免费文献传递   相关文献

Seagrass meadow ecosystem and its restoration: a review

海草场生态系统及其修复研究进展



全 文 :
摇 摇 摇 摇 摇 生 态 学 报
摇 摇 摇 摇 摇 摇 摇 (SHENGTAI XUEBAO)
摇 摇 第 32 卷 第 19 期摇 摇 2012 年 10 月摇 (半月刊)
目摇 摇 次
中国野生东北虎数量监测方法有效性评估 张常智,张明海,姜广顺 (5943)……………………………………
城市居民食物氮消费变化及其环境负荷———以厦门市为例 于摇 洋,崔胜辉,赵胜男,等 (5953)………………
珠江口水域夏季小型底栖生物群落结构 袁俏君,苗素英,李恒翔,等 (5962)……………………………………
2010 年夏季雷州半岛海岸带浮游植物群落结构特征及其与主要环境因子的关系
龚玉艳,张才学,孙省利,等 (5972)
……………………………
……………………………………………………………………………
阿根廷滑柔鱼两个群体间耳石和角质颚的形态差异 方摇 舟,陈新军,陆化杰,等 (5986)………………………
黄河三角洲滨海草甸与土壤因子的关系 谭向峰,杜摇 宁,葛秀丽,等 (5998)……………………………………
盘锦湿地净初级生产力时空分布特征 王莉雯,卫亚星 (6006)……………………………………………………
菜豆根瘤菌对土壤钾的活化作用 张摇 亮,黄建国,韩玉竹,等 (6016)……………………………………………
花生植株和土壤水浸液自毒作用研究及土壤中自毒物质检测 黄玉茜,韩立思,杨劲峰,等 (6023)……………
遮荫对金莲花光合特性和叶片解剖特征的影响 吕晋慧,王摇 玄,冯雁梦,等 (6033)……………………………
火干扰对小兴安岭草丛、灌丛沼泽温室气体短期排放的影响 顾摇 韩,牟长城,张博文,等 (6044)……………
古尔班通古特沙漠南部植物多样性及群落分类 张摇 荣,刘摇 彤 (6056)…………………………………………
黄土高原樟子松和落叶松与其他树种枯落叶混合分解对土壤的影响 李摇 茜,刘增文,米彩红 (6067)………
长期集约种植对雷竹林土壤氨氧化古菌群落的影响 秦摇 华,刘卜榕,徐秋芳,等 (6076)………………………
H2O2 参与 AM真菌与烟草共生过程 刘洪庆,车永梅,赵方贵,等 (6085)………………………………………
北京山区防护林优势树种分布与环境的关系 邵方丽,余新晓,郑江坤,等 (6092)………………………………
旱直播条件下强弱化感潜力水稻根际微生物的群落结构 熊摇 君,林辉锋,李振方,等 (6100)…………………
不同森林类型根系分布与土壤性质的关系 黄摇 林,王摇 峰,周立江,等 (6110)…………………………………
臭氧胁迫下硅对大豆抗氧化系统、生物量及产量的影响 战丽杰, 郭立月,宁堂原,等 (6120)…………………
垃圾填埋场渗滤液灌溉对土壤理化特征和草本花卉生长的影响 王树芹,赖摇 娟,赵秀兰 (6128)……………
稻麦轮作系统冬小麦农田耕作措施对氧化亚氮排放的影响 郑建初,张岳芳,陈留根,等 (6138)………………
不同施氮措施对旱作玉米地土壤酶活性及 CO2 排放量的影响 张俊丽,高明博,温晓霞,等 (6147)…………
北方农牧交错区农业生态系统生产力对气候波动的响应———以准格尔旗为例
孙特生,李摇 波,张新时 (6155)
…………………………………
…………………………………………………………………………………
辽宁省能源消费和碳排放与经济增长的关系 康文星,姚利辉,何介南,等 (6168)………………………………
基于 FARSITE模型的丰林自然保护区潜在林火行为空间分布特征 吴志伟,贺红士,梁摇 宇,等 (6176)……
不同后作生境对玉米地天敌的冬季保育作用 田耀加,梁广文,曾摇 玲,等 (6187)………………………………
云南紫胶虫种群数量对地表蚂蚁多样性的影响 卢志兴,陈又清,李摇 巧,等 (6195)……………………………
阿波罗绢蝶种群数量和垂直分布变化及其对气候变暖的响应 于摇 非,王摇 晗,王绍坤,等 (6203)……………
专论与综述
海水养殖生态系统健康综合评价:方法与模式 蒲新明,傅明珠,王宗灵,等 (6210)……………………………
海草场生态系统及其修复研究进展 潘金华,江摇 鑫,赛摇 珊,等 (6223)…………………………………………
水华蓝藻对鱼类的营养毒理学效应 董桂芳,解绶启,朱晓鸣,等 (6233)…………………………………………
环境胁迫对海草非结构性碳水化合物储存和转移的影响 江志坚, 黄小平,张景平 (6242)……………………
生态免疫学研究进展 徐德立,王德华 (6251)………………………………………………………………………
研究简报
喀斯特峰丛洼地不同森林表层土壤有机质的空间变异及成因 宋摇 敏,彭晚霞,邹冬生,等 (6259)……………
准噶尔盆地东南缘梭梭种子雨特征 吕朝燕,张希明,刘国军,等 (6270)…………………………………………
期刊基本参数:CN 11鄄2031 / Q*1981*m*16*336*zh*P* ¥ 70郾 00*1510*35*
室室室室室室室室室室室室室室
2012鄄10
封面图说: 岸边的小白鹭———鹭科白鹭属共有 13 种,其中有大白鹭、中白鹭、白鹭(小白鹭)、黄嘴白鹭等,体羽皆是全白,世通
称白鹭。 夏季的白鹭成鸟繁殖时枕部着生两条狭长而软的矛状羽,状若双辫,肩和胸着生蓑羽,冬季时蓑羽常全部
脱落,白鹭虹膜黄色,嘴黑色,脚部黑色,趾呈黄绿色。 小白鹭常常栖息于稻田、沼泽、池塘水边,以及海岸浅滩的红
树林里。 白天觅食,好食小鱼、蛙、虾及昆虫等。 繁殖期 3—7月。 繁殖时成群,常和其他鹭类在一起,雌雄均参加营
巢,次年常到旧巢处重新修葺使用。
彩图提供: 陈建伟教授摇 北京林业大学摇 E鄄mail: cites. chenjw@ 163. com
第 32 卷第 19 期
2012 年 10 月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol. 32,No. 19
Oct. ,2012
http: / / www. ecologica. cn
基金项目:国家海洋开放基金(200905019);国家工程技术研究中心再建项目(2011FU125Z11);山东省科技发展计划(2010GSF10612)
收稿日期:2011鄄09鄄10; 摇 摇 修订日期:2012鄄02鄄10
*通讯作者 Corresponding author. E鄄mail: panjh2010@ yahoo. cn
DOI: 10. 5846 / stxb201109101329
潘金华,江鑫,赛珊,周文江,吴家奇,李晓捷,杨官品.海草场生态系统及其修复研究进展.生态学报,2012,32(19):6223鄄6232.
Pan J H,Jiang X,Sai S,Zhou W J,Wu J Q, Li X J,Yang G P. Seagrass meadow ecosystem and its restoration: a review. Acta Ecologica Sinica,2012,32
(19):6223鄄6232.
海草场生态系统及其修复研究进展
潘金华1,2,*,江摇 鑫2,赛摇 珊2,周文江2,吴家奇2,李晓捷2,杨官品1
(1. 中国海洋大学,海洋生命学院,青岛摇 266003;
2. 国家海藻工程技术研究中心,山东东方海洋科技股份有限公司,烟台摇 264003)
摘要:海草场能够提供重要的生态系统服务。 自 20 世纪末以来,由于人类活动和自然灾害的影响,全球范围内的海草场出现了
急剧衰退,由此也促进了海草场生态系统的研究以及海草场人工修复技术的发展。 近年来,针对海草场生境流失的现状,中国
也开始开展海草场修复工作。 从以下方面进行论述:(1)海草的种类、分布,海草场生态系统功能及其生态系统服务:与陆地系
统相比,全球海草物种多样性较低,了解海草的分布特征有助于通过了解海草如何适应当地环境压力,以揭示海草适应环境的
能力;海草场提供重要而广泛的自然生态系统服务,特别是在维护近岸生态系统健康和满足人类需求过程中起到重要的作用;
(2)海草场的衰退及其原因:认识并缓解人类压力对海草场的危害是促进海草场生态系统可持续发展的重要一环;(3)国内外
海草场修复现状:以此阐明海草场修复原理,为海草场修复提供科学的方法;(4)总结与讨论:基于科学研究背景,为中国海草
场生态系统保护和修复提出建议。 海草场的修复和保护应当相辅相成,并与我国海岸长远规划相结合,以此推动我国海草场生
态系统服务的可持续发展。
关键词:海草场;生态系统功能;生态系统服务;衰退;修复
Seagrass meadow ecosystem and its restoration: a review
PAN Jinhua1,2,*,JIANG Xin2,SAI Shan2,ZHOU Wenjiang2,WU Jiaqi2, LI Xiaojie2,YANG Guanpin1
1 College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
2 National Algae Engineering and Technique Research Center, Shandong Oriental Ocean Sci鄄tech Co. , Ltd. , Yantai 264003, China
Abstract: Seagrass meadows have long been recognized for the important ecosystem services they provide. Seagrass
meadows not only play critical roles in near shore primary production and nutrient cycling, but also provide feeding, refuge
and nursery habitat for a diverse array of marine organisms, and increase the stability of the seafloor. However, seagrass
meadows have suffered great declines in the last century from anthropogenic effects, which in turn stimulated studies of
seagrass ecosystems as well as development of restoration techniques. More recently, China has initiated restoration work on
seagrass ecosystems in direct response to observed and anticipated loss of seagrass habitat. Here, four topics are reviewed
that form the basis of the Chinese restoration effort:(1) Seagrass meadow ecosystem analysis, (2) Declines of seagrass
meadows and its reasons, (3) Progress of seagrass restoration techniques abroad and in China, and (4) Actionable
guidance. Under (1 ), seagrass species and their distribution, functions and ecosystem services will be inventoried.
Although seagrasses globally have comparatively ( to terrestrial systems) low taxonomic diversity they still have discernible
niches whose ecological limits must be understood in order to forecast their response and resiliency when faced with local
stressors. Because seagrasses have successfully colonized all but the most polar seas and thus have occupied wider
latitudinal ranges as compared with the other major coastal marine habitats (mangroves and coral reefs in tropical regions,
http: / / www. ecologica. cn
salt marshes in temperate regions), defining their ecological limits is a significant challenge. Moreover, although seagrasses
indisputably provide important and extensive natural resource services, specifically identifying those services in the context
of the near shore ecology and human needs are fundamental to establishing effective protection. Under (2), identification
and mitigation of human stressors that impair or eliminate seagrasses in coastal waters is a fundamental step to creating a
sustainable resource base. The impact of local, anthropogenic stressors ( eutrophication, dredging and near shore
engineering) needs also to be separated from far鄄field effects such as global warming, sea level change, natural diseases,
and disturbance events such as typhoons in order to understand that which is manageable and that which is natural or beyond
local boundaries and thus not practicable for intervention. Under (3), seagrass restoration has been practiced for decades,
with the first documented attempt at seagrass restoration being carried out in the USA in 1947. However, it was not until the
mid鄄1970s that development of seagrass restoration techniques began to move beyond the experimental stage. In the past 40
years there has been considerable development of restoration methodologies and techniques, and a significant increase in the
number of locations and species involved. Nonetheless, because seagrass restoration typically takes place in open
(uncontrolled or non鄄engineered) settings, the restoration process is widely recognized as being complex and expensive.
The most common method has involved the transplantation of adult plants, because they result in an immediate presence of
the seagrass community. Some of these methods have involved transplantation of seagrass and associated sediments, whilst
with other methods only the seagrass plant is utilized. But in recent years, new seeding techniques for a few species have
been developed and successfully employed. Regardless of the method, the general success of previous restoration attempts
have been variable and unfortunately in many cases, have resulted in limited survival and coverage ( average success has
been 50% ). In most cases the transplantation of seagrasses relies on harvest from otherwise healthy meadows, which for
some species (but not many in China) have extremely slow recovery rates, making donor bed impacts a concern for those
species. Nonetheless, there remains an urgent need for better understanding of the limiting factors for seagrass in a
restoration context and to employ new advances in applied research and methodology to conduct seagrass restoration in a
cost鄄effective manner over large spatial extents. Finally, under (4) we propose to provide actionable guidance for seagrass
conservation and restoration efforts in China. China covers two geographic bioregions and has a vast ( but poorly
inventoried) expanse of seagrass meadows along its coast. But China has not yet developed a comprehensive study of
seagrass meadow ecosystems and applied practices in restoration. As a consequence of limited studies and popular
understanding of the importance of seagrass resources, seagrass meadows in China are widely vulnerable and threatened.
Consequently, seagrass meadows in China have, like many other under鄄managed seagrass ecosystems worldwide, suffered
great declines from excessive emission of nutrients and pollution of coastal waters. Although there have been some limited
studies that have been highly focused on seagrass restoration, China忆s ability to incorporate restoration into a management
strategy has been severely limited by knowledge gaps identified in the four topic areas defined here. Without a balance of
studies involving inventories, functions and services, population ecology and disturbance responses in which to place
seagrass restoration in context, it is likely that (as occurred in the U. S. during the 1960忆s and 1970忆s) seagrass restoration
could be perceived as an inappropriate solution to many coastal development problems, resulting in failed projects and
continued seagrass losses. We conclude that conservation and restoration of seagrass meadows should be integrated with
coastal planning in China for sustainable seagrass ecosystem services.
Key Words: seagrass meadow;ecological functions;ecosystem services;decline;restoration
海草场与珊瑚礁、红树林是三大典型海洋生态系统[1],可以稳定底质,缓解海浪对沿岸侵蚀,改善水质,
提供重要初级生产力,为次级消费者提供食物网支撑,为经济水产动物提供栖息地和保障沿海旅游业健康发
展[2],对维护近岸海洋生态系统健康、保护沿海渔业资源具有重要作用[3]。 全球气候变化和海洋过度开发导
4226 摇 生摇 态摇 学摇 报摇 摇 摇 32 卷摇
http: / / www. ecologica. cn
致的包括海草场生态系统在内的海洋生态环境恶化和局部海洋生态失衡,已在全球范围内越来越多地引起各
国政府、研究机构和科研院校的关注[4]。 进行海草场生态修复对缓解近海生态健康压力,改善近海水质环境
具有重要意义。 资料记载的第一次人工海草场修复始于 1947 年[5],此后,世界范围内(主要在发达国家)的
海洋学者相继开展海草场生态系统研究和修复工作[6],积累了较为丰富的实践经验。 本文总结了世界主要
海草场生态研究成果和海草场修复技术发展,对海草场生态修复存在的问题进行了阐述,并在一定层面提出
了相关解决问题的策略,以引起海洋研究领域对海草场生态系统的重视,为我国起步较晚的海草场生态系统
的保护和修复提供一定的指导。
1摇 海草场生态系统
海草大面积聚集生长在海岸潮下带,浅滩,泻湖,河口等[3],最大可形成面积数百万英亩的海草场[7],构
成一个庞大的海草场生态系统。
1. 1摇 海草场的分布
海草是海洋单子叶被子植物,全世界海草分 6 科 14 属,共 66 种[2],已知中国海区有 10 属 20 种[8鄄9]。 海
草分布面积占全球海洋面积的 0. 1%—0. 2% [10],在热带、温带和北极圈地区均有海草生长[11]。 Short等[12]依
据气候带等因素影响将全球海草划分为 6 大区系,分别为 4 个温带区系:温带北大西洋区系、温带北太平洋区
系、温带地中海区系、温带南洋区系(新西兰、澳洲南海岸、非洲南海岸和南美海岸)和 2 个热带区系:热带大
西洋区系和热带印度洋鄄太平洋区系。 不同区系海草多样性差异较大,印度洋鄄太平洋区系物种多样性最高,
有多达 12 种。 海带场和盐沼生境主要分布在温带地区,珊瑚礁系统与红树林系统则只分布在热带海区[4]。
与其它主要海岸生态系统相比,海草场生态系统分布更广泛,海草生长在中潮带至潮下带,绝大部分生长在海
平面以下 25 m深度以内[11]。 目前报道的分布深度最深的海草是印度洋卡拉若斯群岛的毛叶盐藻(Halophila
decipiens),最深深度达 86 m[13]。
1. 2摇 海草场生态系统服务
生态系统功能是指生态系统的生境、生物或系统属性或过程,生态系统产品(例如食物)和服务(例如废
弃物吸收)是指人类直接或间接地从生态系统功能中获得的收益,为简便起见,生态系统产品和服务统称为
生态系统服务[14]。 海草场在海洋生态系统特别是近岸生态系统中扮演着许多重要角色,提供了大量的不可
取代的生态系统服务:(1)海草场能够减缓海浪对海岸的侵蚀、稳定底质[15鄄16]从而保护海岸环境;(2)能吸收
营养盐和重金属,净化和改善水质[17鄄18];(3)作为重要的初级生产者,是地球碳循环和氮循环的重要一环[19];
(4)是许多浮游生物、底栖生物和附着生物赖以生存的场所[20],同时也为许多重要经济鱼类提供产卵场和孵
幼场所[18],海草场还是儒艮、海龟和海牛等珍贵保护动物的生存栖地并直接为其提供食物[12],对维护地球生
物多样性具有重要意义。
此外,热带地区的海草场生态系统在与红树林生态系统和珊瑚礁生态系统的交互作用中扮演着至关重要
的角色[3],海草场系统作为典型海洋三大生态系统中的重要一员,在保障另外两个海洋生态系统理化因素和
生物因素双方面的基础稳定性当中提供了重要的支撑服务[21鄄22]。 据统计估计,每公顷海草场每年在海洋环
境中营养循环及直接产品的产出价值高达 USD 19,004,全球每年海草鄄海藻场生态系统服务价值总流量达
USD 3. 801伊1012 [14]。
2摇 海草场生态系统的衰退
受自然因素和人类活动干扰的影响[1],不论是在发达国家还是发展中国家海草场都在迅速缩减[23]。 据
2003 年联合国环境规划署(UNEP)出版的《世界海草地图集》报道,全球海草场生长环境日益恶化,全球仅有
的 17. 7 万 km2 的海草场在 1993—2003 的 10a间锐减 2. 6 万 km2,缩减约 15% ,并威胁到了其它海洋生物的
生存[3]。
2. 1摇 影响海草场生态系统衰退的自然因素
来自自然因素扰动的影响:(1)首要罪魁祸首就是全球气候变化的威胁———全球变暖、海平面上升[4, 24]。
5226摇 19 期 摇 摇 摇 潘金华摇 等:海草场生态系统及其修复研究进展 摇
http: / / www. ecologica. cn
全球变暖导致海水温度升高,直接导致了某些海草场由于不适应升高的海水温度而大量衰退[25],并且海水温
度上升直接危害到海草新陈代谢和碳平衡[26]。 海平面上升直接导致了海草场生境水深的变化,降低了光照
辐射,影响海草光合作用而导致海草死亡[27鄄28];(2)台风的频繁侵扰亦会对海草场产生较大的影响[29],特别
是在海草有性繁殖季节,台风会将海草繁殖枝破坏并吹到岸上或其它不适区域导致海草场种子库的种子流
失[30]。 然而,海草种子在多年生海草场剧烈衰退之后的自然种群恢复[31鄄33]和维持 1 年生海草场的可持续重
建[34]中发挥着无可替代的关键作用,台风造成的种子库流失严重影响海草场的自我修复功能;(3)火山喷发、
地震[35]以及疾病的爆发[36]也会引起海草场急剧衰退;(4)食海草动物的大量摄食也会对海草场生态系统造
成一定的负面影响[37鄄38]。
2. 2摇 影响海草场生态系统衰退的人类因素
沿海地区人口压力导致环境的剧烈变化给海草场生态系统造成了巨大的威胁[4],海草场的生长环
境———海岸带注定了海草场必然受到人类活动的干扰[39]。 由于人类原因导致的环境压力如污染物、沉积物、
化肥过量使用和有毒化合物向海洋无限制的排放等,三大典型海洋生态系统都在呈加速度的退化趋势[40]。
(1)人类活动导致海区透明度的降低摇 相对于浮游植物而言海草对光线具有更高的要求[41鄄42],海草场全
球范围内的衰退往往主要来自光照条件压力的增加[43],因人类生产生活引起的营养盐过度排放[44],水体富
营养化、附生生物、浮游植物和浊度的升高以及赤潮的频繁爆发导致海草场接受光线严重不足而大量衰
退[33, 45鄄46]。 沿海水产养殖业的大力发展很大程度上促进了沿海海域的富营养化和大量沉积物产生[47鄄48];
(2)机械损坏摇 船用螺旋桨[49鄄50]、渔业拖网和船锚[51鄄53]的直接机械损害;
(3)城市化扩展速度加剧,填海造地,采挖滩涂和浅海底生物资源、生物入侵[54]以及海上油田、轮船溢
油[55]等都会对海草场生态系统造成毁灭性的灾难。
导致海草场衰退的因素是复杂的,人类因素和自然因素之间又存在相互影响相互促进的关系。 某些自然
因素对海草场生态系统的影响可能是间接受到人类活动的影响导致的,如全球变暖[4]。 人类对环境无休止
的开发和破坏导致了自然环境的恶化和海洋生态失衡,从而加剧了海草场的衰退。 因此,在把影响海草场衰
退的因素一部分推脱归咎于大自然的同时,不得不对人类自己活动对海草场生态系统的影响进行深刻的
反省。
3摇 海草场生态系统修复研究进展
3. 1摇 国外海草场修复研究进展
越来越多的文献报道世界各地海草场退化或消失的严峻形势下[56],对以海草场生态系统为主的海岸带
生态系统未来发展趋势的预测是非常不乐观的[4]。 资料记载的第一次人工海草场生态修复始于 1947 年[5]。
历经半个多世纪的时间,直到 20 世纪末, 海草场生态修复才在世界范围内(主要在发达国家)相继开展[6]。
其中规模最大、影响范围最广的当属美国国家海洋与大气管理局(NOAA,National Oceanic and Atmospheric
Administration)管理下的美国切萨皮克湾(Chesapeake Bay)海草场大规模修复计划(Chesapeake Bay Program,
切萨皮克湾计划) [30]。 切萨皮克湾是世界上最大的河口湾之一,该计划自 2003 年开始启动以来至 2008 年,
构建海草场的速率约为 13. 4hm2 / a,并且本计划大大促进了海草场人工修复新技术和新设备的开发和
应用[57]。
3. 1. 1摇 海草成体移栽技术进展
最初的海草场修复主要是通过移植成体的海草[16]。 成体海草植株移栽方法有(1)插管法[58]:利用岩芯
取样管将海草先装进管子,然后再转移进移栽目标区挖的洞内,此法比较费时费力,因此移植成本很高;(2)
枚钉法[59]:从移植地将海草附着的泥去掉,用 U形钉子直接插入海底以固定,此法比插管法节省时间,简单易
行且成活率高;(3)草皮法和泥盆法[58]:此方法类似于陆地上带土栽培技术,即把海草成块铲起,装入托盘或
类似于花盆的容器内,然后在目标海区挖同等大小的坑,将整个“草皮冶埋入坑内。 此外,还有一些其它方法
如把海草一簇一簇夹在绳索上,然后把整条绳索用 U形钉固定在海底[16]。 上述方法的优点是成活率较高,能
6226 摇 生摇 态摇 学摇 报摇 摇 摇 32 卷摇
http: / / www. ecologica. cn
达到 80%左右,但缺点是都需要潜水作业,大大提高了劳动强度和成本。 Lee和 Park[60]开发了一种利用牡蛎
壳将植株沉入海底的移栽方法,省去水下种植劳动,降低移栽成本,但此方法仅在水流平静的泥底质海区适
用,在水流较强的沙底质海区,移栽成活率仅为 5%左右。 Fishman[61]等尝试一种机械海草移植船舶但未达到
预期效果而未获成功。
3. 1. 2摇 海草种子播种技术进展
移栽成体海草来进行海草场生态修复,普遍存在劳动强度大和成本高等问题[16, 61]。 上世纪末本世纪初,
人们开始开发海草种子播种技术来代替高成本的海草成体移栽进行海草场生态修复[62鄄63]。 海草种子具有体
积小易于运输,而且对于成体移栽而言,收集种子对原海草场造成的危害较小等优点[64],利用种子进行海草
场修复逐步发展成为大规模海草场生态修复的主要手段[65鄄66],并且促进了海草种子基础生物学的广泛而深
入的研究[64]。 最初的种子采集是通过潜水员在水下人工收集种子,综合效率大约是每名经验丰富的潜水员
每小时 1. 6 万粒,后来又发明了海草繁殖枝采集机械船,大大提高了种子收集效率,平均每人每小时可收集种
子高达 13. 2 万粒,但并非所有的地方都可以采用繁殖枝采集机械船,要考虑海草场繁殖枝的密度以及可供采
集繁殖枝的海草场面积的大小,太低的密度和太小的面积都不能真正发挥繁殖枝采集机械船的优势。 由于不
同海草场种子产量不同,同一个海草场不同年份的种子产量也会有较大差异,因此每年收集种子的数量并非
恒定[67]。
最佳播种时机一般是在水温降至 15 益以下时[68]。 主要播种技术有将带有成熟种子的繁殖装入网袋而
后固定漂浮在播种海区的“漂浮播种法冶 [69],利用硅胶介质包裹种子的“机械播种器冶 [70]和利用抽水泵固定
在船上喷洒种子的播种船[67]。 此外亦有学者提出利用地上室内育成的海草苗,然后在合适时机将人工培育
的一定大小海草移栽到需要修复的海草场[53]并取得一定成功[71]。 这些新技术的应用在一定程度上提高了
海草场生态系统的修复效率。
3. 2摇 中国海草场研究进展
我国同时处于温带北太平洋和热带印度洋鄄太平洋两大海草地理区系,海草品种多达 20 种,海草场面积
十分广阔,仅南海海草场面积达就达 2400 hm2[72]。 但是我国海草场生态系统的相关研究起步较晚[73鄄76],对于
海草种子相关生物学的研究鲜有所见[53],且我国东部沿海和黄、渤海区域海草基本状况基础研究资料比较匮
乏[9, 77],但这并不说明我国的海草场生态系统相安无事,人们对近岸环境的不合理利用导致中国华南地区海
草场日趋退化,仅广西合浦海草场 1980—2005 年间由于人类活动造成的直接和间接导致其生态服务价值损
失达 7. 38 亿元人民币[78]。 因此,我国海洋学者应加强我国海草场的生态研究,对全国范围内的海草场进行
大规模生态普查,对我国特定近岸海洋环境下海草场生态功能、影响海草场生态环境因素进行深入研究并形
成全面而系统的分析、评价机制,为建立我国海草场生态系统信息库和进行海草场保护以及海草场生态系统
的人工生态修复提供依据。
3. 3摇 海草场生态系统人工修复面临的困境
大规模的海草场修复计划在改善局部生态健康,提高生态系统功能水平和增加重要渔业资源生境的保有
量中起到了重要的作用[30]。 但目前来说依然面临着较大的困难。
3. 3. 1摇 成本高
海草场生态系统修复是一项费时、费力和高成本的综合工程[39, 61]。 海草成体移栽的综合成本高达 USD
91300 / hm2 [65]。 即使后来采用种子进行海草场修复,根据播种密度和播种方法的不同,包括种子采集、处理、
保存等环节,综合修复成本也高达 USD 6674—165699 / hm2,平均每播种 1 粒种子的成本高达 USD 0郾 17,这还
没有包括一次性设备购买的投入与损耗、修复工程之前与之后的监测及其它一些费用[79]。 尽管人们的海草
场生态系统方面的知识日益丰富,技术研究与应用不断取得新进展,海草场生态系统人工修复的成本已呈下
降趋势[57],但切萨皮克湾海草场生态系统修复工程每年耗费资金仍达数百万美元,如此高昂的代价或许是发
展中国家较少开展海草场生态修复的原因之一。
7226摇 19 期 摇 摇 摇 潘金华摇 等:海草场生态系统及其修复研究进展 摇
http: / / www. ecologica. cn
3. 3. 2摇 效率低
成体移栽法虽然具有较高的成活率[80],但是因其破坏原海草场严重及劳动强度大成本高等原因,目前学
者今本不推荐再采用成体移栽的方法进行海草场人工修复。 但是以种子播种为手段进行海草场修复也存在
诸多问题。 Pickerell等[69]报道的 “浮漂播种法冶成苗率在 6. 9% ,切萨皮克湾成修复计划当中苗率在 0. 6%—
39. 8%范围内,且普遍较低[81],罗德岛(Rhode Island)播种成苗率在 5%—15%之间[65]。 大规模海草场修复
工程中,像地上农业一样把种子直接埋入底质是一件非常困难的事情,需要大量潜水员长时间高强度地水下
作业才能完成,目前还没有其它更好的行之有效的技术可供应用,而要想得到很高的成苗率,种子的埋藏最佳
深度是在 1—2 cm,深度大于 2 cm会显著降低成苗率[82]。 如此苛刻的种子埋藏深度要求也成为阻碍播种技
术研发的一大障碍。 虽然应用新技术使得切萨皮克湾海草场修复计划速度在一定程度上大大提高,但当初计
划于 2010 年完成 185000 英亩的恢复计划至今完成不足 0. 2% [30],远未完成既定目标。 虽然实验室内种子成
苗率可达 80%以上[53],但是人工育苗成幼苗之后依然面临着转移至自然海区的困难,成本依然很高[71]。 但
实际海草场生态修复实践中,世界范围内的播撒种子成苗率普遍在 1%—10%之间,海区播种后低成苗率已
成为制约海草场生态系统修复工程的一大瓶颈[83]。
4摇 总结与讨论
海草场生态系统以其独特的生态特征和独具魅力的生态服务功能为数亿人和无数的水生动、植物直接或
间接地提供了无可替代的巨大的生态系统服务[14]。 2008 年 8 月世界海草协会全球海草监测网将一套全球标
准化海草监测工具赠予广西红树林研究中心,标志着中国首个全球海草科学监测站的正式建立[84]。 对于我
国海草场生态系统的研究和修复工作,笔者做出如下建议:
(1)加强海草及海草场生态系统基础生物学领域的研究,为开发低成本、高效率的海草场生态修复技术
提供基础知识指导。 我们对大多数地区的许多海草的种群动态知识的了解仍旧是相对贫乏的[85],海草场衰
退背后的机制以及由此产生的对近岸生物地球化学的效应仍然是未来海草研究一大趋势。 进一步对分布于
我国的各种海草的繁殖生物学及种群动态进行基础领域的研究,对我国海草场生态系统的保护和修复具有重
要意义。
(2)开发利用种子播种技术进行海草场修复的关键技术,提高成苗率,以提高修复效率,降低修复成本。
不论采用何种方式移栽成体海草进行海草场修复都是一个耗时耗力的过程,而且存在对原有海草场的直接破
坏。 而利用海草种子进行室内人工育苗再进行移栽,虽然具有较高的萌发率和成苗率[53],但是育苗过程中的
水、电、人工费也是一个巨大的经济开支,且育成幼苗之后依然面临着巨大的移栽成本,因此室内育苗再移栽
的方法并非是一个经济高效的方法[71]。 因地制宜,针对不同海区和海草种类,研究最佳播种时机以提高成活
率,开发更加简单易行的新型播种方法,是提高生态修复效率,有效利用种子进行海草场修复的关键节点
之一。
(3)加强海草场知识的科普教育,提高海草公众关注度,增加科研投入。 利用媒体和先进网络平台技术,
增加海草场生态系统公众关注度,吸引广泛的群众积极参与到海草场生态系统保护和生态修复活动中来。 尽
管海草科学迅速成长起来,与海草有关的科技论文迅速增加,但是海草与公众视线之间的距离与其它海岸带
生态系统(如珊瑚礁和红树林)相比还有很大的差距。 红树林生态系统和珊瑚礁生态系统受到媒体的关注程
度分别是海草场生态系统的 3 倍和 100 倍,然而海草鄄海藻场生态系统所产生的生态服务价值却是红树林鄄盐
沼生态系统的 2 倍之多[14]。 媒体关注度的差别部分地反映出科研投入不均衡,单从发表的科技论文数量上
看,海草方面论文数量也远低于盐沼、红树林和珊瑚礁[4],种种证据表明与其它近岸生态系统相比,海草场生
态系统距公众视线所关注相距甚远。 为提高海草场在媒体和公众当中的关注度,需要政府政策引导和科研基
金的支持,加大对公众进行海草知识科普教育,并且吸引志愿者[30]参与到海草场生态系统保护和人工修复活
动中来,这也是降低生态修复成本的一个重要途径。
(4)学习发达国家海草场修复先进经验,寻求国际援助,少走弯路,减少不必要的重复投入以降低成本。
8226 摇 生摇 态摇 学摇 报摇 摇 摇 32 卷摇
http: / / www. ecologica. cn
发展中国家在海草场生态系统保护和修复过程中应当得到来自发达国家的支持。 发达国家比发展中国家在
先进技术和资金方面都占有绝对优势,然而发展中国家的生物多样性及其潜力却高于发达国家[86],发达国家
对发展中国家在海草场保护及海草场生态系统人工修复方面的援助有利于全球生物多样性的保护和整个海
洋生态系统的平衡与健康发展,可以从根本上改善发达国家近岸沿海生态环境健康,也有利于推进海草场生
态系统全球化监测网络的建设,有利于减少发展中国家在海草场生态修复过程中为开发修复技术而进行的重
复投入,节约成本,提高效率。
(5)坚持海草场保护和修复相结合,以保护为主,以修复为辅,促进海草场生态系统自然恢复和可持续发
展。 加强监管,对我国现有自然海草场进行监测和保护,促进海草场自然恢复进程。 推进和健全相关法律法
规的形成与实施,加强政府政策引导,严格监管,大力推进海草场生态系统保护,走生态保护和生态修复相结
合的可持续发展之路,才能实现海草场生态系统健康发展,造福人类。
致谢: 感谢美国国家海岸带海洋科学研究中心应用生态与恢复研究中心主任 Mark S. Fonseca 教授对英文摘
要的润色。
References:
[ 1 ]摇 Short F T, Wyllie鄄Echeverria S. Natural and human鄄induced disturbance of seagrasses. Environmental Conservation, 1996, 23(1): 17鄄27.
[ 2 ] 摇 Larkum A W D, Orth R J, Duarte C M. Seagrasses: Biology, Ecology and Conservation. The Netherlands: Springer, 2006: 1鄄691.
[ 3 ] 摇 Green E P, Short F T. World Atlas of Seagrasses. California: University of California Press, 2003: 1鄄298.
[ 4 ] 摇 Orth R J, Carruthers T J B, Dennison W C, Duarte C M, Fourqurean J W, Heck K L Jr, Hughes A R, Kendrick G A, Kenworthy W J, Olyarnik
S, Short F T, Waycott M, Williams S L. A global crisis for seagrass ecosystems. BioScience, 2006, 56(12): 987鄄996.
[ 5 ] 摇 Addy C E. Eelgrass planting guide. Maryland Conservationist, 1947, 24: 16鄄17.
[ 6 ] 摇 Wear R J. Recent advances in research into seagrass restoration. Prepared for the Coastal Protection Branch, Department for Environment and
Heritage. SARDI Aquatic Sciences Publication No. RD04 / 0038鄄4. SARDI Aquatic Sciences, Adelaide, 2006.
[ 7 ] 摇 Fonseca M S, Kenworthy W J, Courtney F X. Development of planted seagrass beds in Tampa Bay, Florida, USA: I. Plant components. Marine
Ecological Progress Series, 1996, 132: 127鄄139.
[ 8 ] 摇 Lin P. Marine Higher Plant Ecology. Beijing: Science Press, 2006.
[ 9 ] 摇 Han Q Y, Shi P. Progress in the study of seagrass ecology. Acta Ecologica Sinica, 2008, 28(11): 5561鄄5570.
[10] 摇 Duarte C M. The future of seagrass meadows. Environmental Conservation, 2002, 29(2): 192鄄206.
[11] 摇 den Hartog C. The Seagrass of the World. Amsterdam: North鄄Holland Publication, 1970: 1鄄275.
[12] 摇 Short F, Carruthers T, Dennison W, Waycott M. Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine
Biology and Ecology, 2007, 350(1 / 2): 3鄄20.
[13] 摇 Len Mckenzie. Seagrass Educators Handbook. Seagrass鄄Watch HQ / DPI and F, 2008: 1鄄20.
[14] 摇 Costanza R, d忆Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O忆Neill R V, Paruelo J, Raskin R G, Sutton P, van
den Belt M. The value of the world忆s ecosystem services and natural capital. Nature, 1997, 387(6630): 253鄄260.
[15] 摇 Fonseca M S, Cahalan J A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine Coastal and Shelf Science, 1992, 35
(6): 565鄄576.
[16] 摇 Fonseca M S, Bell S S. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Marine Ecology Progress Series,
1998, 171: 109鄄121.
[17] 摇 Touchette B W, Burkholder J M. Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and
Ecology, 2000, 250(1 / 2): 133鄄167.
[18] 摇 Lewis M A, Dantin D D, Chancy C A, Abel C K, Lewis C G. Florida seagrass habitat evaluation: a comparative survey for chemical quality.
Environmental Pollution, 2007, 146(1): 206鄄218.
[19] 摇 Touchette B W, Burkolder J M. Carbon and nitrogen metabolism in the seagrass, Zostera marina L. : environmental control of enzymes involved in
carbon allocation and nitrogen assimilation. Journal of Experimental Marine Biology and Ecology, 2007, 350(1 / 2): 216鄄233.
[20] 摇 Jackson E L, Rowden A A, Attrill M J, Bossey S J, Jones M B. The importance of seagrass beds as a habitat for fishery species / / Oceanography
and Marine Biology: an Annual Review. 2001, 39: 269鄄303.
[21] 摇 Gillanders B M. Seagrasses, fish, and fisheries. In: Larkum A W D, Orth R J, Duarte C M, eds. Seagrass: Biology, Ecology and Conservation.
9226摇 19 期 摇 摇 摇 潘金华摇 等:海草场生态系统及其修复研究进展 摇
http: / / www. ecologica. cn
The Netherlands: Springer, 2006: 503鄄536.
[22] 摇 Koch E W, Ackerman J D, Verduin J, van Keulen M. Fluid dynamics in seagrass ecology鄄from molecules to ecosystems / / Larkum A W D, Orth R
J, Duarte C M, eds. Seagrass: Biology, Ecology and Conservation. The Netherlands: Springer, 2006: 193鄄225.
[23] 摇 Short F T, Koch E W, Creed J C, Magalh觔es K M, Fernandez E, Gaeckle J L. Seagrass Net monitoring across the Americas: case studies of
seagrass decline. Marine Ecology, 2006, 27(4): 277鄄289.
[24] 摇 Beer S, Koch E W. Photosynthesis of seagrasses vs. marine macroalgae in globally changing CO2 environments. Marine Ecology Progress Series,
1996, 141: 199鄄204.
[25] 摇 Lee K S, Park S R, Kim Y K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of
Experimental Marine Biology and Ecology, 2007a, 350: 144鄄175.
[26] 摇 Zimmerman R C, Smith R D, Alberte R S. Thermal acclimation and whole鄄plant carbon balance in Zostera marina L. ( eelgrass) . Journal of
Experimental Marine Biology and Ecology, 1989, 130(2): 93鄄109.
[27] 摇 Thom R M, Southard S L, Borde A B, Stoltz P. Light requirements for growth and survival of eelgrass (Zostera marina L. ) in Pacific Northwest
(USA) estuaries. Estuaries and Coasts, 2008, 31(5): 969鄄980.
[28] 摇 Kairis P A, Rybczykb J M. Sea level rise and eelgrass (Zostera marina) production: a spatially explicit relative elevation model for Padilla Bay,
WA. Ecological Modelling, 2010, 221(7): 1005鄄1016.
[29] 摇 Orth R J, Moore K A. Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Science, 1983, 222(4619): 51鄄53.
[30] 摇 Shafer D J, Bergstrom P. Large鄄scale submerged aquatic vegetation restoration in Chesapeake Bay. ERDC / EL TR鄄08鄄20. Vicksburg, MS: U. S.
Army Engineer Research and Development Center, 2008.
[31] 摇 Plus M, Deslous鄄Paoli J M, Dagault F. Seagrass (Zostera marina L. ) bed recolonisation after anoxia鄄induced full mortality. Aquatic Botany,
2003, 77(2): 121鄄134.
[32] 摇 Greve T M, Krause鄄Jense D, Rasmussen M B, Christensen P B. Means of rapid eelgrass (Zostera marina L. ) recolonisation in former dieback
areas. Aquatic Botany, 2005, 82(2): 143鄄156.
[33] 摇 Lee K S, Park J I, Kim Y K, Park S R, Kim J H. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role
of new shoot recruitment from seed banks. Marine Ecology Progress Series, 2007b, 342: 105鄄115.
[34] 摇 Santamar侏a鄄Gallegos N A, S佗nchez鄄Lizaso J L, F佴lix鄄Pico E F. Phenology and growth cycle of annual subtidal eelgrass in a subtropical locality.
Aquatic Botany, 2000, 66(4): 329鄄339.
[35] 摇 Meehan A J, West R J. Recovery times for a damaged Posidonia australis bed in south eastern Australia. Aquatic Botany, 2000, 67 (2):
161鄄167.
[36] 摇 Ralph P J, Short F T. Impact of the wasting disease pathogen, Labyrinthula zosterae, on the photobiology of eelgrass Zostera marina. Marine
Ecology Progress Series, 2002, 226: 265鄄271.
[37] 摇 Preen A R, Marsh H. Response of dugongs to large鄄scale loss of seagrass from Hervey Bay, Queensland Australia. Wildlife Research, 1995, 22
(4): 507鄄519.
[38] 摇 Heck K L, Pennock J R, Valentine J F, Coen L D, Sklenar S A. Effects of nutrient enrichment and small predator density on seagrass ecosystems:
an experimental assessment. Limnology and Oceanography, 2000, 45(5): 1041鄄1057.
[39] 摇 Fonseca M S, Kenworthy W J, Thayer G W. Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters
/ / NOAA Coastal Ocean Program, Decision Analysis Series No. 12. NOAA Coastal Ocean Office, Silver Spring, Md, 1998: 222鄄222.
[40] 摇 Schaffelke B, Mellors J, Duke N C. Water quality in the Great Barrier Reef region: responses of mangrove, seagrass and macroalgal communities.
Marine Pollution Bulletin, 2005, 51(1 / 4): 279鄄296.
[41] 摇 Kenworthy W J, Haunert D E. The light requirement of seagrasses: proceedings of a workshop to examine the capability of water quality criteria,
standards and monitoring program to protect seagrasses. National Oceanic and Atmospheric Administration, Tech. Memo. NMFS鄄SEFC鄄 287.
Beaufort, N. C. 1991: 181鄄181.
[42] 摇 Fitzpatrick J, Kirkman H. Effects of prolonged shading stress on growth and survival of seagrass Posidonia australis in Jervis Bay, New South
Wales, Australia. Marine Ecology Progress Series, 1995, 127: 79鄄289.
[43] 摇 Shepherd S A, McComb A J, Bulthuis D A, Neverauskas V, Steffensen D A, West R. Decline of seagrasses / / Larkum A H D, McComb A J,
Shepherd SA, eds. Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region. Amsterdam:
Elsevier, 1989: 346鄄393.
[44] 摇 Short F T, Burdick D M. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts.
Estuaries, 1996, 19(3): 730鄄739.
[45] 摇 Hauxwell J, Cebrian J, Valiela I. Light dependence of Zostera marina annual growth dynamics in estuaries subject to different degrees of
0326 摇 生摇 态摇 学摇 报摇 摇 摇 32 卷摇
http: / / www. ecologica. cn
eutrophication. Aquatic Botany, 2006, 84(1): 17鄄25.
[46] 摇 Burkholder J M, Tomasko D A, Toucheete B W. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology, 2007, 350
(1 / 2): 46鄄72.
[47] 摇 Pergent鄄Martini C, Boudouresque C F, Pasqualini V, Pergent G. Impact of fish farming facilities on Posidonia oceanica meadows: a review.
Marine Ecology, 2006, 27(4): 310鄄319.
[48] 摇 Cancemi G, De Falco D, Pergent G. Effects of organic matter input from a fish farming facility on a Posidonia oceanica meadow. Estuarine, Coastal
and Shelf Science, 2003, 56(5 / 6): 961鄄968.
[49] 摇 Sargent F J, Leary T J, Crewz D W, Kruer C R. Scarring of Florida忆s seagrasses: assessment and management options. Florid Department of
Environmental Protection, St. Petersburg, FL. FMRI Technical Report TR鄄1. 1995: 46鄄46.
[50] 摇 Dawes C J, Andorfer J, Rose C, Uranowski C, Ehringer N. Regrowth of the seagrass Thalassia testudinum into propeller scars. Aquatic Botany,
1997, 59(1 / 2): 139鄄155.
[51] 摇 Burdick D M, Short F T. The effects of boat docks on eelgrass beds in coastal waters of Massachusetts. Environmental Management, 1999, 23(2):
231鄄240.
[52] 摇 Neckles H A, Short F T, Barker S, Kopp B S. Disturbance of eelgrass Zostera marina by commercial mussel Mytilus edulis harvesting in Maine:
dragging impacts and habitat recovery. Marne Ecology Progress Series, 2005, 285: 57鄄73.
[53] 摇 Pan J H, Jiang X, Li X J, Cong Y Z, Zhang Z Z, Li Z L, Zhou W L, Han HW, Luo S J, Yang G P. Influence of temperature and salinity on
germination of eelgrass (Zostera marina L. ) seeds. Journal of Ocean University of China, 2011, 10(2): 147鄄152.
[54] 摇 Fan H Q, Peng S, Shi Y J, Zheng X W. The situations of seagrass resources and researches along Guangxi coasts of Beibu Gulf. Guangxi
Sciences, 2007, 14(3): 289鄄295.
[55] 摇 Huang D J, Huang X P. Researches on seagrass pollution ecology and their prospects. Transactions of Oceanology and Limnology, 2007, (B12):
182鄄188.
[56] 摇 Waycott M, Duarte C M, Carruthers T J B, Orth R J, Dennison W C, Olyarnik S, Calladine A, Fourqurean J W, Heck K L Jr, Hughes A R,
Kendrick G A, Kenworthy W J, Short F T, Williams S L. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings
of the National Academy of Sciences, 2009, 106(30): 12377鄄12381.
[57] 摇 Shafer D J, Bergstrom P. An introduction to a special issue on large鄄scale submerged aquatic vegetation restoration research in the Chesapeake Bay:
2003—2008. Restoration Ecology, 2010, 18(4): 481鄄489.
[58] 摇 Fonseca M S, Kenworthy W J, Courtney F X, Hall M O. Seagrass planting in the southeastern United States: methods for accelerating habitat
development. Restoration Ecology, 1994, 2(3): 198鄄212.
[59] 摇 Li W T, Kim J H, Park J I, Lee K S. Assessing establishment success of Zostera marina transplants through measurements of shoot morphology and
growth. Estuarine, Coastal and Shelf Science, 2010, 88(3): 377鄄384.
[60] 摇 Lee K S, Park J I. An effective transplanting technique using shells for restoration of Zostera marina habitats. Marine Pollution Bulletin, 2008, 56
(5): 1015鄄1021.
[61] 摇 Fishman J R, Orth R J, Marion S, Bieri J. A comparative test of mechanized and manual transplanting of eelgrass, Zostera marina, in Chesapeake
Bay. Restoration Ecology, 2004, 12(2): 214鄄220.
[62] 摇 Harwell M C, Orth R J. Eelgrass (Zostera marina L. ) seed protection for field experiments and implications for large鄄scale restoration. Aquatic
Botany, 1999, 64(1): 51鄄61.
[63] 摇 Orth R J, Fishman J R, Harwell M C, Marion S R. Seed鄄density effects on germination and initial seedling establishment in eelgrass Zostera marina
in the Chesapeake Bay region. Marine Ecology Progress Series, 2003, 250: 71鄄79.
[64] 摇 Orth R J, Harwell M C, Bailey E M, Bartholomew A, Jawad J T, Lombana A V, Moore K A, Rhode J M, Woods H E. A review of issues in
seagrass seed dormancy and germination: implications for conservation and restoration. Marine Ecology Progress Series, 2000, 200: 277鄄288.
[65] 摇 Granger S, Traber M, Nixon S W, Keyes R. A practical guide for the use of seeds in eelgrass (Zostera marina L. ) restoration. Schwartz M, ed.
Part 1. Collection, processing, and storage. Narragansett: Rhode Island Sea Grant, 2002.
[66] 摇 Olesen B, Marba N, Duart C M, Savela R S, Fortes M D. Recolonization dynamics in a mixed seagrass meadow: the role of clonal versus sexual
processes. Estuaries, 2004, 27(5): 770鄄780.
[67] 摇 Marion S R, Orth R J. Innovative techniques for large鄄scale seagrass restoration using Zostera marina ( eelgrass) seeds. Restoration Ecology,
2010, 18(4): 514鄄526.
[68] 摇 Moore K A, Orth R J, Nowak J F. Environmental regulation of seed germination in Zostera marina L. ( eelgrass) in Chesapeake Bay: effects of
light, oxygen and sediment burial. Aquatic Botany, 1993, 45(1): 79鄄91.
[69] 摇 Pickerell C H, Schott S, Wyllie鄄Echeverria S. Buoy鄄deployed seeding: Demonstration of a new eelgrass (Zostera marina L. ) planting method.
1326摇 19 期 摇 摇 摇 潘金华摇 等:海草场生态系统及其修复研究进展 摇
http: / / www. ecologica. cn
Ecological Engineering, 2005, 25(2): 127鄄136.
[70] 摇 Traber M, Granger S, Nixon S. Mechanical seeder provides alternative method for restoring eelgrass habitat ( Rhode Island ) . Ecological
Restoration, 2003, 21: 213鄄214.
[71] 摇 Tanner C E, Parham T. Growing Zostera marina (eelgrass) from seeds in land鄄based culture systems for use in restoration projects. Restoration
Ecology, 2010, 18(4): 527鄄537.
[72] 摇 Huang X P, Huang L M, Li Y H, Xu Z Z, Fong C W, Huang D J, Han Q Y, Huang H, Tan Y H, Liu S. Main seagrass beds and threats to their
habitats in the coastal sea of South China. Chinese Science Bulletin, 2006, 51(Suppl II): 136鄄142.
[73] 摇 Yang Z D. The geographical distribution of sea鄄grasses. Transaction of Oceanology and Limnology, 1979, (2): 41鄄46.
[74] 摇 Yang Z D, Wu B L. A preliminary study on the distribution, productivity, structure and functioning of sea鄄grass beds in China. Acta Ecologica
Sinica, 198l, 1(1): 84鄄89.
[75] 摇 Huang X P, Huang L M, Li Y H, Xu Z Z, Fang J W, Huang D J, Han Q Y, Huang H, Tan Y H, Liu S. Main seagrass beds and threats to their
habitats in the coastal sea of South China. Chinese Science Bulletin, 2006, 51(S3): 114鄄119.
[76] 摇 Gao Y P, Fang J G, Zhang J H, Mao Y Z, Du M R, Liu D H. Study on sexual reproductive characteristics of eelgrass Zostera marina L. in
Sanggou Bay. Progress in Fishery Sciences, 2010, 31(4): 53鄄58.
[77] 摇 Li S, Fan H Q, Qiu G L, Shi Y J. Review on research of seagrass beds restoration. Acta Ecologica Sinica, 2010, 30(9): 2443鄄2453.
[78] 摇 Han Q Y, Huang X P, Shi P, Zhang J P. Effects of human activities on seagrass bed ecosystem services value in Hepu of Guangxi Province.
Chinese Journal of Ecology, 2007, 26(4): 544鄄548.
[79] 摇 Busch K E, Golden R R, Parham T A, Karrh L P, Lewandowski M J, Naylor M D. Large鄄Scale Zostera marina ( eelgrass) restoration in
Chesapeake Bay, Maryland, USA. Part I: a comparison of techniques and associated costs. Restoration Ecology, 2010, 18(4): 490鄄500.
[80] 摇 Paling E I, van Keulen M, Wheeler K D, Phillips J, Dyhrberg R, Lord D A. Improving mechanical seagrass transplantation. Ecological
Engineering, 2001, 18(1): 107鄄113.
[81] 摇 Orth R J, Luckenbach M, Moore K A. Seed dispersal in a marine macrophyte: implications for colonization and restoration. Ecology, 1994, 75
(7): 1927鄄1939.
[82] 摇 Granger S L, Traber M S, Nixon S W. The influence of planting depth and density on germination and development of Zostera marina L. seeds.
Biologia Marina Mediterranea, 2000, 7(3): 55鄄58.
[83] 摇 Orth R J, Marion S R, Granger S, Traber M. Evaluation of a mechanical seed planter for transplanting Zostera marina (eelgrass) seeds. Aquatic
Botany, 2009, 90(2): 204鄄208.
[84] 摇 Biodiversity Clearing鄄House Mechanism of China. China忆s First Global Seagrass Net Station was established in Beihai. [2012鄄 01鄄 10] . http: / /
www. biodiv. gov. cn / lygz / lydt / 200808 / t20080817_127330. htm.
[85] 摇 Kenworthy W J. The role of sexual reproduction in maintaining populations of Halophila decipiens: implications for the biodiversity and conservation
of tropical seagrass ecosystems. Pacific Conservation Biology, 2000, 5: 260鄄268.
[86] 摇 Khoshoo T N. Biodiversity in the developing countries / / di Castri F, Youn佴 T, eds. Biodiversity, Science and Development. Towards a New
Partnership. Wallingford: CAB International, 1996: 304鄄311.
参考文献:
[ 8 ]摇 林鹏. 海洋高等植物生态学. 北京: 科学出版社, 2006.
[ 9 ] 摇 韩秋影, 施平. 海草生态学研究进展. 生态学报, 2008, 28(11): 5561鄄5570.
[54] 摇 范航清, 彭胜, 石雅君, 郑杏雯. 广西北部湾沿海海草资源与研究状况. 广西科学, 2007, 14(3): 289鄄295.
[55] 摇 黄道建, 黄小平. 海草污染生态学研究进展, 海洋湖沼通报, 2007, (B12): 182鄄188.
[73] 摇 杨宗岱. 中国海草植物地理学的研究.海洋湖沼通报, 1979, (2): 41鄄46.
[74] 摇 杨宗岱, 吴宝铃. 中国海草场的分布、生产力及其结构与功能的初步探讨. 生态学报, 1981, 1(1): 84鄄89.
[75] 摇 黄小平, 黄良民, 李颖虹, 许战洲, 方静威, 黄道建, 韩秋影, 黄晖, 谭烨辉, 刘胜. 华南沿海主要海草床及其生境威胁. 科学通报,
2006, 51(增刊 3): 114鄄119.
[76] 摇 高亚平, 方建光, 张继红, 毛玉泽, 杜美荣, 刘顶海. 桑沟湾大叶藻有性繁殖特性的观察研究. 渔业科学进展, 2010, 31(4): 53鄄58.
[77] 摇 李森, 范航清, 邱广龙, 石雅君. 海草床恢复研究进展. 生态学报, 2010, 30(9): 2443鄄2453.
[78] 摇 韩秋影, 黄小平, 施平, 张景平. 人类活动对广西合浦海草床服务功能价值的影响. 生态学杂志, 2007, 26(4): 544鄄548.
[84] 摇 中国国家生物多样性交换所. 我国首个全球海草科学监测站在北海市建立. [2012鄄01鄄10] . http: / / www. biodiv. gov. cn / lygz / lydt / 200808 /
t20080817_127330. htm
2326 摇 生摇 态摇 学摇 报摇 摇 摇 32 卷摇
ACTA ECOLOGICA SINICA Vol. 32,No. 19 October,2012(Semimonthly)
CONTENTS
Assessment of monitoring methods for population abundance of Amur tiger in Northeast China
ZHANG Changzhi, ZHANG Minghai, JIANG Guangshun (5943)
…………………………………………
…………………………………………………………………
Changes of residents nitrogen consumption and its environmental loading from food in Xiamen
YU Yang,CUI Shenghui,ZHAO Shengnan, et al (5953)
…………………………………………
……………………………………………………………………………
Analysis of the meiobenthic community in the Pearl River Estuary in summer
YUAN Qiaojun, MIAO Suying, LI Hengxiang, et al (5962)
…………………………………………………………
………………………………………………………………………
Community characteristics of phytoplankton in the coastal area of Leizhou Peninsula and their relationships with primary environ鄄
mental factors in the summer of 2010 GONG Yuyan, ZHANG Caixue, SUN Xingli, et al (5972)………………………………
Morphological differences in statolith and beak between two spawning stocks for Illex argentinus
FANG Zhou, CHEN Xinjun, LU Huajie, et al (5986)
………………………………………
……………………………………………………………………………
Relationships between coastal meadow distribution and soil characteristics in the Yellow River Delta
TAN Xiangfeng, DU Ning, GE Xiuli, et al (5998)
…………………………………
…………………………………………………………………………………
Variation analysis about net primary productivity of the wetland in Panjin region WANG Liwen, WEI Yaxing (6006)………………
Mobilization of potassium from Soils by rhizobium phaseoli ZHANG Liang, HUANG Jianguo, HAN Yuzhu, et al (6016)……………
Autotoxicity of aqueous extracts from plant, soil of peanut and identification of autotoxic substances in rhizospheric soil
HUANG Yuqian, HAN Lisi, YANG Jinfeng, et al (6023)
……………
…………………………………………………………………………
Effects of shading on the photosynthetic characteristics and anatomical structure of Trollius chinensis Bunge
LV Jinhui,WANG Xuan, FENG Yanmeng, et al (6033)
…………………………
……………………………………………………………………………
Short鄄term effects of fire disturbance on greanhouse gases emission from hassock and shrubs forested wetland in Lesser Xing忆an
Mountains, Northeast China GU Han,MU Changcheng, ZHANG Bowen, et al (6044)…………………………………………
Plant species diversity and community classification in the southern Gurbantunggut Desert ZHANG Rong, LIU Tong (6056)…………
Effects of mixing leaf litter from Pinus sylvestris var. mongolica and Larix principis鄄rupprechtii with that of other trees on soil
properties in the Loess Plateau LI Qian,LIU Zengwen,MI Caihong (6067)………………………………………………………
Effects of long鄄term intensive management on soil ammonia oxidizing archaea community under Phyllostachys praecox stands
QIN Hua, LIU Borong, XU Qiufang, et al (6076)
…………
…………………………………………………………………………………
Hydrogen peroxide participates symbiosis between AM fungi and tobacco plants
LIU Hongqing,CHE Yongmei, ZHAO Fanggui, et al (6085)
………………………………………………………
………………………………………………………………………
Relationships between dominant arbor species distribution and environmental factors of shelter forests in the Beijing mountain
area SHAO Fangli, YU Xinxiao, ZHENG Jiangkun, et al (6092)…………………………………………………………………
Analysis of rhizosphere microbial community structure of weak and strong allelopathic rice varieties under dry paddy field
XIONG Jun, LIN Huifeng, LI Zhenfang, et al (6100)
……………
……………………………………………………………………………
Root distribution in the different forest types and their relationship to soil properties
HUANG Lin, WANG Feng, ZHOU Lijiang,et al (6110)
……………………………………………………
……………………………………………………………………………
Effect of silicon application on antioxidant system, biomass and yield of soybean under ozone pollution
ZHAN Lijie, GUO Liyue, NING Tangyuan, et al (6120)
………………………………
…………………………………………………………………………
Effect of landfill leachate irrigation on soil physiochemical properties and the growth of two herbaceous flowers
WANG Shuqin,LAI Juan,ZHAO Xiulan (6128)
………………………
……………………………………………………………………………………
Nitrous oxide emissions affected by tillage measures in winter wheat under a rice鄄wheat rotation system
ZHENG Jianchu, ZHANG Yuefang, CHEN Liugen, et al (6138)
………………………………
…………………………………………………………………
Effects of different fertilizers on soil enzyme activities and CO2 emission in dry鄄land of maize
ZHANG Junli, GAO Mingbo, WEN Xiaoxia,et al (6147)
…………………………………………
…………………………………………………………………………
The response of agro鄄ecosystem productivity to climatic fluctuations in the farming鄄pastoral ecotone of northern China: a case
study in Zhunger County SUN Tesheng, LI Bo, ZHANG Xinshi (6155)…………………………………………………………
The relationship between energy consumption and carbon emissiont with economic growth in Liaoning Province
KANG Wenxing,YAO Lihui,HE Jienan,et al (6168)
………………………
………………………………………………………………………………
Spatial distribution characteristics of potential fire behavior in Fenglin Nature Reserve based on FARSITE Model
WU Zhiwei, HE Hongshi, LIANG Yu, et al (6176)
……………………
………………………………………………………………………………
Chill conservation of natural enemies in maize field with different post鄄crop habitats
TIAN Yaojia, LIANG Guangwen, ZENG Ling, et al (6187)
……………………………………………………
………………………………………………………………………
Effect of population of Kerria yunnanensis on diversity of ground鄄dwelling ant
LU Zhixing, CHEN Youqing, LI Qiao, et al (6195)
…………………………………………………………
………………………………………………………………………………
Response of Parnassius apollo population and vertical distribution to climate warming
YU Fei,WANG Han,WANG Shaokun,et al (6203)
…………………………………………………
…………………………………………………………………………………
Review and Monograph
Integrated assessment of marine aquaculture ecosystem health: framework and method
PU Xinming,FU Mingzhu, WANG Zongling, et al (6210)
…………………………………………………
…………………………………………………………………………
Seagrass meadow ecosystem and its restoration: a review PAN Jinhua,JIANG Xin,SAI Shan,et al (6223)……………………………
Nutri鄄toxicological effects of cyanobacteria on fish DONG Guifang, XIE Shouqi, ZHU Xiaoming, et al (6233)………………………
Effect of environmental stress on non鄄structural carbohydrates reserves and transfer in seagrasses
JIANG Zhijian,HUANG Xiaoping,ZHANG Jingping (6242)
………………………………………
………………………………………………………………………
Advances in ecological immunology XU Deli, WANG Dehua (6251)……………………………………………………………………
Scientific Note
The causes of spatial variability of surface soil organic matter in different forests in depressions between karst hills
SONG Min, PENG Wanxia, ZOU Dongsheng, et al (6259)
…………………
………………………………………………………………………
Characteristics of seed rain of Haloxylon ammodendron in southeastern edge of Junggar Basin
L譈 Chaoyan, ZHANG Ximing, LIU Guojun, et al (6270)
…………………………………………
…………………………………………………………………………
《生态学报》2013 年征订启事
《生态学报》是中国生态学学会主办的生态学专业性高级学术期刊,创刊于 1981 年。 主要报道生态学研
究原始创新性科研成果,特别欢迎能反映现代生态学发展方向的优秀综述性文章;研究简报;生态学新理论、
新方法、新技术介绍;新书评介和学术、科研动态及开放实验室介绍等。
《生态学报》为半月刊,大 16 开本,300 页,国内定价 90 元 /册,全年定价 2160 元。
国内邮发代号:82鄄7,国外邮发代号:M670
标准刊号:ISSN 1000鄄0933摇 摇 CN 11鄄2031 / Q
全国各地邮局均可订阅,也可直接与编辑部联系购买。 欢迎广大科技工作者、科研单位、高等院校、图书
馆等订阅。
通讯地址: 100085 北京海淀区双清路 18 号摇 电摇 摇 话: (010)62941099; 62843362
E鄄mail: shengtaixuebao@ rcees. ac. cn摇 网摇 摇 址: www. ecologica. cn
摇 摇 编辑部主任摇 孔红梅摇 摇 摇 执行编辑摇 刘天星摇 段摇 靖
生摇 态摇 学摇 报
(SHENGTAI摇 XUEBAO)
(半月刊摇 1981 年 3 月创刊)
第 32 卷摇 第 19 期摇 (2012 年 10 月)
ACTA ECOLOGICA SINICA

(Semimonthly,Started in 1981)

Vol郾 32摇 No郾 19 (October, 2012)
编摇 摇 辑摇 《生态学报》编辑部
地址:北京海淀区双清路 18 号
邮政编码:100085
电话:(010)62941099
www. ecologica. cn
shengtaixuebao@ rcees. ac. cn
主摇 摇 编摇 冯宗炜
主摇 摇 管摇 中国科学技术协会
主摇 摇 办摇 中国生态学学会
中国科学院生态环境研究中心
地址:北京海淀区双清路 18 号
邮政编码:100085
出摇 摇 版摇
摇 摇 摇 摇 摇 地址:北京东黄城根北街 16 号
邮政编码:1R00717
印摇 摇 刷摇 北京北林印刷厂
发 行摇
地址:东黄城根北街 16 号
邮政编码:100717
电话:(010)64034563
E鄄mail:journal@ cspg. net
订摇 摇 购摇 全国各地邮局
国外发行摇 中国国际图书贸易总公司
地址:北京 399 信箱
邮政编码:100044
广告经营
许 可 证摇 京海工商广字第 8013 号
Edited by摇 Editorial board of
ACTA ECOLOGICA SINICA
Add:18,Shuangqing Street,Haidian,Beijing 100085,China
Tel:(010)62941099
www. ecologica. cn
Shengtaixuebao@ rcees. ac. cn
Editor鄄in鄄chief摇 FENG Zong鄄Wei
Supervised by摇 China Association for Science and Technology
Sponsored by摇 Ecological Society of China
Research Center for Eco鄄environmental Sciences, CAS
Add:18,Shuangqing Street,Haidian,Beijing 100085,China
Published by摇 Science Press
Add:16 Donghuangchenggen North Street,
Beijing摇 100717,China
Printed by摇 Beijing Bei Lin Printing House,
Beijing 100083,China
Distributed by摇 Science Press
Add:16 Donghuangchenggen North
Street,Beijing 100717,China
Tel:(010)64034563
E鄄mail:journal@ cspg. net
Domestic 摇 摇 All Local Post Offices in China
Foreign 摇 摇 China International Book Trading
Corporation
Add:P. O. Box 399 Beijing 100044,China
摇 ISSN 1000鄄0933
CN 11鄄2031 / Q
国内外公开发行 国内邮发代号 82鄄7 国外发行代号 M670 定价 70郾 00 元摇