免费文献传递   相关文献

Comparative analysis of land cover change detection in an Inner Mongolia grassland area

土地覆盖变化检测方法比较——以内蒙古草原区为例



全 文 :第 34 卷第 24 期
2014年 12月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.34,No.24
Dec.,2014
http: / / www.ecologica.cn
基金项目:中国科学院战略性先导科技专项(XDA05050102);全国生态环境十年(2000—2010年)变化遥感调查与评估专项课题(STSN鄄01鄄01)
收稿日期:2013鄄10鄄14; 摇 摇 修订日期:2014鄄10鄄17
*通讯作者 Corresponding author.E鄄mail: yuxf@ igsnrr.ac.cn
DOI: 10.5846 / stxb201310142468
于信芳,罗一英,庄大方,王世宽,王勇.土地覆盖变化检测方法比较———以内蒙古草原区为例.生态学报,2014,34(24):7192鄄7201.
Yu X F, Luo Y Y, Zhuang D F, Wang S K, Wang Y.Comparative analysis of land cover change detection in an Inner Mongolia grassland area.Acta
Ecologica Sinica,2014,34(24):7192鄄7201.
土地覆盖变化检测方法比较
———以内蒙古草原区为例
于信芳*,罗一英,庄大方,王世宽,王摇 勇
(中国科学院地理科学与资源研究所,资源与环境信息系统国家重点实验室,北京摇 100101)
摘要:随着对地观测技术的不断发展,遥感影像分辨率逐渐提高,促进了基于遥感影像的变化检测从传统像元级的检测向面向
对象的检测转变。 为了探究面向对象的变化检测方法在土地覆盖变化检测中的有效性和适用性,对面向对象的变化检测方法
与常规的变化检测方法进行对比评价。 以内蒙古鄂尔多斯和包头地区为试验区,选取 2002 年及 2011 年的 Landsat TM / ETM+
影像为数据源,比较了图像代数运算、图像变换、图像空间结构特征和面向对象的多种变化检测方法,对研究区两期土地覆盖进
行了变化检测研究。 结果表明:面向对象的变化检测方法在总体精度、kappa 系数上都有明显的优越性,总体精度均在 87郾 42%
以上,尤其以面向对象的变化矢量分析方法精度最高,达 91.56%。 此外,主成分差异法也有较好的检测效果,总体精度为
87郾 83%。 对总体精度较高的 3种方法在不同土地覆盖变化类型中检测效果的研究表明:对于研究区几种主要土地覆盖变化类
型,面向对象的变化矢量分析法均有较理想的检测效果,平均精度为 85%左右,且始终优于面向对象的光谱向量相似法,以居民
地及旱地相关的变化类型最为明显;主成分差异法对不同土地覆盖变化类型检测效果差异很大,对其中 4种变化类型的精度甚
至达到了 93%以上,但对于检测草地与裸地间转化精度很低,甚至只有 8.69%;在与工矿用地有关的土地覆盖变化类型中,面向
对象的变化矢量分析法的精度明显高于主成分差异法,而在与居民地有关的变化类型中,主成分差异法表现出一定优势。
关键词:面向对象;土地覆盖;变化检测;比较
Comparative analysis of land cover change detection in an Inner Mongolia
grassland area
YU Xinfang*, LUO Yiying, ZHUANG Dafang, WANG Shikuan, WANG Yong
State Key Lab of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China
Abstract: Accurate and timely data on land cover change are not only important for global change study, but also provide
significant foundation for decision鄄making, management and monitoring in resources sustainable application. As the modern
remote sensing systems have provided a huge amount of data for land cover change study, remote sensing technology has
become the most economical and effective way to acquire land cover change information. With the rapid development of earth
observation technology, image resolution has been improved gradually, and remote sensing change detection algorithms have
been remarkably developed. Remote sensing change detection methods are changing from traditional pix鄄level detection to
object鄄oriented detection. In order to explore the validity and applicability of object鄄oriented change detection methods, we
compared and evaluated object鄄oriented change detection methods and traditional change detection methods using Landsat
TM / ETM+ images in the grassland area of Baotou and Ordos in Inner Mongolia. The results showed that object鄄oriented
change detection methods had significant advantages both in overall accuracy and kappa coefficient. The overall accuracies
http: / / www.ecologica.cn
obtained by object鄄oriented change detection methods were above 87.42%. The object鄄oriented change vector analysis got
the highest accuracy, with overall accuracy of 91.56%. Besides, principal component differencing also had good detection
result with overall accuracy of 87.83%. The three methods with the highest overall accuracy were further compared over
different land cover change types. The results showed that the object鄄oriented change vector analysis was better than object鄄
oriented spectral vector similar method, and the difference was most obvious for those change types related to construction
land and dry land. The object鄄oriented change vector analysis provided good detection for all land cover change types in the
study area with the average accuracy of 85%. However, there was a big difference in the detection results of principal
component differencing between different land cover change types. Its accuracy reached as 93% for four land cover change
types. But for detection of the transformation between bare land and grassland, the accuracy was low to 8. 69%. While
detecting the change types related to industrial and mining sites, object鄄oriented change vector analysis was more accurate
than principal component differencing. But principal component differencing showed its superiority in detecting the change
types related to construction land.
Key Words: object鄄oriented; land cover; change detection; comparative study
摇 摇 准确的土地覆被变化信息不仅是全球变化研究
的重要基础,也是资源可持续利用中决策、管理和监
控的重要依据。 20 世纪 90 年代以来,随着资源、环
境和人口问题的日益突出,土地覆盖变化研究己成
为国际上全球变化研究的前沿和热点课题。 随着对
地观测技术的发展,遥感数据源不断丰富,遥感技术
已成为获取土地覆盖变化信息的最为经济有效的
手段。
近几十年来,国内外专家学者相继提出和发展
了多种变化检测的方法,对于“二值变化冶检测来说,
目前常规的变化检测方法很多[1]。 其中基于图像代
数运算的方法 (如图像差值 /比值法[2]、植被指数
法[3]和变化矢量分析法[4]等)算法简单、易于实现,
且变化矢量分析法能有效对维数约简,因而得到广
泛应用;基于图像数据变换的变化检测方法(主成分
分析法[5鄄6])则通过多时相遥感图像进行变换来减少
数据间的冗余信息,变化信息在变换后的图像上得
到增强;基于图像空间结构特征的方法[7鄄8]则考虑邻
近像元的空间特征信息,将图像空间结构特征与光
谱信息共同用于变化检测,这对改善变化检测性能
有重要作用。 与基于像元的变化检测方法仅考虑单
个像元的光谱特征不同,近些年发展的基于面向对
象的变化检测方法以图像分割[9]为基础,将图像划
分为若干个形状和光谱性质具有均质性的对象,同
时整合了光谱信息和空间信息。 进行变化信息提取
时,不仅依靠对象的光谱特征,更多的是利用其几何
和结构特征,后续的图像分析和处理也都基于对象
进行。 国内外学者在应用面向对象的变化检测方法
时,多考虑面向对象的分类后比较法[10鄄13],面向对象
的直接比较法研究较少,研究面向对象的变化检测
方法对于具体土地覆盖变化类型检测效果才刚刚
开始。
为了探究不同变化检测方法在土地覆盖变化检
测中的有效性和适用性,本文以 Landsat卫星影像为
数据源,以内蒙古草原区作为试验对象,比较了几种
土地覆盖变化检测方法的优缺点和应用效果。 本文
的研究结果对于筛选、利用有效的土地覆盖变化检
测方法,提高土地覆盖变化探测的自动化程度,具有
借鉴意义。
1摇 研究区数据与研究方法
1.1摇 研究区和数据来源
研究区位于内蒙古自治区西南部,包括鄂尔多
斯市和包头市等区域,地理位置为 109毅 6忆14义E—
110毅3忆13义E,39毅8忆14义N—40毅8忆50义N,属半干旱中温带
大陆性季风气候。 区内有平原、丘陵、荒漠等地貌类
型,在整个区域的北部,黄河自西向东穿过。 区内土
地覆盖类型多样,有林地、草地、水体、农田、建设用
地、工矿用地及其他土地覆盖类型,是北方草原区的
典型代表。 近年来,由于大规模的矿产开采和城市
化扩展,土地覆盖类型发生了很大变化,大量草地、
林地和农田转化成工矿用地和建设用地等。
遥感数据来自于美国地质调查局 ( USGS,
http: / / www. usgs. gov) 的 Landsat 影像,行列号为
3917摇 24期 摇 摇 摇 于信芳摇 等:土地覆盖变化检测方法比较———以内蒙古草原区为例 摇
http: / / www.ecologica.cn
127 / 032,两期影像的时相为 2002 年 9 月 23 日的
Landsat 7 / ETM+和 2011 年 9 月 24 日的 Landsat 5 /
TM,选择时相相近的图像有助于消除和减少季相差
异。 从 USGS获取的 Landsat TM / ETM+数据已经经
过了正射纠正处理,位置匹配精度满足遥感变化检
测的要求。 为了减小两期影像辐射变化的影响,进
行了辐射校正处理,即在两幅影像上采集 200 对裸
地、建设用地等“准冶不变的特征点,在 SPSS 软件中
作回归分析,获得线性变换函数,然后在 ENVI 软件
中使用该函数模型对待校正影像各波段(第 6 波段
除外)进行计算,将待校正的影像归一化到参考影像
的辐射水平上。 经过裁剪后,最终用于变化检测比
较研究的图像大小为 5093伊4706个像元(图 1)。
图 1摇 研究区地理位置及 2011年 Landsat 5 TM影像(RGB波段组合为 432)
Fig.1摇 The study area location and Landsat 5 TM image acquired in 2011
摇 摇 选取了 2010年的土地覆盖产品作为参考数据,
该数据基于多时相国产环境星一号卫星的 CCD 数
据,采用面向对象分类方法产生,通过大量野外实地
调查样点验证和当地环保部门用户评价,总体分类
精度 90%以上。
2012年 8 月 15—23 日进行了研究区的土地覆
盖情况地面调查,获取了研究区实地调查样点 523
个。 参考 2010年土地覆盖数据,选择研究区内的典
型土地覆盖类型,根据两期遥感影像和野外调查样
点,结合 Google Earth 高分辨率影像进行目视判读,
共获取验证点 1833 个(图 2),其中土地覆盖类型变
化的点 670 个,未变化的点 1163 个。 本研究将这些
点作为样本数据,评价不同变化检测方法的有效性。
1.2摇 研究方法
本文选取了广泛应用的图像差值法、图像比值
法、植被指数法和变化矢量分析法等基于图像代数
运算的变化检测方法,主成分差异法、差异主成分法
和多波段主成分分析法等基于图像变化的变化检测
方法,基于图像空间特征的变化检测方法———扩展
的变化矢量分析法以及面向对象的变化矢量分析法
和面向对象的光谱向量相似法等面向对象的变化检
测方法进行研究(图 3)。
基于 TM / ETM+遥感影像分析土地覆盖变化检
测主要步骤:淤遥感影像预处理:辐射校正、几何校
正以及影像裁剪等;于分别利用基于图像代数运算
的变化检测方法、基于图像变换的变化检测方法、基
于图像空间特征的变化检测方法以及面向对象的变
化检测方法对研究区 TM / ETM+遥感影像进行变化
检测,提取“二值变化冶信息;盂利用相同的验证样本
对各方法的“二值变化冶检测结果进行精度验证,分
析不同变化检测方法的有效性和适用性;榆结合研
究区土地覆盖数据,分析“二值变化冶检测精度最高
的三种方法在不同土地覆盖变化类型中检测效果。
其中差值法和比值法均先对各波段分别进行变化检
测,然后选取检测结果最好的波段作为最终的变化
检测结果。 在扩展的变化矢量分析法中,选取灰度
共生矩阵中的均值来生成纹理特征图像,对其进行
归一化后,采用变化矢量分析法分别计算光谱变化
信息和纹理变化信息[14鄄16],并进行叠加,得到一个有
两个波段的变化量图像,最后通过支持向量机分
类[17鄄18]方法提取变化信息。 在进行面向对象的变化
检测时,首先采用经典的多尺度图像分割法对经过
预处理的两期 TM / ETM+影像进行分割,获取影像对
象,然后分别计算各影像对象的光谱变化矢量大小
4917 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
和光谱向量相似度,通过最佳阈值设定来提取变化 检测结果。
图 2摇 样本点分布图
Fig.2摇 Distribution of sampling points
图 3摇 土地覆盖变化检测方法比较流程图
Fig.3摇 Flowchart of land cover change detection algorithms comparison
5917摇 24期 摇 摇 摇 于信芳摇 等:土地覆盖变化检测方法比较———以内蒙古草原区为例 摇
http: / / www.ecologica.cn
2摇 结果分析与讨论
2.1摇 变化检测结果
4种基于图像代数运算的变化检测得到的变化
结果如图 4 所示。 从图中可以看出,检测结果较为
零碎,图像差值法和图像比值法提取的变化信息大
体一致,植被指数法突出的变化信息大多分布于图
像中部植被生长旺盛的地方,相对而言,变化矢量分
析法提取的变化信息很少。
图 4摇 基于图像代数运算的变化检测结果
Fig.4摇 Change maps from different change detection methods based on image algebra operations
摇 摇 采用 3种基于图像变换的方法和一种基于图像
空间特征的变化检测方法进行变化检测得到的变化
信息如图 5 所示。 从图中可以看出,与仅利用光谱
信息进行分析的变化检测方法相比,扩展的变化矢
量分析法的检测结果在结构和完整度上均有提高,
较好的避免了“椒盐冶现象的产生。 主成分差异法和
多波段主成分分析法提取的变化信息相对较多,变
化信息分布大致相同。
面向对象的变化检测结果如图 6 所示。 对比其
他方法提取的变化信息,图 6 所示的两种面向对象
的变化检测方法提取的变化信息相对较多,同时,由
于所有的处理均是基于影像对象进行的,面向对象
的方法有效地改善了仅利用影像光谱信息进行变化
检测出现的噪声问题和“椒盐冶现象,变化信息的结
构和完整度都有所提高,检测结果更为优化,变化信
息更为突出。
对比图 4、图 5 和图 6 可看出,仅利用光谱信息
的检测结果较为零碎,包含较多非感兴趣和非重点
的变化信息,把图像的空间特征与光谱信息结合后
的检测结果中变化信息的结构和完整程度均有所提
高,而面向对象的变化检测方法在充分地利用图像
的光谱和空间信息的基础上有效避免了边缘效应,
提供了更为完整的变化目标轮廓和结构信息,实现
了检测结果的优化。
6917 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
图 5摇 基于图像变换和基于图像空间特征的变化检测结果
Fig.5摇 Change maps from different change detection methods based on image transformation and image spatial characteristics
图 6摇 面向对象的变化检测结果
Fig.6摇 Change maps from different object鄄oriented change detection methods
摇 摇
2.2摇 “二值变化冶精度评价
为定量评价不同检测方法的结果,使用误差矩
阵[19]来对变化检测结果进行精度评价。 主要精度
指标包括总体精度、Kappa 系数、虚检率和漏检率
等。 其中虚检率表示检测为变化而实际未发生变化
的样本数占检测到的全部变化样本数的比例,反映
了变化检测结果中存在虚假变化的概率;而漏检率
7917摇 24期 摇 摇 摇 于信芳摇 等:土地覆盖变化检测方法比较———以内蒙古草原区为例 摇
http: / / www.ecologica.cn
则表示实际发生变化但检测为非变化的样本数占全
部实际变化样本的比例,反映的是变化检测结果中
漏检变化的概率。
使用野外观测和目视判读获得的参考数据(包
括 670个变化像元与 1163 个不变化像元),构造误
差矩阵,计算不同方法的检测精度指标。 对不同变
化检测方法提取的变化图像都采用相同的样本,以
便进行比较。 对检测结果进行精度评价,得到总体
检测精度、Kappa 系数、虚检率及漏检率等精度指标
(表 1)。
(1)两种面向对象的变化检测方法都能有效抑
制总体误差,在总体精度上有较明显的优势,尤其以
面向对象的变化矢量分析法效果最佳,其总体精度
和 kappa系数最高,且漏检率最低。 然而,与基于像
元的变化检测方法相比,面向对象的变化检测方法
虚检率都较高。
(2)在基于图像代数运算的 4 种变化检测方法
中,图像比值法总体精度最高,漏检率最低。 植被指
数法和变化矢量分析法虽然综合利用了两个或多个
波段的信息,虚检率得到抑制,但这 2 种方法的漏检
率偏高,检测效果并不理想。
(3)在基于图像变换的 3种方法中,主成分差异
法的精度最高,漏检率和虚检率也最低。 另 2 种方
法的检测精度比较接近,多波段主成分分析法的漏
检率稍优于差异主成分法。
(4)扩展的变化矢量分析法虚检率较低,但漏检
率偏高,这使得检测效果并不理想。 但值得注意的
是,相对于仅利用图像光谱信息来进行变化检测的
变化矢量分析法来说,把图像纹理特征加入到变化
检测中的扩展的变化矢量分析法在总体精度和漏检
率上,都有明显改善。
(5)在三类基于像元的变化检测方法中,有多个
(或两个)波段参与的变化检测方法其虚检率皆低于
只有一个波段参与的变化检测方法(图像差值法和
图像比值法),而漏检率则相反。 这说明采用多波段
数据进行变化检测能在一定程度上抑制虚检率,但
可能使漏检率增大。
表 1摇 不同变化检测方法检测结果精度对比
Table 1摇 Comparison of the change detection accuracy obtained by different methods
方法类型
Method types
方法
Methods
总体精度 / %
Overall
accuracy
Kappa系数
Kappa
coefficient
漏检率 / %
Missing rate
虚检率 / %
False rate
基于图像代数运算的方法 图像差值法 85.87 0.6788 31.49 9.47
Methods based on image 图像比值法 86.20 0.6898 28.50 11.46
algebra operations 植被指数法 83.58 0.6165 40.60 6.79
变化矢量分析法 83.96 0.6214 42.39 2.52
基于图像变换的方法 主成分差异法 87.83 0.7207 31.04 3.14
Methods based on image 差异主成分法 85.54 0.6669 34.92 6.64
transformation 多波段主成分分析法 86.25 0.6853 32.54 6.99
基于图像空间结构特征的方法
Methods based on image
spatial characteristics
扩展的变化矢量分析法 85.87 0.6725 35.82 4.23
面向对象的方法 面向对象的变化矢量分析法 91.56 0.7892 18.12 12.18
Object鄄oriented methods 面向对象的光谱向量相似法 87.42 0.6727 31.88 15.05
摇 摇 总体而言,四类变化检测方法对于利用 TM /
ETM+影像来对内蒙鄂尔多斯地区进行土地覆被变
化检测均有不同程度的适用性,其中,两种面向对象
的变化检测法及主成分差异法在总体精度上有明显
的优越性,面向对象的变化矢量分析法能在有效抑
制漏检率的基础上,取得最高总体精度和 kappa 系
数,而主成分差异法则能在较好的控制虚检率的情
况下,保持较理想的总体精度和 kappa系数。
2.3摇 典型变化区域检测结果对比
为了更直观地比较各类方法的变化检测结果,
本文选取了研究区内城市扩张、矿产开采以及河流
改道 3 个具有代表性的区域,对在各类方法中精度
最高的图像比值法、主成分差异法、扩展的变化矢量
分析法和面向对象的变化矢量分析法的局部检测效
8917 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
果进行对比分析。 对比结果如图 7 所示,对检测结
果进行目视定性判断可知:主成分差异法和面向对
象的矢量分析法的检测结果更接近于实际变化;图
像比值法和主成分差异法由于仅利用光谱信息进行
变化检测,检测结果较零碎,“椒盐冶现象严重,考虑
到图像的空间特征并将其用于变化检测后,在扩展
的变化矢量分析法的检测结果中,变化信息的结构
和完整性有所提高,变化信息较突出,在面向对象的
变化矢量分析法的检测结果中,变化信息的结构和
完整性有了进一步提高,变化信息更为突出,检测结
果进一步优化;而面向对象的变化矢量分析法漏检
率低和虚检率高的特性,表现为其提取的变化信息
最多。 这与表 1也是一致的。
图 7摇 典型变化区域检测结果对比图
Fig.7摇 Comparison of detected results in typical changed areas
图中列(a)、(b)分别为 2002年和 2011年 TM / ETM+影像,(c)、(d)、(e)、(f)分别为图像比值法、主成分差异法、扩展的变化矢量分析法和
面向对象的变化矢量分析法的变化检测结果
2.4摇 不同变化类型的精度评价
结合 2010 年土地覆盖数据,对两期 TM / ETM+
影像采用面向对象分类和人机交互修改相结合的方
法,分别将两期遥感影像分为建设用地、工矿用地、
林地、草地、旱地、水体和裸地等 7 类,获得两期土地
覆盖数据,其精度均在 95%以上。 为了更好地对比
和分析检测效果较好的 3 种方法,通过分析两期土
地覆盖数据,得出研究区内主要的 10 种土地覆盖变
化类型(表 2),统计了在不同土地覆盖变化类型中 3
种方法的总体精度。
从表 2可以看出,对于研究区的 10 种土地覆盖
变化类型,总体精度而言:
(1)面向对象变化矢量分析法均明显优于面向
对象光谱向量相似法,其中,与建设用地有关的两类
变化类型精度差异在 20%以上,与旱地有关的四类
变化类型精度差异均在 15%以上。
(2)除了在旱地变为工矿用地这一变化类型上
精度相同外,在其他两类与工矿用地有关的土地覆
盖变化检测中,面向对象变化矢量分析法的精度皆
明显高于主成分差异法。 但在与建设用地有关的变
化类型中,主成分差异法却表示出显著优势。
(3)相对来说,面向对象变化矢量分析法在所有
变化类型中均有较理想的检测效果,平均精度为
85%左右,而主成分差异法虽然在大部分变化类型
上有较高精度,对其中 4 种变化类型的精度甚至达
到了 93%以上,但对于草地变化为裸地、裸地变为草
地两种变化类型,精度很低。
9917摇 24期 摇 摇 摇 于信芳摇 等:土地覆盖变化检测方法比较———以内蒙古草原区为例 摇
http: / / www.ecologica.cn
表 2摇 3种变化检测结果分不同土地覆盖变化类型的总体精度统计表
Table 2摇 Overall accuracy of different land cover change types from three change detection results
土地覆盖变化类型
Land cover change types
总体精度 Overall accuracy / %
面向对象的变化
矢量分析法
Object鄄oriented
change vector analysis
面向对象的
光谱向量相似法
Object鄄oriented
spectral vector similar
主成分差异法
Principal component
differencing
草地—>工矿用地
Grassland—> Industrial and mining land 87.25 82.35 67.65
草地—>建设用地
Grassland—>Construction land 61.11 41.67 88.89
草地—>裸地
Grassland—>Bare land 75.00 75.00 50.00
旱地—>工矿用地
Dry land—> Industrial and mining land 93.33 73.33 93.33
旱地—>建设用地
Dry land—> Construction land 80.95 33.33 100.00
旱地—>水体
Dry land—>Water body 89.65 62.07 82.76
林地—>工矿用地
Forest land—> Industrial and mining land 85.18 81.48 68.52
水体—>旱地
Water body—> Dry land 84.21 68.42 94.74
水体—>草地
Water body—> Grassland 100.00 80.00 100.00
裸地—>草地
Bare land—> Grassland 65.22 56.52 8.69
摇 摇 现在的变化检测研究大都是对多期遥感图像分
别进行土地覆盖分类,并对分类结果进行精度验证,
然后基于多期的分类结果进行变化分析,而对变化
的精度不再进行精度评价[20鄄21]。 多期的土地覆盖分
类精度随不同试验区有一定变化,一般在 86%—
92%。 本研究通过比较多种变化检测方法,比较筛
选出几种基于影像的变化检测方法,在多期土地覆
盖变化检测中可以仅针对变化图斑进行类比的分
析,可以大大减少多期土地覆盖分类的工作量。 本
研究的土地覆盖变化精度与基于多期的精度相当。
3摇 结论
本研究以 TM / ETM+影像为数据源,采用多种变
化检测方法进行了土地覆盖变化检测研究,分析了
不同变化检测方法在检测“二值变化冶上的差异,同
时,对在“二值变化冶检测中精度最高的三种方法,研
究了其在研究区具体土地覆盖变化类型的检测效
果,得到如下结论:
(1)在“二值变化冶的检测中,面向对象的变化
检测法能较好地抑制总体误差,在总体精度上有明
显优势,尤其以面向对象的变化矢量分析法总体精
度和 Kappa系数最高。 与其他基于像元的变化检测
方法相比,主成分差异法能在有效控制虚检率的基
础上,获得较理想的总体精度和 Kappa系数。
(2)面向对象的变化矢量分析法和主成分差异
法分别有不同的优势,前者可以有效降低漏检变化,
同时避免“椒盐冶现象,较好地保持变化信息的结构
和完整性,而后者的优势在于抑制虚检变化,具体在
实际变化检测应用中,可针对不同需求选择合适方
案,以获得最大价值的变化检测信息。
(3)对于具体土地覆盖变化类型的检测来说,面
向对象的变化矢量分析法均优于面向对象的光谱向
量相似法,且在与建设用地和旱地相关的变化类型
上尤为明显。 在与工矿用地有关的变化类型上,面
向对象的变化矢量分析法精度明显高于主成分差异
法,而在与建设用地有关的变化类型中,主成分差异
法有显著优势。 面向对象的变化矢量分析法在所有
变化类型中平均精度在 85%左右,而主成分差异法
对于各变化类型的检测精度差异很大,对其中 4 种
变化类型的精度甚至达到了 93%以上,但对于检测
草地与裸地间的转化精度很低。
0027 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
References:
[ 1 ]摇 Yang X L. Change Detection of Multi鄄temporal Remote Sensing
Images [D]. Xi忆an: Xidian University, 2011.
[ 2 ] 摇 Sun X X, Zhang J X, Yan Q, Gao J X. A summary on current
techniques and prospects of remote sensing change detection.
Remote Sensing Information, 2011, (1): 119鄄123.
[ 3 ] 摇 Jiao B Q. Driving factor analysis on the vegetation changes derived
from the Landsat TM images in Beijing. Acta Ecologica Sinica,
2013, 33(5): 1654鄄1666.
[ 4 ] 摇 Berberoglu S, Akin A. Assessing different remote sensing
techniques to detect land use / cover changes in the eastern
Mediterranean. International Journal of Applied Earth Observation
and Geoinformation, 2009, 11(1): 46鄄53.
[ 5 ] 摇 Dian Y Y. Change Detection using Remote Sensing Images [D].
Wuhan: Wuhan University, 2005.
[ 6 ] 摇 Fung T, Le Drew E. Application of principal components analysis
to change detection. Photogrammetric Engineering and Remote
Sensing, 1987, 53: 1649鄄1658.
[ 7 ] 摇 Song C Y, Li P J, Yang F J. The application of multiscale image
texture to the detection of urban expansion. Remote Sensing for
Land and Resources, 2006, 18(3): 37鄄42.
[ 8 ] 摇 He C Y, Wei A, Shi P J, Zhang Q F, Zhao Y Y. Detecting land鄄
use / land鄄cover change in rural – urban fringe areas using
extended change鄄vector analysis. International Journal of Applied
Earth Observation and Geoinformation, 2011, 13(4): 572鄄585.
[ 9 ] 摇 Long X Y, Li P J. A method of urban change detection based on
image segmentation. Geo鄄Information Science, 2008, 10 ( 1 ):
121鄄127.
[10] 摇 Zhang Y J, Li H T, Gu H Y. A research on object鄄oriented
analysis of automatic change information extraction based on
decision tree. Remote Sensing Information, 2011, (2): 91鄄97.
[11] 摇 Han S S, Li H T, Gu H Y. The study on land use change
detection based on object鄄oriented analysis. Remote Sensing
Information, 2009, (3): 23鄄29.
[12] 摇 Gamanya R, De Maeyer P, De Dapper M. Object鄄oriented change
detection for the city of Harare, Zimbabwe. Expert Systems with
Applications, 2009, 36(1): 571鄄588.
[13] 摇 Doxani G, Karantzalos K, Tsakiri鄄Strati M. Monitoring urban
changes based on scale鄄space filtering and object鄄oriented
classification. International Journal of Applied Earth Observation
and Geoinformation, 2012, 15: 38鄄48.
[14] 摇 Inglada J, Mercier G. A new statistical similarity measure for
change detection in multitemporal SAR images and its extension to
multiscale change analysis. IEEE Transactions on Geoscience and
Remote Sensing, 2007, 45(5): 1432鄄1445.
[15] 摇 Chen Z P, Deng P, Chong J S, Wang H Q. Application of
textural features to change detection in SAR image. Remote
Sensing Technology and Application, 2002, 17(3): 162鄄166.
[16] 摇 Zhong J Q, Wang R S. A road network change detection algorithm
based on linear feature. Journal of Remote Sensing, 2007, 11
(1): 27鄄32.
[17] 摇 Cao X, Chen J, Imura H, Higashi O. A SVM鄄based method to
extract urban areas from DMSP鄄OLS and SPOT VGT data. Remote
Sensing of Environment, 2009, 113(10):2205鄄2209.
[18] 摇 Mantero P, Moser G, Serpico S B. Partially supervised
classification of remote sensing images through SVM鄄based
probability density estimation. IEEE Transactions on Geoscience
and Remote Sensing, 2005, 43(3): 559鄄570.
[19] 摇 Oortvan P A J. Interpreting the change detection error matrix.
Remote Sensing of Environment, 2007, 108(1): 1鄄8.
[20] 摇 Lin N, Xu H Q, He H. Land use changes in a reddish soil erosion
region of Southern China: Hetian Basin, County Changting. Acta
Ecologica Sinica, 2013, 33(10): 2983鄄2991.
[21] 摇 Liu H J, Zhou C H, Cheng W M, Long E, Li R. Monitoring
sandy desertification of the Otindag Sandy Land based on multi鄄
date remote sensing images. Acta Ecologica Sinica, 2008, 28
(2): 627鄄635.
参考文献:
[ 1 ] 摇 杨晓丽. 多时相遥感影像的变化检测 [D]. 西安: 西安电子科
技大学, 2011.
[ 2 ] 摇 孙晓霞, 张继贤, 燕琴, 高井祥. 遥感影像变化检测方法综述
及展望. 遥感信息, 2011, (1): 119鄄123.
[ 3 ] 摇 贾宝全. 基于 TM 卫星影像数据的北京市植被变化及其原因
分析. 生态学报, 2013, 33(5): 1654鄄1666.
[ 5 ] 摇 佃袁勇. 基于遥感影像的变化检测研究 [D]. 武汉: 武汉大
学, 2005.
[ 7 ] 摇 宋翠玉,李培军,杨锋杰. 运用多尺度图像纹理进行城市扩展
变化检测. 国土资源遥感, 2006, 18(3): 37鄄42.
[ 9 ] 摇 龙玄耀, 李培军. 基于图像分割的城市变化检测. 地球信息科
学, 2008, 10(1): 121鄄127.
[10] 摇 张雨霁,李海涛, 顾海燕. 基于决策树的面向对象变化信息自
动提取研究. 遥感信息, 2011, (2): 91鄄97.
[11] 摇 韩闪闪,李海涛, 顾海燕. 面向对象的土地利用变化检测方法
研究. 遥感信息, 2009, (3): 23鄄29.
[15] 摇 陈志鹏,邓鹏,种劲松,王宏琦. 纹理特征在 SAR图像变化检
测中的应用. 遥感技术与应用, 2002, 17(3): 162鄄166.
[16] 摇 钟家强, 王润生. 一种基于线特征的道路网变化检测算法. 遥
感学报, 2007, 11(1): 27鄄32.
[20] 摇 林娜, 徐涵秋, 何慧. 南方红壤水土流失区土地利用动态变
化———以长汀河田盆地区为例. 生态学报, 2013, 33( 10):
2983鄄2991.
[21] 摇 刘海江, 周成虎, 程维明, 龙恩, 李锐. 基于多时相遥感影像
的浑善达克沙地沙漠化监测. 生态学报, 2008, 28 ( 2):
627鄄635.
1027摇 24期 摇 摇 摇 于信芳摇 等:土地覆盖变化检测方法比较———以内蒙古草原区为例 摇