc., 1992.
[19] 摇 李艳, 刘海军, 罗雨. 北京地区潜在蒸散量计算方法的比较研究. 灌溉排水学报, 2010, 29(5): 27鄄32.
[20] 摇 Li X Y, Weller D E, Jordan T E. Watershed model calibration using multi鄄objective optimization and multi鄄site averaging. Journal of Hydrology,
2010, 380(3 / 4): 277鄄288.
[21] 摇 Mauricio Zambrano鄄Bigiarini. Goodness鄄of鄄fit functions for comparison of simulated and observed hydrological time series. R package version 0.3鄄5.
2012, http: / / CRAN.R鄄project.org / package=hydroGOF.
[22] 摇 Bendtsen C, Particle Swarm Optimization. R package version 1.0.3. 2012, http: / / CRAN.R鄄project.org / package=pso.
[23] 摇 Zhang C, Chu J G, Fu G T. Sobol忆s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China. Journal of Hydrology,
2013, 480: 58鄄68.
[24] 摇 Sobol忆 I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and computers in simulation,
2001, 55(1 / 3): 271鄄280.
[25] 摇 孟碟. 水文模型参数的灵敏度分析. 水利水电技术, 2012, 43(2): 5鄄8.
[26] 摇 Gilles P, Bertrand I and Alexandre J. Sensitivity Analysis. R package version 1.6鄄1. 2012, http: / / CRAN.R鄄project.org / package= sensitivity.
[27] 摇 Jansen M J W. Analysis of variance designs for model output. Computer Physics Communications, 1999, 117(1 / 2): 35鄄43.
[28] 摇 Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity analysis of model output. Design and estimator for
the total sensitivity index. Computer Physics Communications, 2010, 181(2): 259鄄270.
[29] 摇 Henninger D L, Petersen G W, Engman E T. Surface soil moisture within a watershed: variations, factors influencing and relationship to surface
3536摇 19期 摇 摇 摇 王晓学摇 等:半干旱地区不同森林类型土壤水分动态模拟 摇
http: / / www.ecologica.cn
runoff. Soil Science Society of America Journal, 1976, 40(5): 773鄄776.
[30] 摇 陈洪松, 邵明安. 黄土区坡地土壤水分运动与转化机理研究进展. 水科学进展, 2003, 14(4): 513鄄520.
[31] 摇 李婧, 张洪江, 程金花, 常丹东. 有机碳质量分数对森林土壤水分入渗过程的影响及其模拟. 中国水土保持科学, 2012, 10(3): 50鄄56.
[32] 摇 杨弘, 杨威. 森林土壤水分入渗的影响因素及主要入渗模型. 吉林师范大学学报: 自然科学版, 2013, 34(2): 65鄄70.
[33] 摇 黄耀, 刘世梁, 沈其荣, 宗良纲. 环境因子对农业土壤有机碳分解的影响. 应用生态学报, 2002, 13(6): 709鄄714.
[34] 摇 马履一, 翟明普, 王勇. 京西山地棕壤和淋溶褐土饱和导水率的分析. 林业科学, 1999, 35(3): 109鄄112.
[35] 摇 魏玲娜, 陈喜, 程勤波, 黄远洋. 红壤丘陵区土壤渗透性及其受植被影响分析. 中国科技论文在线, 2012.
[36] 摇 Huang J X, Huang L M, Lin Z C, Chen G S. Controlling factors of litter decomposition rate in China忆s forests. Journal of Subtropical Resources and
Environment, 2010, 5(3): 56鄄63.
[37] 摇 郭汉清, 韩有志, 白秀梅. 不同林分枯落物水文效应和地表糙率系数研究. 水土保持学报, 2010, 24(2): 179鄄183.
[38] 摇 Li S H, Zhou D M, Luan Z Q, Pan Y, Jiao C C. Quantitative simulation on soil moisture contents of two typical vegetation communities in Sanjiang
Plain, China. Chinese Geographical Science, 2011, 21(6): 723鄄733.
[39] 摇 李玉山. 黄土高原森林植被对陆地水循环影响的研究. 自然资源学报, 2001, 16(5): 427鄄432.
4536 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇