全 文 : ACTA AGRONOMICA SINICA 2008, 34(5): 823−830 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
:
(2006BAK02A18); (Z306300);
(973
)(2002CB10804)
:
!(1983–), , #$%&, ()*, +,-./012*345
*
6789(Corresponding author): :;4Tel: 0571-88206481; E-mail: pzhch@zju.edu.cn
Received(<=>?): 2007-09-23; Accepted(@A>?B: 2007-12-22.
DOI: 10.3724/SP.J.1006.2008.00823
AsA-GSH
1 1 1,*
2
(1
, 310058; 2 ,
310006)
: 11
, 0.4 mmol L−1 Hg2+
!-#$%&(AsA-GSH)(
)*+,-., Hg2+,
/0 H2O2123 2O− 45678
MDA123GSSG123DHA129:;<=5>;
/0 GSH/GSSG8 AsA/DHA?@AB<=5>, C
D
E8F Hg2+12.9B<=5>*G.
H AsA-GSH ( Hg2+IJKLMB
NOP78QRJS,
TUVWX*
: Hg2+; ;
; ; !-#$%&(
Effect of AsA-GSH Cycle on Hg2+-Tolerance in Rice Mutant
ZENG Bin1, WANG Fei-Juan1, ZHU Cheng1,*, and SUN Zong-Xiu2
(1 State Key Laboratory of Plant Physiology & Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang; 2 State Key
Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China)
Abstract: Mercury (Hg) toxicity is an in rice growth problem throughout the world. In the present study, Zhonghua 11 and a
Hg2+-tolerant rice mutant (MT) were used in a solution culture to investigate the effect of 0.4 mmol L−1 Hg2+ treatment on reactive
oxygen species (ROS) metabolism and dynamic change of ascorbate-glutathione (AsA-GSH) cycle. The results indicated that the
H2O2 content, 2O
−
evolution rate, MDA content, GSSG and DHAcontents of the leaves were higher in the wild type than in the
mutant; both the ratio of GSH to GSSG and the ratio of AsA to DHA were higher in the mutant than in the wild type, while the
accumulation of Hg2+ in roots and stems of the mutant was more than that of the wild type. The results reveal that AsA-GSH cycle
was less inhibited in the mutant than in the wild type, thus the mutant was able to scavenge ROS more. An effective AsA-GSH
cycle is important for the mercury resistance of mutant.
Keywords: Hg2+; Rice; Mutant; Reactive oxygen species; AsA-GSH cycle
“”
Hg2+, ! Hg2+
#$%&(Hg2+)*+,-./01+234
567, 89:3;<=>?4, &@A?B
CD(EFGHIJKLMNOP:23QR ,
SGTUV Hg2+23QR(WX, YZEF[
Hg2+\]^^_`abOcd(Hg2+[e
3fg2hijkl]mnopqbr(s
?YZtu, Hg2+)*vwxy[1]z{[2]|}~[3]
e345/0
l]m(ROS), ^3
m
, e3
g(-
(AsA-GSH )Ge345Om
[4], 89 AsA/DHAGSH/GSSGNADPH/
NADP+5m !(r Hg2+[e
3mjk[2-5]*A AsA-GSH +e
3[`[6][7] !¡¢.£w2¤
b¥¦§¨,© AsA-GSH hEF[ Hg2+ª«]r¬§¨(YZtu, ®¯Be3
*A®¯e3®°¯[±²ª«\³_`
´µ¶®[8-9], WX·¶®¸¹º»¼½4
824 34
¾YZ¿bcd[10](ÀÁYZ Hg2+ª«Ã¼½4
Ä^Å\]ÆÇh AsA-GSH ¢È_`
¶Ér, *ÊËÌ Hg2+[EF
g_*AE
F[ Hg2+\]_`/0YZÍ(
1
1.1
*.IEFYZ£EF^3ÎIÏÐÑÒÓ
ÔÕEF.Ö 11 (Oryza sativa L. subsp. japonica,
cv. Zhonghua 11, WT)ʳ4×ؼ½4Ù.Ú
ÛÜRÝ Hg2+-\]¼½4 (Hg2+-tolerant mutant,
MT)[10], Þ PCR ßàtuX¼½4á
âãäå
9æ.^4ç]¼½4(Hg2+è·éê
Ê 0.4 mmol L−1, ë 7 dìÄ^ż½4íîu
ïÆÇ(ð 1)(ñòónäå1ô?·õ, ö÷
îø¼½4[ Hg2+\])*ùú¸¹(*ø¼
½4 T6nÊûÍ=üYZ(
1 0.4 mmol L−1 Hg2+ 7 d
Fig. 1 Phenotypic difference between wild type (WT) and
mutant (MT) under 0.4 mmol L−1 Hg2+ for 7 d
A: ; B: Hg2+
A: Water culture without Hg2+; B: Water culture with Hg2+.
EF¯ýþ., EäåK 2
ìK 6 L å
25 cm
Í,
( å
IEFYZ£[11],
pH K 5.0~5.1(Ê 8
Í, F
!ú+5, # 2 $, # 16 $, äåK 6
% HgC12 ë(&()ÑÒô*, ëéê
+Ê 0.4 mmol L−1(
,-./-0(BSO)G γ-1/21
(γ-ECS)`3, YZtu, 2 mmol L−1 BSO
ë)*ï456e35 GSH
[12](17
8(3-amino-1,2,4-triazole, AT)G9m9(CAT)
) `3[13], ëì)e345H2O2
/0(äåK 6 EF:Ê 3 â, ;
RâÊ[<%ë, ;=â 2 mmol L−1 ATë
2 d(AT>%K å
., Eä), ;â? 2 mmol
L−1 BSO(ë 12 h, @íìAB&CD 2 mmol
L−1 ATë 2 d(
1.2
@ Hg2+ë 123 4 dEF&E
F°àú Hg2+éê(? 20 mmol L−1 EDTA-Na2
G
HI 15 min*JKEFtLUM Hg2+, D
KÚEAB(£bF°+ 70NÃOKP,
QRST_U, 9 60 Vè, @SW 0.1~0.2 g,
X H2SO4-HNO3Y(1Z1)[, AFS-930
\]^àú[
. Hg2+éê(
@ Hg2+ëì 0123 4 dEF; 2_
´µ¾ (^`aùúbant] ), <
Arnon[14]càúde
; f
(AsA)w9(DHA)*AÅ
(GSH)mÅ(GSSG)
(
£bÑÒxy 3 z, #Ýë 3 Ýpü(
X SPSS 10.0{|}=üÆ~(
2
2.1 Hg2+
ð 1 ), Hg2+-\]¼½4Ä^Å+
}Ã^7ÀR, Þ 0.4 mmol L−1 Hg2+ë 7 d
ì=tÅÆÇï4, Ä^Å_
; ¼½
4 C_x^l(¼½4[ Hg2+ª«
\]uï Ä^Å(
2.2 Hg2+
Hg2+
t 1), 0.4 mmol L−1 Hg2+ª«Ã, ë
, Ä^ż½4&E.
Hg2+éê%; ¼½4&E. Hg2+éêx
uïÄ^Å, <_. Hg2+éêbï
4ÆÇ(t 1)(
5 : AsA-GSH
825
1 0.4 mmol L−1 Hg2+
Hg2+
Table 1 Hg2+ concentration in roots, stems, and leaves of wild type (WT) and mutant (MT) under 0.4 mmol L−1 Hg2+ for different
exposing time
Root (mg kg−1 DW)
Stem (mg kg−1 DW)
Leaf (mg kg−1 DW)
Hg2+
Hg2+ exposing time WT MT WT MT WT MT
0 d 37.01±1.50 e 34.65±1.38 e 6.74±0.24 e 7.43±0.41 e 8.66±0.17 e 9.26±0.42 e
1 d 2051.9±7.3 d 2342.5±6.0 d** 529.7±2.6 d 608.2±1.0 d** 83.2±3.1 d 81.9±1.7 d
2 d 3372.8±2.4 c 3505.9±3.5 c** 1086.3±3.5 c 1159.6±2.9 c** 113.1±1.7 c 105.8±2.8 c
3 d 3427.3±3.3 b 5632.1±2.3 b** 1128.5±3.5 b 1214.3±1.1 b** 145.1±2.9 b 143.4±2.1 b
4 d 3727.3±2.6 a 7054.1±1.9 a** 1156.8±2.7 a 1541.4±1.1 a** 374.3±1.4 a 383.5±2.1 a
P<0.05*** !#$%&(P<0.05)(P<0.01)
Values within the same column followed by a different letter are significantly different at the 0.05 probability level. * and ** represent
significantly different at P<0.05 and P<0.01 between wild type and mutant, respectively.
2.3 Hg2+
0.4 mmol L−1 Hg2+,
;
,
!#$%&Hg2+
() 4 d, * 0 d
+,-.,
/01 39.8% 16.8%(2 2)
2 0.4 mmol L−1 Hg2+
Fig. 2 Chlorophyll content in leaves of wild type (WT) and mu-
tant (MT) under 0.4 mmol L−1 Hg2+ for different exposing time
2.4 Hg2+
H2O2MDA
H2O234567
89:2 3 ;
<=
>?@ H2O2 A
Hg2+()
BCDE , F
2O
−
>?@ H2O2GH0.4 mmol L−1 Hg2+
() 1I2I3 4 d,
>?@
/0.K 10.4%I12.4%I15.1% 19.3%;
<=
H2O2 /0.K 31.7%I
40.7%I53.6% 43.3%, LMANOP
MDA3QRS:T
>U, VW1XYQ
Z
[\]2 4^_, Hg2+()
,
<= MDA `DE, F
CKa0.4 mmol L−1 Hg2+() 1 d
,
MDAbcLM, F
() 2I3 4 d , <=
MDA /
0.
%d1 40.2%I39.6% 35.9%, 4eL
MNfOPgC Hg2+()
,
Qhijf
S:T[kGH
2.5 Hg2+
GSH
GSSGAsA DHA
GSH AsA3lUJmn
o:Tp, 3q
rso:Thi
67tuv/0.4 mmol L−1 Hg2+
(),
<= GSHAwD
E
Hg2+() 2 d,
<= GSH
ACDExNfy&z, /0
. 0 d
E{ 40.7% 40.2%; F()
, J GSH |}n 0.4
mmol L−1 Hg2+() 4 d,
GSH
/0. 0 d
68.9% 35.8%,
\C{a
~()S\=,
<=
GSHA{aHg2+(
),
= GSSG ADE
Hg2+() 1I2I3 4 d, <=
GSSG/0. 0 d
%d 25.8%I91.1%I
128.7% 170.5%;
<= GSSG/0%d
6.9%I18.4%I35.8% 44.7%;
%!
{a
GSH/GSSG.z
B#$;
wDE , n-(
)
GSH/GSSG.zA{a
( 2)
826 34
3 0.4 mmol L−1 Hg2+
H2O2
Fig. 3 Effect of Hg2+ treatment on generation rate and H2O2 content in leaves of wild type (WT) and mutant (MT)
4 0.4 mmol L−1 Hg2+
MDA
Fig. 4 Effect of Hg2+ treatment on
MDA content in leaves of
wild type (WT) and mutant (MT)
0.4 mmol L−1 Hg2+(), <= AsA
,
wD
E
;
=
DHAA
E{
( 3)
<= AsA
n()
?DE, n 2 dNfy&z,
Hg2+() 1I2I3 4 d,
DHA
/0. 0 d
%d 9.1%I53.3%I60.2%
77.7%;
. 0 d
%d 7.4%I28.4%I
42.1% 51.6%, %!CHa* GSH/GSSG
T-, <= AsA/DHA .z#$
, n
=wDE
, xn-()4eLM,
AsA/DHA .zC{a+,C,
JG{
GSH/GSSG.z AsA/DHA.zca
:T, Hg2+
:T()
2 0.4 mmol L−1 Hg2+
GSH GSSG
Table 2 GSH and GSSG contents in leaves of wild type (WT) and mutant (MT) under 0.4 mmol L-1 Hg2+ for different exposing time
GSH (nmol mg−1 protein)
GSSG (nmol mg−1 protein)
/
GSH/GSSG
Hg2+
Hg2+ exposing time
WT MT WT MT WT MT
0 d 127.13±1.25 b 138.52±1.12 c* 36.61±1.37 e 37.92±1.51 d 3.47±0.17 a 3.65±0.12 c
1 d 133.62±1.59 b 167.27±1.19 b** 46.05±1.32 d 40.53±1.07 d** 2.90±0.08 b 4.13±0.05 b**
2 d 161.03±1.32 a 193.07±0.96 a** 69.98±1.09 c 44.87±2.56 c** 2.30±0.04 c 4.30±0.05 a**
3 d 104.54±1.87 c 136.93±1.63 c** 83.73±1.11 b 51.49±2.16 b** 1.25±0.07 d 2.66±0.08 d**
4 d 50.10±2.38 d 101.47±1.42 d** 99.05±2.16 a 54.85±1.32 a** 0.51±0.04 e 1.85±0.06 e**
P<0.05 ! * ** #$%&()*+ (P<0.05),
(P<0.01)!
Values within the same column followed by a different letter are significantly different at the 0.05 probability level. * and ** represent
significantly different at P<0.05 and P<0.01 between wild type and mutant, respectively.
5 : AsA-GSH
827
3 0.4 mmol L−1 Hg2+
AsA DHA
Table 3 AsA and DHA contents in leaves of wild type (WT) and mutant (MT) under 0.4 mmol L−1 Hg2+ for different exposing time
-./0
AsA (µmol mg−1 DW)
12-./0
DHA (µmol mg−1 DW)
-./0/12-./0
AsA/DHA
Hg2+
Hg2+ exposing time
WT MT WT MT WT MT
0 d 3.66±0.63 a 3.84±0.76 c** 3.19±0.85 d 1.85±0.57 e ** 1.15±0.02 a 2.07±0.04 a**
1 d 3.28±1.04 b 4.51±0.85 b** 3.48±0.97 c 3.06±0.98 d** 0.94±0.03 b 1.47±0.07 b**
2 d 2.97±0.72 c 4.76±0.94 a** 4.89±0.69 b 3.66±0.87 c** 0.61±0.05 c 1.30±0.06 c**
3 d 2.65±0.91 d 3.72±1.14 cd 5.11±1.12 b 4.05±1.09 b** 0.52±0.04 d 0.92±0.04 d**
4 d 1.97±0.84 e 3.59±1.03 d** 5.67±0.91 a 4.52±1.23 a** 0.35±0.05 e 0.79±0.05 e**
P<0.05 !* ** #$%&()*+ (P<0.05), (P<0.01)!
Values within the same column followed by a different letter are significantly different at the 0.05 probability level. * and ** represent
significantly different at P<0.05 and P<0.01 between wild type and mutant, respectively.
2.6 (BSO)
(AT)
H2O2 !
2 mmol L−1 2 d,
GSH ,
GSH
;
H2O2
!,
H2O2#
$ 52.3%, %&()BSO *+
,,
GSH-./0
1 0 d 28.1% 24.6%,
$234
5678;
H2O2-
.#, ! 79.1% 180.3%, 9
:;4<78!=;
GSH
H2O2>((? 4))@ AsA-GSH
ABCDEFGH, IJKL Hg2+MNGO
PQRST; GSHU/0VW AsA-GSHAB
XY, Z[FGHU)
2.7 Hg2+#
$%&()*
\? 5]^_, $4`a H2O2b c
debMDA bDHA fghi, ja
AsA/DHAbGSH/GSSGfkhi)AsA/DHAb
GSH/GSSGa
L Hg2+lmnIMGop
hi)
4 2 mmol L−1(AT) 2 d
GSH H2O2 BSO
Table 4 GSH and H2O2 contents in leaves of wild type (WT) and mutant (MT) under 2 mmol L−1 AT for 2 d and effect of BSO pre-
treatment
GSH (nmol mg−1 protein)
3
2 H2O2 (mmol g−1 FW)
4
Treatment group WT MT WT MT
56 Control 126.03±1.69 b 137.70±2.32 b* 1.77±0.32 c 1.65±0.41 c
AT 154.75±1.87 a 191.17±1.58 a** 3.34±0.35 b 2.39±0.44 b**
BSO + AT 32.11±1.57 c 33.84±1.88 c 6.52±0.41 a 6.70±0.36 a*
P<0.05 !* ** #$%&()*+ (P<0.05), (P<0.01)!
Values within the same column followed by a different letter are significantly different at the 0.05 probability level. * and ** represent
significantly different at P<0.05 and P<0.01 between wild type and mutant, respectively.
5 Hg2+
!#$%
Table 5 Correlation among several physiological indexes of mutant (MT) under Hg2+ stress
3
2
H2O2
7 89:
2O
−
;<=
MDA
GSSG
12
-./0
DHA
-./0
/12-./0
AsA/DHA
/
GSH/GSSG
>?@ Chlorophyll
−0.634* −0.672* −0.577* −0.358 −0.545* 0.595* 0.556*
3
2 H2O2 0.516 0.935* 0.537* 0.784* −0.645* −0.563*
7 89: 2O
−
0.668* 0.866* 0.887* −0.863* −0.610*
;<=MDA
0.537* 0.911* −0.760* −0.549*
GSSG
0.785* −0.946* −0.951**
12-./0 DHA
−0.999** −0.813*
-./0/12-./0
AsA/DHA
0.913*
* ** #$&A BC, BC!
*
and ** denote significantly different at P<0.05 and P<0.01, respectively.
828 D 34E
3
[19], !
#$% Hg2+&()*+ Hg2+&,
-./0123, 456789:;<=
> , $%?@ABC=D Hg2+EFG
H!IJ<KLMNOP:QRS, T
UVWXYZ[\]^$_[20]!O`
a Hg2+EF,, KLMbcde5fgh
ij , KLM>kl , mn5>WXoSp
qrsMt!u#vw$%, Hg2+EFZx456
p89: H2O2 >lkyz{ 2O
−
e5BC!4
56 H2O2 p 2O
−
e5BC01|}89:;
Hg2+EF(89:~ MDA I, qr
oS<, d89:|KLMbc
R!
:Mt
WXMt
(GSHAsA5Vit E)pMt(Mt
t SODsMt PODsMt CAT
GR)!GSH:
Mt, d: ¡Mt¢
£!¤¥¦dKLM¢£, §d AsA-GSH
¨©bc H2O2[21]!ª« GSH p
GSH/GSSH 7¬® AsA-GSH ¨©¯°C|
I±^[22]!u²³$%, 0.4 mmol L−1 Hg2+
&(,456p89:~ GSH ´µ
¶·|(¸¹ , OEF(º , 456
~ GSHB<%0{}89:!»¼½EF
¾ºGSH·|PEF¿¡À£
L¢£, ÁÂsz{ GSHÃ, ÄÅÆL;
EF(º456GSHÇÈ
^ª«> GSH É}Ê¡Ë
s, Ì
PC ÃÍ, ÎMtd AsA-GSH ¨
©bcKLMÏ]!ÐÑÒÓpÔÕE
Fs~, 89: GSH Ö×|}456, Ø
?:dGSHÃpÙ5 γ-ÚÛÜÚ
ÝÃ(γ-ECS)Ã(GSHS)
(GR)KL|Þx!GSHp AsAMt
ßàdPÆáÀ£âãä, AsA å
æçd GSHè£pMtßàéâä[23]!
Hg2+EF¾º456: GSH êRÞë·,
O GSSG ë·B<s GSH, GSH/GSSG Ö
×ìí¸¹; 89: GSSG Ä;}
456, GSH/GSSGµ¶ë·(¸¹!89
:| GSH/GSSG, ¿îïRð}ñíª«
©á, ò¿îï§Rð}ó|AsA-GSH¨©
C!
(AT)
,
Hg2+ GSH , GSH
!#, γ-ECS GSH $%
&()*+,-./γ-ECS
BSO0, 1234567GSH89:;
<=>?@A, AsA-GSH BCDEF(G
HI0, 123456JK GSH
H2O2DLMN/, 456GSH89*LO
123P H2O2*L?123; BSO
Q=HI0, 123456JK GSH89
D*L:;<=R@A, STUV !/
W, H2O2 89*LXYZ[LM\], ^R_`
aRb)* AsA-GSH BCcdefg
h#(
GSHcôbcKLMs~æç
Éõ,
öÃ(PC)ÃÍ, dP
÷Lâãä[24-25], PCÂsd
øXöÃ
ÄÅùEFú[26]!Hg2+Pû]5
WXRüÅýpú , ^þ89:|
GSH n¡É, ¿îïó| AsA-GSH ¨©
C; ò¿îïd Hg2+¥¦öÃÎÂsà PC
d Hg2+-¦öÃ!u#$%, Hg2+EF()*:
Hg2+kl, 89:~ Hg2+J<
%0|}456, Ø^89:Ã>
PC, Hg2+öÃt ®, 2
Hg2+m
nMtEF!
AsA APXXè:t H2O2, y
hMt
jÝ(DHA); (
j
Ý(DHAR)t[27]!AsA p DHA ä
Pfg AsA-GSH¨©~n
É!456p
89: DHA´+ Hg2+EF,-./µ·|
¸¹, O456Ä;>}89:!¿7
AsA/DHA 7¬æ, äEF<89
: AsA/DHA 7¬´01|}456, %89:
| AsA pÙ5úd?|bcKL
MEFCâãä!²³$%, AsAPqr
sMtRÉ [28]!ÂsP456p89:
5 : AsA-GSH
829
MDAAsAAsA/DHA7p89:
~ MDADHA AsA/DHAäL
W$%, DHA d MDA µ01Ðä,
AsA/DHA d MDA µ01ä!AsA
AsA-GSH ¨©
2
Hg2+mns
MtS!Ød?²³vw¿x[29-30]!
u²³$%, Hg2+EF, ÷LÅ89
:ñí| GSHAsA GSH/GSSG
AsA/DHA)f, 456 GSHAsA%0I
GSSGDHA%0·|, AsA-GSH¨©C
, NRbcª«KLM!89:
GSHp AsAÔÕEFs´|}456, Ø
d89: GRDHARKL|R, §
GSHAsAÃKLÄÅ !!
4
#ô¿Õ)* Hg2+-÷L89:! Hg2+EF
, )* AsA-GSH¨©PEF$Ën
É!
89:AsApGSHÙ5úÅ, bcKLM
úÅ , qrsMtS , Ø89:P
Hg2+EFÀ£
5]%!
!
References
[1] Zeng X-M(), Shi G-X(), Xu N( ), Xu Q-S(
), Zhang X-L(
). Effects of mercury on active oxygen
metabolism and chromosome in Sagittaria trifolia. J Plant
Physiol Mol Biol (), 2003, 29(3):
227−232 (in Chinese with English abstract)
[2] Gu W(), Shi G-X(), Zhang C-Y(), Wang
W(), Xu Q-S(
), Xu N( ), Zeng X-M(),
Zhang X-L(
), Zhou H-W( ). Toxic effects of Hg2+,
Cd2+ and Cu2+ on photosynthetic systems and protective enzyme
systems of Potamogeton crispus. J Plant Physiol Mol Biol (
), 2002, 28(1): 69−74 (in Chinese with
English abstract)
[3] Shi G X, Xu Q S, Xie K B. Physiology and ultrastructure of
Azolla imbricate as affected by Hg2+ and Cd2+ toxicity. Acta Bot
Sin, 2003, 45: 437−444
[4] Ken’ichi O. Glutathione-associated regulation of plant growth
and stress responses. Antioxid Redox Signal, 2005, 7: 973−981
[5] Pang X(!), Wang D-H(#), Peng A($%). Effects of
mercury stress on the activity of antioxidant enzymes. Environ
Chem (&(), 2001, 20(4): 351−355 (in Chinese with Eng-
lish abstract)
[6] Xiong F-S()*), Song P(+,), Wang F-T(-.), Gao
Y-Z(/01). Response of glutathione-ascorbate cycle in rice
leaves to photoinhibition. Chin J Rice Sci (2345), 1992,
6(4): 177−183 (in Chinese with English abstract)
[7] Wang J(6), Li D-Q(789). Effects of water stress on
AsA-GSH cycle and H2O2 content in maize root. Chi J
Ecol-Agric (2:;<), 2002, 10(2): 94−96 (in Chinese
with English abstract)
[8] Yan Y P, He J Y, Zhu C, Cheng C, Pan X B, Sun Z Y. Accumula-
tion of copper in brown rice and effect of copper on rice growth
and grain yield in different rice cultivars. Chemosphere, 2006, 65:
1690−1696
[9] He J Y, Zhu C, Ren Y F, Yan Y P, Jiang D A. Genotypic variation
in grain cadmium concentration of lowland rice. J Plant Nutr Soil
Sci, 2006, 169: 711−716
[10] Zhu Z-G(=>?), Xiao H(@A), Fu Y-P(BCD), Hu G-C(E
F), Yu Y-H(GH), Si H-M(IJ), Zhang J-L(KL), Sun
Z-X(MNO). Construction of transgenic rice populations by in-
serting the maize transponson Ac/Ds and genetic analysis for
several mutants. Chin J Biotechnol (PQ), 2001, 17(3):
288−292 (in Chinese with English abstract)
[11] Wang K-R(RS). Comparative study on Cd phytotoxicity to
different genes of rice. Rural Ecol-Environ (;T:&),
1996, 12(3): 18−23 (in Chinese with English abstract)
[12] Griffith O W, Meister A. Potent and specific inhibition of glu-
tathione synthesis by buthionine sulfoximine (S-n-butylhomocy-
steine sulfoximine). J Biol Chem, 1979, 254: 7558−7560
[13] Vivekanandan M, Gnanam A. Studies on the mode of action of
aminotriazole in the induction of chlorosis. Plant Physiol, 1975,
55: 526−531
[14] Arnon D I. Copper enzymes in isolated chloroplast: Poly-
phenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1−15
[15] Shen W-B(UV), Ye M-B(WXY), Xu L-L(Z[), Zhang
R-X(S\). Changes of ability of scavenging active oxygen
during natural senescence of wheat flag leaves. Acta Bot Sin (
), 1997, 39(7): 634−640 (in Chinese with English ab-
stract)
[16] Wang A-G(]), Luo G-H(^_J). Quantitative Relation
between the reaction of hydroxylamine and superoxide anion
radicals in plants. Plant Physiol Commun (`a),
1990, 26(6): 55−58 (in Chinese with English abstract)
[17] Jiang D-A(b8%). Experimental Guide for Plant Physiology
(cdef). Chengdu: Chengdu Science g Tech-
nology University Press, 1999. pp 83−84 (in Chinese)
[18] Li Z-G(7hi), Du C-K(jkl), Gong M(mn). Simultaneous
measurement of AsA/DHA and GSH/GSSG using a single ex-
traction system. J Yunnan Normal Univ (opqrs),
2003, 23(3): 67−70 (in Chinese with English abstract)
[19] Jiang X-Y(tuv), Zhao K-F(wxy). Mechanism of heavy
metal injury and resistance of plants. Chin J Appl Environ Biol
(z{&), 2001, 7(1): 92−99 (in Chinese with
English abstract)
[20] Tian M(|), Rao L-B(}~), Li J-Y(7). Reactive
oxygen species (ROS) and its physiological functions in plant
cells. Plant Physiol Commun (`a), 2005, 41(2):
830 34
235−241 (in Chinese)
[21] May M J, Vernoux T, Leaver C, Montagu M V, Inzé D. Glu-
tathione homeostasis in plants: implications for environmental
sensing and plant development. J Exp Bot, 1998, 49: 649−667
[22] Jiménez A, Hernández J A, Pastori G. Role of the ascor-
bate-glutathione cycle of mitochondria and peroxisomes in the
senescence of pea leaves. Plant Physiol, 1998, 118: 1327−1335
[23] Pastori G M, Foyer C H. Common components, networks, and
pathways of cross-tolerance to stress: The central role of “redox”
and abscisic acid-mediated controls. Plant Physiol, 2002, 129:
460−468
[24] Grill E, Löffler S, Winnacker E L, Zenk M H. Phytochelatins, the
heavy-metal-binding peptides of plants, are synthesized from
glutathione by a specific γ-glutamylcysteine dipeptidyl transpep-
tidase (phytochelatin synthase). Proc Nat Acad Sci USA, 1989, 86:
6838−6842
[25] Xiang C-B(F
), Werner B L, Christensen E M, Oliver D J.
The biological function of glutathione revisited in Arabidopsis
transgenic plants with altered glutathione levels. Plant Physiol,
2001, 126: 564−574
[26] Rauser W E. Phytochelatins and related peptides: structure, bio-
synthesis and function. Plant Physiol, 1995, 109: 1141−1149
[27] Drazkiewicz M, Skorzynska-Polit E, Krupa Z. Response of the
ascorbate-glutathione cycle to excess copper in Arabidopsis
thaliana. Plant Sci, 2003, 164: 195−202
[28] Jin Y-H(J), Tao D-L(s), Hao Z-Q(), Ye J(W
), Du Y-J(j), Liu H-L(), Zhou Y-B(H
). En-
vironmental stress and redox status of ascorbate. Acta Bot Sin,
2003, 45: 795−801
[29] Brahim S, Ann C, Karen S, Frank V B, Nele H, Henk S, Jaco V.
Cadmium responses in Arabidopsis thaliana: glutathione metabo-
lism and antioxidative defence system. Pyhsiologia Plantarum,
2007, 129: 519−528
[30] Xie M-J(n), Ke W-S(), Wang W-X(), Xiong
Z-T()), Wu M-Y(n0), Chen J-J(). MDA accu-
mulation and antioxidation capacity of two Elsholtzia splendens
populations under copper stress. Chin J Ecol (:), 2005,
24(8): 935−938 (in Chinese with English abstract)