全 文 :植物营养与肥料学报 2015,21(2):346-353 doi牶1011674/zwyf.20150208
JournalofPlantNutritionandFertilizer htp://www.plantnutrifert.org
收稿日期:2014-08-18 接受日期:2015-01-22
基金项目:菏泽学院博士基金项目(XY13BS01)资助。
作者简介:沈国明(1975—),男,浙江绍兴人,博士,讲师,主要从事植物逆境分子生理和农产品安全生产研究。Email:gmshen@tzc.edu.cn
Cd2+诱导的镉敏感水稻突变体 cadB1叶片
抗坏血酸循环的变化
沈国明
(菏泽学院植物生物学重点实验室,菏泽学院生命科学系,山东菏泽274015)
摘要:【目的】镉离子 (Cd2+)为非必需的微量元素,植物易从土壤中吸收并积累Cd2+,通过食物链进入人体内,对
人类的健康造成重大威胁。为了阐明Cd2+诱导氧化胁制和抑制生长的机制,对 Cd2+敏感水稻突变体 (cadB1)进
行了水培试验。【方法】植物材料为水稻粳稻中花11(OryzasativaL.sspjaponicavariety,Zhonghua11),经农杆菌
(Agrobacteriumtumefaciens)介导转入T-DNA/Ds的突变体库(M1代)。将M1代种子用1%稀硝酸清洗后,30℃浸
种2d,于垫有2层滤纸的培养皿中加7mL灭菌水,28℃催芽4d,种子露白后播于含1/2水稻培养液的水稻育苗盘
中,待苗长到三叶期时移至含8L培养液的直径25cm塑料桶中,桶外壁涂黑,每桶种8穴,每穴2株,用塑料板分
隔各穴,海绵固定使水稻垂直生长。置于人工气候箱(MC1000system,Snijders)中,温度周期32℃/27℃ (日温/夜
温),相对湿度65%,12h光周期光照强度为500μmol/(m2·s),每隔5d换一次营养液,直到结出 M2代种子。
将中花11野生型与M2代突变体种子用以上同样方法培养,长到五叶期。以不加 Cd2+作为对照,分别加入01、
025、05和075mmol/LCd2+进行筛选,每种处理平行培养3桶,作为重复,共6001桶,每天定时观察。12d后,
发现05mmol/LCd2+中的中花11野生型没有死亡,而M2代突变体出现部分死亡。按所在位置,选取表型最明显
的株系命名为cadB1。取cadB1种子按上述方法萌发,然后均匀发芽的幼苗与上述相同条件培养,至七叶期,水稻
幼苗包括野生型 (WT)和 cadB1用 05mmol/LCdCl2处理2、4、6、8和 12d。【结果】1)叶片中 Cd和过氧化氢
(H2O2)积累量cadB1高于野生型;2)叶片中还原型谷胱甘肽(GSH)和氧化型谷胱甘肽、抗坏血酸和脱氢抗坏血
酸及还原型烟酰胺腺嘌呤二核苷酸磷酸和氧型烟酰胺腺嘌呤二核苷酸磷酸的比值都是 cadB1低于野生型;3)叶
片中抗坏血酸氧化酶 (ascorbateperoxidase,APX,EC111111),还原型谷胱甘肽酶(glutathionereductase,GR,
EC1642),脱氢抗坏血酸还原酶(dehydroascorbatereductase,DHAR,EC1851)和单脱氢抗坏血酸还原酶
(monodehydroascorbatereductase,MDHAR,EC1654)活性都是cadB1低于野生型。【结论】cadB1具有低水平
的抗氧化剂和抗氧化酶活性。此外,cadB1比 WT积累更多的 Cd从而产生更多的活性氧 (reactiveoxygenspecies,
ROS)。也就是说,与野生型相比,cadB1更缺乏防御力来清除更多的活性氧,从而导致较低的生长势和对 Cd的
敏感。
关键词:抗坏血酸-谷胱甘肽循环;镉敏感突变体;生长抑制;过氧化氢;水稻
中图分类号:S51101 文献标识码:A 文章编号:1008-505X(2015)02-0346-08
Cd2+inducedchangesofascorbateglutathionecycle
inCdsensitivericemutantcadB1leaves
SHENGuoming
(KeyLaboratoryofPlantBiology/DepartmentofLifeSciences,HezeUniversity,Heze,Shandong274015,China)
Abstract:【Objectives】Cd2+iseasilyabsorbedfromthesoilbyplantsandaccumulationinplantswhichhealth
threattohumansthroughhumanfoodchain.Toinvestigatethemechanismofcadmium(Cd2+)inducedoxidative
stressandinhibitgrowthinaCdsensitivericemutant(cadB1),ahydroponicexperimentwasconducted.
【Methods】Ajaponicarice(Oryzasativa)varietyZhonghua11andthemutantriceseedlingsobtainedfromthe
samericevarietyasthatformerlyconstructedwithTDNA/DsinsertionmediatedbyAgrobacterium.The
2期 沈国明,等:Cd2+诱导的镉敏感水稻突变体cadB1叶片抗坏血酸循环的变化
transgeneticricegenerationshavestablehereditabilityandwereusedinthisexperiment.Theseedsweresurface
sterilizedin05% sodiumhypochloritefor20min,rinsed,andgerminatedinthedarkonmoistenedfilterpaperat
30℃ for2d,andthenmovedtoaplasticscreenfloatingondistiledwaterat28℃ for4d.Thenuniformly
germinatedseedlingsweretransferedtoblackpolyethylenebarelswhichcontained6Lofriceculturesolution.
Seedlingsweregrowninagrowthchamberwithaphotofluxdensityof500μmol/(m2·s),relativehumidityof
approximately65% andday/nighttemperaturesof32℃/27℃ (14h/10h).Duringthegrowthperiod,the
solutionwasrenewedevery5d.Atthesevenleafstage,riceseedlingsincludewildtype(WT)andcadB1
exposedto05mmol/LCdCl2for0(ascontrol),2,4,6,8,or12d.【Results】1)Cdandhydrogenperoxide
(H2O2)accumulationwerehigherincadB1thaninwildone;2)Theratiosofreducedglutathione(GSH)and
oxidizedglutathione(GSSG),ascorbate(ASC)anddehydroascorbate(DHA),orreducednicotinamideadenine
dinucleotidephosphate(NADPH)andoxidizednicotinamideadeninedinucleotidephosphate(NADP+)were
lowerincadB1thaninWT;3)Ascorbateperoxidase(APX,EC111111),glutathionereductase(GR,EC
1642),dehydroascorbatereductase(DHAR,EC1851)andmonodehydroascorbatereductase(MDHAR,
EC1654)activitieswerelowerincadB1thaninWTinleavesduringCdCl2exposureperiods.【Conclusion】
cadB1haslowerlevelofantioxidantsaswelasloweractivityofantioxidantenzymes.Inaddition,cadB1
accumulatesmoreCdmeansthatitcanproducemorereactiveoxygenspecies(ROS).Videlicet,cadB1is
deficientofthedefensepoweragainstincreasedlevelofROSwhichleadstoalowergrowthpotentialandsensitiveto
Cd.
Keywords牶ascorbateglutathionecycle牷cadmiumsensitivemutant牷growthinhibit牷hydrogenperoxide牷rice
Cadmiumcanbereadilytakenupbyrootsand
oftenaccumulatestoalargenumberinplantsystem[1],
thepresenceofCdcaninducethegenerationof
reactiveoxygenspecies(ROS).Plantshavedeveloped
antioxidantmechanismstoaleviatehazardousefects
imposedbyoxidestress.Thesemechanismsinclude
antioxidativeenzymaticandantioxidativenonenzymatic
systems.Theascorbateglutathione(ASCGSH)cycle
isthekeystoneofthenonenzymaticantioxidative
defensesystemandhasbeensuggestedasthesource
forH2O2remova1intoorganeles
[23].ASCandGSH,
twolowmolecularweightantioxidantsareofgreat
importanceinpreservingawiderangeofmetabolic
processes[4].TheycanbothreactdirectlywithROSas
welasparticipatinginROSdetoxificationthroughthe
ASCGSHcycle[2,57].Moreover,ASCandGSHare
alsoassociatedwiththecelularredoxbalanceandthe
ratiosofASC∶DHAandGSH∶GSSGmayfunctionas
signalsfortheregulationofantioxidantmechanisms[8].
Previously,wescreenedaricecadmiumsensitive
and hyperaccumulation mutantby Agrobacterium
tumefacienssystem,investigatedtheenzymaticdefense
system, root morphology and cadmium uptake
kinetics[910].Inpresentresearch,wemainlycompared
thediferencesintheASCGSHmetabolismbetween
cadB1 and WT seedling leavesafterincreasing
exposureperiodsofCd.Althoughrecentlywereported
someresultsofASCGSHmetabolism[1112],wealso
wantmoreevidencestoconfirm thathigherASC,
GSH,orNADPHaremoreabletoresistCdtoxicity.
1 Materialsandmethods
11 Plantmaterialsandcultureconditions
Stable inheritance rice (Oriza sativa L.)
cadmiumsensitivemutant(cadB1)andthesamerice
varietywildtype(WT)wereusedinthisexperiment.
Theseedsweresurfacesterilizedin05% sodium
hypochloritefor20min,rinsed,andgerminatedinthe
darkonmoistenedfilterpaperat30℃ for2d,and
thenmovedtoaplasticscreenfloatingondistiled
waterat28℃ for4d.Thenuniformlygerminated
seedlingsweretransferedtoblackpolyethylenebarels
whichcontained6Lofriceculturesolution.Seedlings
weregrowninagrowthchamberwithaphotoflux
densityof500μmol/(m2·s),relativehumidityof
approximately65% andday/nighttemperaturesof
32℃/27℃ (14h/10h).Duringthegrowthperiod,
thesolutionwasrenewedevery5d.Atthesevenleaf
743
植 物 营 养 与 肥 料 学 报 21卷
stage,riceseedlingsincludewildtype(WT)and
cadB1exposedto05mmol/LCdCl2 for0(as
control),2,4,6,8,or12d.
12 CdandH2O2contentanalysis
TheCdcontentsinseedlingleaves,stemsand
rootsweredeterminedaccordingtothemethodofShah
andDubey[13].H2O2contentwasdeterminedaccording
tothemethoddescribedbyJanaandChoudhuri[14].
13 RatiosofASC/DHA, GSH/GSSG and
NADPH/NADP+analysis
ASCandDHAcontentweredeterminedaccording
tothemethodofLawetal.[15].GSHandGSSGcontent
wasdeterminedaccordingtothemethodofAndersonet
al.[16].NADPHandNADP+contentwasdetermined
accordingtothemethodofNisselbaumandGree[17].
14 Enzymeassays
Frozenmaterials(400mgfreshweight)were
homogenizedin 4 mL of50 mmol/L potassium
phosphatebufer,pH78,containing01% TritonX
100Thehomogenatewascentrifugedat15,000×gfor
20minat4℃ andthesupernatantwasusedforenzyme
assays.APX and GR activitiesweredetermined
accordingtothemethodofNakanoetal.[18].DHAR
activitywasdeterminedaccordingtothemethodof
Daltonetal.[19].NDHAR activitywasdetermined
accordingtothemethodofArigonietal.[20].
15 StatisticalAnalysis
Datawereanalyzedwiththestatisticalpackage
SPSS15forWindowsonthewebsite(www.nbs.ntu.edu.
sg/userguide/SPSS/SPSS15/).Significancelevels005
and001wereusedinpresentingtheresults.The
experimentswererepeatedintriplicate,andthedata
presentedarethemeanvalues±standarderor(SE).
ThediferencewasconsideredsignificantatPlevels
lowerthan005(P<005)andthissignificanceis
denotedinthefiguresbyanasterisk()while
significantatPlevelslowerthan001(P<001)
denotedinthefiguresbydoubleasterisk().
2 Results
21 Cadmium accumulationandefectonrice
seedlinggrowth
Atthesevenleafstage,CdCl2wasaddedtothe
nutrientsolutiontoachievethefinalCd2+concentration
is05mmol/L.After12dexposuretoCd2+,the
leavesofcadB1fadedseriouslyandtherootswere
moreexiguousthanWT.Thefreshweightofshoots,
androotsofwildtypeseedlingsdeclinedby4597%,
and4699%,respectively,whilethepercentdecrease
ofcadB1are6356% and5128%,comparedtothe
controlcultivatedseedlings(Table1).
表1 侵染于05mmol/LCd2+12天后野生型(WT)和Cd敏感型(cadB1)水稻秧苗不同部位鲜重(g,FW)
Table1 Freshweights(FW)ofdiferentorgansofwildtype(WT)andCdsensitive
(cadB1)riceseedlingsafter12dofexposureto05mmol/LCd2+
处理
Treatment
地上部 Shoot
WT cadB1
根 Root
WT cadB1
对照CK 372±010 365±009 083±005 078±003
镉处理 Cr2+treatment 201±014 133±023 044±005 038±005
TheCdcontentsincreasedinalorgansofboth
WTandcadB1with05mmol/LCd2+exposurefor12
d(Table2).Alargerincreasewasseeninalorgans
ofcadB1comparedtoWTseedlings.However,the
increasewasnotstatisticalysignificant.
22 H2O2accumulationinriceseedlings
H2O2contentsincreasedintheleavesofWTand
cadB1riceseedlingsduringCd2+ exposureperiod
(Fig.1). In general, cadB1 rice seedlings
accumulatedmoreH2O2 thanWT riceseedlings,
exceptthe2ndday.SignificantdiferenceofH2O2
contentsbetweenWTandcadB1riceseedlingleaves
wasonlydetectedthe12thexposureday.
843
2期 沈国明,等:Cd2+诱导的镉敏感水稻突变体cadB1叶片抗坏血酸循环的变化
表2 侵染于05mmol/LCd2+12天后野生型(WT)和Cd-敏感型(cadB1)
水稻秧苗根茎叶中Cd含量 (mg/kg,DW)
Table2 Cadmiumcontentinleaves,stemsandrootsinwildtype(WT)andCdsensitive(cadB1)
riceseedlingsafter12dofexposureto05mmol/LCd2+
处理
Treatment
叶 Leaf
WT cadB1
茎 Stem
WT cadB1
根 Root
WT cadB1
对照CK 619±082 842±028 1696±103 1526±121 2195±114 2204±098
镉处理 Cd2+treatment 7233±115 8821±192 34056±332 38198±231168542±476 189818±532
图1 野生型(WT)和Cd-敏感型(cadB1)水稻秧苗
叶片中H2O2含量
Fig.1 H2O2contentsinleavesofWTandcadB1
riceseedlings
[注(Note):ExternalCd2+concentrationis05mmol/L外源 Cd2+
浓度为05mmol/L.Erorbarsrepresentstandarderor(n=3)误差
线代表标准差(n=3)].
23 CdefectonratiosofASC/DHA,GSH/
GSSGandNADPH/NADP+inriceseedlings
Duringexposureperiod,leafcontentsofASC
decreasedbothinWTandcadB1(Fig.2a),however
theoppositeefectwasobservedwithDHAcontentsin
leaves(Fig.2b).Significantdiferenceswereseenin
ASCcontentbetweenWTandcadB1riceseedling
leavesatthe8thand12thexposureday.Therefore,
theratioofASC/DHAwasreducedwithprolonging
exposuretime(Fig.2c).Furthermore,inWTand
cadB1riceseedlingstheratiovariedconcomitantly
withprolongingtimeat05mmol/LCd2+.After12d
exposureto05mmol/LCd2+,theratioofASC/DHA
atthe2nd,4th,6th,8thand12thexposureday
compared to the control declined by 976%,
2010%, 3800%, 5300% and 6655%,
respectivelyintheleavesofWTriceseedlings,while
incadB1riceseedlingsthepercentageofdecreasewas
1656%, 3292%, 4857%, 6586% and
8506%,respectively.Overal,theratioofASC:
DHAdeclinedmoreinleavesofcadB1riceseedlings
thaninWTriceseedlings.
TheGSHcontentsdecreaseandGSSGincreasein
leavesoccurednotonlyinWTbutalsoincadB1
duringtheexposure(Fig.2d,e).Significant
diferencestookplaceinGSHcontentsbutnotinGSSG
betweenWTandcadB1riceseedlingleavesduring
exposureperiod.ChangesinGSHandGSSGledto
changesinGSH/GSSGratio(Fig.2f),significant
diferencescouldbefoundintheGSH/GSSGratio
betweenWTandcadB1riceseedlingleavesatthe
4th,8thand12thexposureday.Duringexposure
period,theGSH/GSSGratioinleavesofcadB1rice
seedlingsdeclinedby3580%,6109%,7065%,
8231% and8591%,respectively,whileratiosfor
leavesoftheWTriceseedlingswereincreasedby
2637%, 3752%, 5915%, 6300% and
6809%,respectivelycomparedtothecontrol.GSH/
GSSGratiosdecreasedmoreincadB1riceseedlings
thaninWTriceseedlings.
Oxidized nicotinamide adenine dinucleotide
phosphate (NADP+) contents increased during
exposureperiod(Fig.2h),whiletheNADPH
contentsmeettheoppositetoNADP+ inleaves.
NADPH:NADP+ ratioswerereduced(Fig.2i),
similartoGSH/GSSG andASC/DHA ratios.The
leavesofcadB1riceseedlingsshowedadecreasein
theNADPH/NADP+ ratiosof777%,1934%,
3576%,5503%,and6794%,respectively.In
the WT seedlings, the NADPH/NADP+ ratios
943
植 物 营 养 与 肥 料 学 报 21卷
comparedtothecontrolweredecreasedby381%,
1830%,2876%,4509%,and5837%.The
decreaseintheNADPH/NADP+ ratioswasmore
pronouncedincadB1riceseedlingsthaninWTrice
seedlings.
图2 野生型(WT)和Cd-敏感型(cadB1)水稻秧苗叶片中ASC、DHA、GSH、GSSG、NADPH、NADP+
值和ASC/DHA,GSH/GSSGandNADPH/NADP+比率
Fig.2 ThecontesntASC,DHA,GSH,GSSG,NADPH,NADP+andtheratioofASC/DHA,GSH/GSSG
andNADPH/NADP+inleavesofWTandcadB1riceseedlings
[注(Note):外源Cd浓度为05mmol/LExternalCdconcentrationis05mmol/L;P<005andP<001误差线代表标准差(n=3)
Erorbarsrepresentstandarderor(n=3).]
24 CdefectonAPX,GR,DHARandMDHAR
activitiesinriceseedlings
APXactivitiesincreasedandthendecreasedboth
inWTandincadB1riceseedlingsduringexposure
(Fig.3a).APXactivityreacheditshighestlevelin
WTandincadB1riceseedlingsatthe6thexposure
day, and the APX activitiesshowed significant
diferencesbetweenWTandcadB1riceseedling.
APXactivitiesdecreasedmoreintheleavesofcadB1
seedlingsthaninWTseedlingsduringexposure.
GRactivitiesincreasedfirstandthendecreasedin
both WT and cadB1 rice seedlings with the
prolongationofexposure(Fig.3b).GR activities
werehighestinbothWTandcadB1riceseedlingsat
the4thexposureday,GRactivitieswereobserved
higherinWTthanincadB1riceseedlings.to05
mmol/LCd2+,onthe4thdayofexprosure,comparing
tothecontrol,GRactivitiesincreasedby6485% in
cadB1seedlingsand101% intheWTriceseedlings.
Atthe8thday,significantdiferencesinGRactivities
wereobservedbetweencadB1 andtheWT rice
seedling.
Inthisexperiment,DHARactivitieswerelowerin
cadB1thaninWTseedlingswithCd2+exposure(Fig.
053
2期 沈国明,等:Cd2+诱导的镉敏感水稻突变体cadB1叶片抗坏血酸循环的变化
3c).DHARactivitiesintheWTincreasedandthen
decreased,cadB1variedconcomitantlywithWT.In
thecadB1riceseedlings,DHARactivitiesreached
maximumlevelsatthe4thexposureday,whilethosein
WTseedlingsreachedmaximumlevelsatthe8thday.
DiferencesinDHARactivitiesbetweencadB1and
WTplantsweresignificantatthe6th,8thand12th
exposureday.
MDHARactivitiesincreasedandthendecreased
bothinthecadB1andWTriceseedlings(Fig.3d).
MDHARactivitiesweremaximumatthe4thdayin
cadB1,andatthe6thdayinWTseedlings.MDHAR
activitiesdecreasedmoreinthecadB1thantheWT
riceseedlings.Atthe12thexposureday,MDHAR
activitiesdecreasedby5682% intheMT,and
4779% inthecadB1.MDHARactivitydiferences
weresignificantbetweencadB1andWTriceseedlings
atthe6thexposureday.
图3 野生型(WT)和Cd-敏感型(cadB1)水稻秧苗根系中APX,GR,DHARandMDHAR活性
Fig.3 APX,GR,DHARandMDHARactivitiesinrootsofWTandcadH5riceseedlings
[注(Note):外源Cd浓度为05mmol/LExternalCdconcentrationis05mmol/L;—P<005;—P<001误差线代表标准差 (n=3)
Erorbarsrepresentstandarderor(n=3).]
3 Discussion
H2O2 isinduced in Arabidopistreated with
Cd2+[21],moreover,H2O2considered,asasignaling
moleculeinstress,isweldocumented[22],itdefense
andprovideacclimationduringvariousabioticand
bioticstresses.Ingeneral,wefoundtheH2O2contents
increasedwithprolongationofCd2+ exposureinboth
cadB1andWTplants,andaccumulatedmorein
cadB1thaninWT(Fig.1).
GSHhasbeentodemonstratedplayakeyrolein
defense mechanisms[23]. It can aleviate H2O2
immediatelyorparticipateintheASCGSHcycleto
scavengeH2O
[24]
2 GSHhasbeenshowntocombine
withCu2+andaleviateCu2+toxicity,GSHisalsothe
substrateforphytochelatin(PC)synthesis,which
playsacentralroleinmetaldetoxification[23].GSHis
oxidizedtoGSSGandthebalanceofGSHandGSSGis
crucialfortheenzymaticsystemsthatscavengeH2O2
A common responsetoheavymetalexposureis
depletionofGSHandasubsequentriseinGSSG[25].
Here,theGSHcontentwasslightlydecreasedbothin
cadB1andWTinshorttimeexposure.Whenthe
exposureprolonged,theGSH contentwentdown,
particularlyinthemutant,andtheGSSG content
increased.ThustheGSH/GSSGratiodecreasedwith
153
植 物 营 养 与 肥 料 学 报 21卷
increasingCd2+ concentrations(Fig.2f).Atshort
timeCd2+ exposure,GSH contentdecreasedonly
slightly,suggestingonewayplantsmightadapttoCd2+
stress.Plantscanusethisabilitytoselfadjustand
enhanceresistancetoCd2+ stressin shorttime
exposure.Withtheexposuretimeprolonged,GSH
contentdecreaseddramaticaly,perhapsbecauseit
atachestoheavymetals,orprovidesasubstratefor
PCssynthesis.Alternatively,itmaybehaveasa
antioxidanttoscavengeROS,oritmayhavelower
NADPH,whichmaybeascribedtothecoresponding
decreaseinGRactivity,andtheresultingdecreasein
GSH.Duringourstudy,thelowerGSHcontentsin
cadB1thanWTmaybeduetothelowerGRactivityor
theloweractivityofγglutamylcysteinesynthetase(γ
ECS)andglutathionesynthetase(GS).Thelower
GSHcontentsandGSH/GSSGratiomaybeonereason
whythemutantismoresensitivetoCd2+toxicity.
ASC behavesasanelectrondonorforAPX
scavengingofH2O2,andwouldbeoxidatedtoDHA.
Ontheotherhand,DHAcouldberegeneratedtoASC
byDHAR,usingGSH asanelectrondonor.The
balanceofASCandDHAiscrucialfortheenzymatic
systemsthatscavengeH2O2Inthepresentstudy,we
foundthatprolongedCd2+exposuretimeproduceda
decreaseintheASCcontentwhileincreasedinthe
DHAcontentbothincadB1andWT.Thesechanges
resultedindecreasesintheASC:HA ratio.The
decreaseinASCcontentmightbeduetoaninhibition
oftheDHARactivity,ormoreexcessiveuseofASCin
metaldetoxification,orbecausetheactivityofGSH,
anelectrondonor,islower.TheASCcontentandthe
ASC:DHAratiowerelowerinthemutantthaninthe
wildtype.ThiscouldbetheresultoflowerDHAR
activitiesincadB1thaninthewildtype(Fig.3).
Fromthis,weinferedthatplantsresistanttoCd2+
toxicitymaintainahighASCcontentandrequireahigh
ratioofASC/DHA.
H2O2scavengingbyAPXisthefirststepinthe
ASCGSH cycle[26]. As demonstrated in the
choroplastsofpea(Pisum sativum) andspinach
(Spinaceaoleracea),GR,DHAR,andMDHARalso
participateinthiscycle[26].Inthisstudy,wefoundat
theshorttimeofCd2+ exposurecaninduceAPX
activity,and may indicate the H2O2 contentis
increasing;afterlongtimeofCd2+ exposuretheAPX
activitiesdecreased,whichnotsuggestingtheH2O2
contentisdecreasingbutshowingCd2+ inhibitionof
APXactivities.Withtheprolongationofexposure,
APXactivityreductionsweremorepronouncedinthe
mutantthaninthewildtype,showingthatCd2+
stronglyinhibitsAPX activityinthemutant.GR
activitiesvaryconcomitantlywithAPXactivities;short
timeCd2+ exposurecaninduceGRactivities,which
catalyzeGSSG to synthesize GSH by consuming
NADPHasanelectrondonor.DHARandMDHAR
takepartintheregenerationofASC.Atfirstcan
induceDHARandMDHARactivity,possiblyasthe
resultofincreasedAPXactivities,henceDHARand
MDHARcaughtregenerateenoughASCasanelectron
donorforAPXscavengingforH2O2Withlongtimeof
Cd2+,DHARandMDHARactivitiesareinhibited,
andDHARandMDHARactivitiesdecreasemorein
themutantthaninthewildtype,showingthatCd2+
inhibitedbothDHARandMDHARactivitiesinthe
mutantacutely.Attheshorttime,ROSisefectively
scavenged;atthelongtimethecapabilityisoveridden
andtheycannotscavengeROSefectively.Fromthis
weinferedtheplantisireversiblydamagedand
inhibitedbyROSatthelongtimetoCd2+exposure.
4 Conclusion
ThehigherASC,GSHandNADPHlevelsandthe
higherratiosofASC/DHA,GSH/GSSGandNADPH/
NADP+,aswelasthehigherantioxidativeenzymatic
activitiesinplantswilbemoreefectivetoresistCd2+
toxicity.ComparetoWT,themutantcadB1haslower
levelofantioxidantsaswel asloweractivityof
antioxidantenzymes;AlitlemoreCdaccumulatedin
cadB1meansalitlemorereactiveoxygenspecies
production(ROS).Videlicet,cadB1isdeficientof
thedefensepoweragainstincreasedlevelofROSwhich
leadstoalowergrowthpotentialandsensitivetoCd.
Acknowledgements:
TheauthorsareverygratefultoDrWangJiang
Xin(Shenzhen University) read the manuscript
carefuly,andproposedmanyrevisions.Thiswork
253
2期 沈国明,等:Cd2+诱导的镉敏感水稻突变体cadB1叶片抗坏血酸循环的变化
supported by Heze University fund to PhD
(XY13BS01).
References:
[1] LiuYG,WangX,ZengGMetal.Cadmiuminducedoxidative
stressandresponseoftheascorbateglutathionecycleinBechmeria
nivea(L.)Gaud[J].Chemosphere,2007,69(1):99-107
[2] AnjumAN,GilSS,GilR etal.Metal/metaloidstress
toleranceinplants:roleofascorbate,itsredoxcouple,and
associatedenzymes[J].Protoplasma,2014,251(6):1265
-1283
[3] LiZ,SuD,LeiBetal.Transcriptionalprofileofgenesinvolved
inascorbateglutathionecycleinsenescingleavesforanearly
senescenceleaf(esl) ricemutant[J].JournalofPlant
Physiology,2014,176(25):1-15
[4] ChaparzadehN D,AmicoM L,KhavariNejadR A etal.
AntioxidativeresponsesofCalendulaoficinalisundersalinity
conditions[J].PlantPhysiologyandBiochemistry,2004,42(9):
695-701
[5] KuzniakE.MariaS.Ascorbate,glutathioneandrelatedenzymes
inchloroplastsoftomatoleavesinfectedbyBotrytiscinerea[J].
PlantScience,2001,160(4):723-731
[6] KuoMC,KaoCH.Antioxidantenzymeactivitiesareupregulated
inresponsetocadmium insensitive,butnotintolerantrice
(OryzasativaL.)seedlings[J].BotanyBuletinofAcademy
Sinica,2004,45:91-299
[7] SrivastavaS, TripathiR D, DwivediU N. Synthesisof
phytochelatinsandmodulationofantioxidantsinresponseto
cadmiumstressinCuscutareflexa-Anangiospermicparasite[J].
JournalofPlantPhysiology,2004,161(6):665-674
[8] MonrásJP,ColaoB,MolinaQuirozRC,PradenasGAetal.
MicroarayanalysisoftheEscherichiacoliresponsetoCdTeGSH
Quantum Dots:understanding the bacterial toxicity of
semiconductornanoparticles[J].BMC Genomics.2014,15
(1):1099
[9] 林冬,朱诚,孙宗修.镉敏感水稻突变体在镉胁迫下活性氧
代谢的变化[J].环境科学,2006,27(3):561-566
LinD,ZhuC,SunZX.Alterationsofoxidativemetabolism
respondtocadmiumstressinCdsensitivemutantriceseedlings
[J].EnvironmentalSciences2006,27(3):561-566.
[10] HeJY,ZhuC,RenYFetal.Rootmorphologyandcadmium
uptakekineticsofthecadmiumsensitivericemutant[J].
BiologiaPlantarum,2007,51(4):791-794
[11] ShenGM,ZhuC,DuQZ,ShangguanLN.Ascorbate-
Glutathionecyclealterationinacadmiumsensitivemutantfrom
rice[J].RiceScience,2012,19(3):185-192
[12] ShenGM,ZhuC,ShangguanLN,DuQZ.TheCdtolerant
ricemutantcadH5isahighCdaccumulatorandshowsenhanced
antioxidantactivity[J].JournalofPlantNutritionandSoil
Science,2012,175(2):309-318
[13] ShahK,DubeyRS.A18kDacadmium inducibleprotein
Complex:itsisolationandcharacterisationfrom rice(Oryza
sativaL.)seedlings[J].JournalofPlantPhysiology,1998,152
(4):448-454
[14] JanaS, ChoudhuriM A. Glycolatemetabolism ofthree
submersedaquaticangiospermsduringaging[J].Aquatic
Botany,1982,12:345-354
[15] LawMY,CharlesSA,HaliwelB.Glutathioneandascorbic
acidinspinach(Spinaciaoleracea)chloroplasts.Theefectof
hydrogenperoxideandofParaquat[J].BiochemistryJournal,
1983,210:899-903
[16] AndersonJV,ChevoneBI,HessJL.Seasonalvariationinthe
antioxidantsystem ofeasternwhitepineneedlesevidencefor
thermaldependence[J].PlantPhysiology,1992,98(2):501-
508
[17] NisselbaumJS,GreenS.A simpleultramicromethodfor
determinationofpyridinenucleotidesintissues[J].Analytical
Biochemistry,1969,27(2):212-217
[18] NakanoY,ASCdaK.Purificationofascorbateperoxidasein
spinach chloroplasts; itsinactivation in ascorbatedepleted
mediumandreactivationbymonodehydroascorbateradical[J].
PlantandCelPhysiology,1987,28(1):131-140
[19] DaltonDA,RusselSA,HanusFJetal.Enzymaticreactions
ofascorbateandglutathionethatpreventperoxidedamagein
soybeanrootnodules[J].ProceedingsoftheNationalAcademy
ofSciences,1986,83(11):3811-3815
[20] ArigoniO,DipieroS,BoraccinoG.Ascorbatefreeradical
recuctase:Akeyenzymeofascorbicacidsystem[J].FEBS
Leters,1981,125:242-244
[21] ChoU,SeoN.OxidativestressinArabidopsisthalianaexposed
tocadmiumisduetohydrogenperoxideaccumulation[J].Plant
Science,2005,168(1):113-120
[22] ChenC,TwitoS,MilerG.NewcrosstalkbetweenROS,ABA
andauxincontrolingseedmaturationandgerminationunraveled
inAPX6deficientArabidopsisseeds[J].PlantSignal&
Behavior,2014,9(12):e976489
[23] CobbetC,GoldsbroughP.Phytochelatinsandmetalothioneins:
rolesinheavymetaldetoxificationandhomeostasis[J].Annual
ReviewofPlantBiology,2002,53(1):159-182
[24] DaltonDA,RusselSA,HanusFJetal.Enzymaticreactions
ofascorbateandglutathionethatpreventperoxidedamagein
soybeanrootnodules[J].ProceedingsoftheNationalAcademy
ofSciences,1986,83(11):3811-3815
[25] OrtegaVilASCnteC,RelánálvarezR,DelCampoFFetal.
CelulardamageinducedbycadmiumandmercuryinMedicago
sativa[J].JournalofExperimentalBotany,2005,56(418):
2239-2251
[26] JimenezA,HernandezJA,DelRioLA,SevilaF.Evidence
forthepresenceoftheascorbateglutathionecycleinmitochondria
andperoxisomesofpealeaves[J].PlantPhysiology,1997,114
(1):275-284
353