免费文献传递   相关文献

Identification of α-Linolenic Acid Metabolism Pathway Based on Transcriptome Data of Vernicia fordii Kernels during Tung Oil Synthesis Stage

基于油脂合成期油桐种仁转录组数据的α-亚麻酸代谢途径解析


【目的】 油桐种仁中产出的桐油经济利用价值极高。桐油中α-桐酸的含量高达70%,然而植物体内α-桐酸代谢通路的研究还未见报道,这对直接筛选油桐α-桐酸代谢通路相关酶基因造成一定的困难。α-亚麻酸作为α-桐酸的同分异构体,其代谢通路的研究则较为深入,能为α-桐酸代谢通路的解析提供参考。因此,本研究期望在油桐种仁转录组数据的基础上,解析油桐的α-亚麻酸代谢途径,为油桐α-桐酸代谢机理的阐明提供理论参考。此外,通过调控这些基因的表达模式以及开发与之紧密连锁的分子标记,可大大加快油桐遗传改良和分子育种的进程。【方法】 采用RNA-Seq技术对油桐种仁3个不同油脂合成期的转录组进行比较,获得大量差异表达的Unigene,并将这些Unigene归类于128个代谢途径。在此基础上,通过GO分类和Pathway富集性分析,解析油桐α-亚麻酸代谢通路并分析通路中相关酶基因在油脂合成期的表达变化规律。【结果】 通过对Ⅰ,Ⅱ,Ⅲ期的油桐种仁RNA测序,共获得长度为200~3 000个核苷酸的非冗余Unigene序列58 439条,其中能够比对到公共数据库中已知基因序列的Unigene共有41 059条,占所有非冗余基因的70.3%。不同长度的非冗余Unigene序列与数据库中序列匹配的效率不同,越长的序列匹配效率越高。序列长度大于2 000 bp的序列匹配效率达到98.28%,而500~1 000 bp和100~500 bp的序列分别只有78.86%和48.99%的匹配效率。3个种仁油脂合成期的转录组数据中共有105个Unigene可被富集于α-亚麻酸代谢途径,占所有非冗余Unigene的0.47%。从3个转录组数据的两两比较中鉴别出一些差异表达Unigene,其中也有一些可被富集于α-亚麻酸代谢途径。通过在KEGG数据库中进行检索后发现,105个Unigene序列分别对应于14个α-亚麻酸代谢途径关键酶基因,这些基因在其他物种中都有同源基因与之对应。通过基因表达模式分析发现,整体上与合成代谢相关的基因在油脂合成期呈现上调的表达模式,而与分解代谢相关的基因则呈现下调的表达模式。【结论】 在油桐种仁转录组数据的基础上,解析油桐α-亚麻酸代谢途径,获得与α-亚麻酸代谢相关的重要酶基因并分析它们在油脂合成期的表达模式,这对后续研究具有重要的启示作用。

【Objective】 Tung oil extracted from tung tree (Vernicia fordii) kernels has extremely high economic value. Tung oil contains α-eleostearic acid up to 70 percent. However, there are some difficulties in screening enzyme genes involved in α-eleostearic acid metabolism of tung tree due to very few studies being carried out on plant α-eleostearic acid metabolism pathway. Studies on metabolism pathway of α-linolenic acid, the isomers of α-eleostearic acid, were more in-depth and provide an example for analyses of metabolism pathway of α-eleostearic acid. This study was aimed to provide a theoretical basis for explaining the mechanism of α-eleostearic acid metabolism of tung tree through identifying α-linolenic acid metabolism pathway based on transcriptome data of tung tree kernels. It was also intended to largely accelerate the processes of genetic improvement and molecular breeding of tung tree through regulating gene expression profiles and developing molecular markers tightly linked to them. 【Method】 This study compared transcriptomes of tung tree kernels of 3 different oil synthesis stages using RNA-Seq technology and subsequently obtained a lot of differentially expressed Unigenes which can be classified into 128 metabolic pathways. Through GO classification and pathway enrichment analysis, the metabolism pathway of α-linolenic acid was identified and the expression profiles of related genes were analyzed. 【Result】 A total of 58 439 non-redundant Unigene with a 200-3 000 nucleotide-length were identified by RNA-Seq of tung tree kernel RNA of stages I-III. Accounting for 70.3 percentage of all non-redundant Unigenes, a total of 41 059 Unigene sequences could be matched to public database. Non-redundant Unigenes with different sequence length possessed different matching efficiency in alignments against sequences obtained from database. The longer the sequence was, the higher the matching efficiency would be. The matching efficiency of sequences with length greater than 2 000 bp was up to 98.28% whereas the matching efficiency of sequences with 500-1 000 bp and 100-500 bp length was decreased to 78.86% and 48.99%, respectively. Accounting for 0.47 percentages of all non-redundant Unigenes, a total of 105 Unigenes in 3 transcriptome data were enriched into α-linolenic acid metabolism pathway. Each pair-wise comparison of 3 transriptome data identified numbers of differentially expressed Unigenes and some of them were involved in α-linolenic acid metabolism pathway. Through alignment against KEGG database, 105 Unigene sequences were found to correspond to fourteen key enzyme genes involved in α-linolenic acid metabolism. These key enzyme genes were observed to have homologous genes in other species. Expression profiles showed that genes related to anabolism were generally up-regulated whereas genes related to catabolism were generally down-regulated during oil synthesis stage. 【Conclusion】 This study elucidated α-linolenic acid metabolism pathway of tung tree based on its kernel transcriptome data. Furthermore, key enzyme genes involved in α-linolenic acid metabolism were identified and their expression profiles were analyzed. The results of this study play important roles in enlightenment of the follow-up studies.


全 文 :第 51 卷 第 3 期
2 0 1 5 年 3 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 51,No. 3
Mar.,2 0 1 5
doi: 10.11707 / j.1001-7488.20150306
收稿日期: 2014 - 07 - 21; 修回日期:2014 - 08 - 22。
基金项目:国家林业公益性行业科研专项重大项目(201204403) ; 中南林业科技大学引进高层次人才科研启动基金(2013RJ003)。
* 谭晓风为通讯作者。
基于油脂合成期油桐种仁转录组数据的
α -亚麻酸代谢途径解析*
陈 昊 谭晓风
(中南林业科技大学 经济林培育与保护省部共建教育部重点实验室 经济林育种与栽培国家林业局重点实验室 长沙 410004)
摘 要: 【目的】油桐种仁中产出的桐油经济利用价值极高。桐油中 α - 桐酸的含量高达 70%,然而植物体内
α -桐酸代谢通路的研究还未见报道,这对直接筛选油桐 α -桐酸代谢通路相关酶基因造成一定的困难。α -亚麻
酸作为 α -桐酸的同分异构体,其代谢通路的研究则较为深入,能为 α -桐酸代谢通路的解析提供参考。因此,本
研究期望在油桐种仁转录组数据的基础上,解析油桐的 α -亚麻酸代谢途径,为油桐 α -桐酸代谢机理的阐明提供
理论参考。此外,通过调控这些基因的表达模式以及开发与之紧密连锁的分子标记,可大大加快油桐遗传改良和
分子育种的进程。【方法】采用 RNA-Seq 技术对油桐种仁 3 个不同油脂合成期的转录组进行比较,获得大量差异
表达的 Unigene,并将这些 Unigene 归类于 128 个代谢途径。在此基础上,通过 GO 分类和 Pathway 富集性分析,解析
油桐 α -亚麻酸代谢通路并分析通路中相关酶基因在油脂合成期的表达变化规律。【结果】通过对Ⅰ,Ⅱ,Ⅲ期的
油桐种仁 RNA 测序,共获得长度为 200 ~ 3 000个核苷酸的非冗余 Unigene 序列58 439条,其中能够比对到公共数据
库中已知基因序列的 Unigene 共有41 059条,占所有非冗余基因的 70. 3%。不同长度的非冗余 Unigene 序列与数据
库中序列匹配的效率不同,越长的序列匹配效率越高。序列长度大于2 000 bp的序列匹配效率达到 98. 28%,而
500 ~ 1 000 bp和 100 ~ 500 bp 的序列分别只有 78. 86%和 48. 99%的匹配效率。3 个种仁油脂合成期的转录组数据
中共有 105 个 Unigene 可被富集于 α -亚麻酸代谢途径,占所有非冗余 Unigene 的 0. 47%。从 3 个转录组数据的两
两比较中鉴别出一些差异表达 Unigene,其中也有一些可被富集于 α -亚麻酸代谢途径。通过在 KEGG 数据库中进
行检索后发现,105 个 Unigene 序列分别对应于 14 个 α -亚麻酸代谢途径关键酶基因,这些基因在其他物种中都有
同源基因与之对应。通过基因表达模式分析发现,整体上与合成代谢相关的基因在油脂合成期呈现上调的表达模
式,而与分解代谢相关的基因则呈现下调的表达模式。【结论】在油桐种仁转录组数据的基础上,解析油桐 α - 亚
麻酸代谢途径,获得与 α -亚麻酸代谢相关的重要酶基因并分析它们在油脂合成期的表达模式,这对后续研究具
有重要的启示作用。
关键词: 油桐; 转录组测序; α -亚麻酸代谢; 基因表达模式
中图分类号:S718. 46 文献标识码:A 文章编号:1001 - 7488(2015)03 - 0041 - 08
Identification of α-Linolenic Acid Metabolism Pathway Based on
Transcriptome Data of Vernicia fordii Kernels during Tung Oil Synthesis Stage
Chen Hao Tan Xiaofeng
(Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education
Key Laboratory of Non-Wood Forest Products of State Forestry Administration
Central South University of Forestry and Technology Changsha 410004)
Abstract: 【Objective】Tung oil extracted from tung tree (Vernicia fordii) kernels has extremely high economic value.
Tung oil contains α-eleostearic acid up to 70 percent. However,there are some difficulties in screening enzyme genes
involved in α-eleostearic acid metabolism of tung tree due to very few studies being carried out on plant α-eleostearic acid
metabolism pathway. Studies on metabolism pathway of α-linolenic acid,the isomers of α-eleostearic acid,were more
in-depth and provide an example for analyses of metabolism pathway of α-eleostearic acid. This study was aimed to provide
a theoretical basis for explaining the mechanism of α-eleostearic acid metabolism of tung tree through identifying α-
林 业 科 学 51 卷
linolenic acid metabolism pathway based on transcriptome data of tung tree kernels. It was also intended to largely
accelerate the processes of genetic improvement and molecular breeding of tung tree through regulating gene expression
profiles and developing molecular markers tightly linked to them. 【Method】This study compared transcriptomes of tung
tree kernels of 3 different oil synthesis stages using RNA-Seq technology and subsequently obtained a lot of differentially
expressed Unigenes which can be classified into 128 metabolic pathways. Through GO classification and pathway
enrichment analysis,the metabolism pathway of α-linolenic acid was identified and the expression profiles of related genes
were analyzed. 【Result】A total of 58 439 non-redundant Unigene with a 200 - 3 000 nucleotide-length were identified by
RNA-Seq of tung tree kernel RNA of stages I - III. Accounting for 70. 3 percentage of all non-redundant Unigenes,a total
of 41 059 Unigene sequences could be matched to public database. Non-redundant Unigenes with different sequence
length possessed different matching efficiency in alignments against sequences obtained from database. The longer the
sequence was,the higher the matching efficiency would be. The matching efficiency of sequences with length greater than
2 000 bp was up to 98. 28% whereas the matching efficiency of sequences with 500 - 1 000 bp and 100 - 500 bp length
was decreased to 78. 86% and 48. 99%,respectively. Accounting for 0. 47 percentages of all non-redundant Unigenes,a
total of 105 Unigenes in 3 transcriptome data were enriched into α-linolenic acid metabolism pathway. Each pair-wise
comparison of 3 transriptome data identified numbers of differentially expressed Unigenes and some of them were involved
in α-linolenic acid metabolism pathway. Through alignment against KEGG database,105 Unigene sequences were found to
correspond to fourteen key enzyme genes involved in α-linolenic acid metabolism. These key enzyme genes were observed
to have homologous genes in other species. Expression profiles showed that genes related to anabolism were generally up-
regulated whereas genes related to catabolism were generally down-regulated during oil synthesis stage. 【Conclusion】This
study elucidated α-linolenic acid metabolism pathway of tung tree based on its kernel transcriptome data. Furthermore,
key enzyme genes involved in α-linolenic acid metabolism were identified and their expression profiles were analyzed. The
results of this study play important roles in enlightenment of the follow-up studies.
Key words: Vernicia fordii; transcriptome sequencing; α-linolenic acid metabolism; gene expression profiles
油桐(Vernicia fordii)是我国四大木本油料植物
之一,其种仁中榨出的桐油的经济利用价值极高,能
够用于优质油漆、油墨等工业原料的制造,发展桐油
产业对于发展我国新材料工业、缓解我国能源危机
具有重要的战略意义 (黄坤等,2008; 杨颖等,
2010; 谭晓风等,2011)。桐油中脂肪酸的主要成
分是 α -桐酸(α-eleostearic acid),其含量占桐油脂
肪酸总量的 70% (w /w)以上(Bickford et al.,1953;
傅伟昌等,2008; 刘金龙等,2011)。目前,α -桐酸
的形成机理还不明确,致使只能采用常规的杂交和
选择育种,不能有效地从分子水平对油桐进行遗传
改良,这严重阻碍了桐油产业的发展。
所有共轭十八碳三烯酸被总称为共轭亚麻酸
( conjugated linolenic acid,CLNA ),因 此 桐 酸 是
CLNA 中的一个亚类。桐油中的桐酸又可分为 α -
桐酸 ( C18: 3Δ9 cis,11 trans,13 trans ) 和 β - 桐酸 ( C18:
3Δ9 trans,11 trans,13 trans) 2 类,其中绝大部分为 α - 桐酸
(Bickford et al.,1953; Greenfield,1959; 傅伟昌等,
2008; 刘金龙等,2011)。高 α -桐酸含量导致桐油
的不饱和程度很高,从而使得桐油成为一种优质的
干性油,被广泛应用于工业生产(Wang et al.,2000;
蒲侠等,2003; Li et al.,2003; 黄坤等,2008)。由
于 α -桐酸具有极高的应用价值,有学者尝试通过
化学合成和基因工程的方法生产 α - 桐酸,但这些
方法都存在步骤复杂、产率低、不能进行大规模生产
等缺陷,因而从天然植物资源中分离仍是目前最行
之有效的获取 α -桐酸的途径(Cahoon et al.,1999;
2006)。有鉴于此,育种家们希望尽可能地通过遗
传改良来提高单位面积的桐油产量或增加单位质量
桐油中 α -桐酸的含量。解析油桐 α -桐酸的形成
机理将为油桐的遗传改良提供理论指导。
与拟南芥 ( Arabidopsis thaliana )、水稻 ( Oryza
sativa)和毛果杨(Populus trichocarpa)等传统模式植
物相比,油桐还没有进行全基因组测序,这对油桐功
能基因的克隆和功能研究造成了一定的困难。转录
组测序(RNA-Seq)这一转录组学研究方法基于第二
代测序平台进行,它比传统的基因芯片数据通量更
高、成本更低、灵敏度更高、重复性更好,而且不需知
道待测物种的基因序列,已成为当今转录组学研究
的主要方法(Marioni et al.,2008;O’Loughlin et al.,
2012; Shao et al.,2012; Torales et al.,2012; Yang
et al.,2012)。因此,新一代测序技术的发展为解决
24
第 3 期 陈 昊等: 基于油脂合成期油桐种仁转录组数据的 α -亚麻酸代谢途径解析
这一难题提供了必要的技术手段。尽管如此,植物
体内 α -桐酸代谢通路的相关研究还未见报道,因
此哪些酶基因参与了 α - 桐酸的代谢仍不清楚,这
对通过序列同源比对的方法直接筛选油桐 α -桐酸
代谢通路相关酶基因造成了一定的困难。作为 α -
桐酸的同分异构体,α -亚麻酸(C18:3Δ9 cis,12cis,15cis)
与α -桐酸仅存在不饱和双键位置的差异,这意味
着二者的代谢通路有很大程度的重叠。参与 α -亚
麻酸代谢的酶基因已有研究,鉴于 α - 桐酸和 α -
亚麻酸分子结构的高度相似性,这些基因很可能也
参与了 α -桐酸的代谢。通过序列的同源性比对,
找到油桐 α -亚麻酸代谢相关基因,随后通过分析
这些基因的表达模式及功能,确定其与 α - 桐酸代
谢的相关性,将为油桐 α - 桐酸代谢通路的解析提
供突破口。另外,作者对 36 个油桐家系的研究发
现,成熟的油桐种仁中,α - 桐酸和 α - 亚麻酸的含
量均值分别为 77. 15%和 0. 76%,α -桐酸的含量远
大于α -亚麻酸的含量。油桐种仁在发育过程中油
脂大量积累,但在这一过程中究竟是直接生成 α -
桐酸还是先生成 α -亚麻酸后再将其转化为 α -桐
酸这一问题的解析同样有赖于对 α -亚麻酸代谢通
路的研究。然而油桐的全基因组序列还没有被测
定,无可用参考信息,因此,本研究基于利用 RNA-
Seq 技术获取的油桐种仁转录组的测序数据,通过
与其他物种的序列进行同源性比对和代谢通路富集
性分析,解析了油桐 α - 亚麻酸代谢通路并分析了
通路中关键酶基因在油脂合成期的表达模式。研究
结果能为在此基础上进行的后续油桐 α -桐酸代谢
通路解析提供理论突破口。此外,通过调控这些基
因的表达模式以及开发与之紧密连锁的分子标记,
可大大加快油桐遗传改良和分子育种的进程。
1 材料与方法
1. 1 试验材料
以油桐代表性地方品种‘泸溪葡萄桐’(Vernicia
fordii‘Putaotong’)6 月(Ⅰ期)、8 月(Ⅱ期)和 10 月
(Ⅲ期)采收的种仁为材料,提取种仁 RNA 进行
RNA-Seq 测序。前人的研究表明,油桐种仁中油脂
的合成可分为起始期(6 月)、快速积累期(8 月)和
停滞期(10 月)3 个阶段(蔺定运等,1980; 王汉涛
等,1985)。
1. 2 总 RNA 提取与测序文库构建
使用 Invitrogen 公司的 Trizol 试剂进行总 RNA
的提取。进行 RNA-Seq 测序的总 RNA 在使用前需
经毛细管电泳和 Agilent 2100 Bioanalyzer 仪器分析
其完整度(1. 8 < OD260 /OD280 < 2. 2,28S∶ 18S > 1. 0,
RIN 值≥6. 5),用分光光度计检测其浓度 (浓度≥
400 ng·μL - 1,总量≥ 20 μg)。建库所用第 1 链
cDNA 的 合 成 使 用 SuperScriptTM II RT 试 剂 盒
( Invitrogen)进行,随后以置换法合成双链 cDNA。
在合成双链 cDNA 的基础上按照 Illumina 公司提供
的操作手册进行双末端测序文库的构建,构建好的
测序文库置于高通量测序平台 HiSeq 2000 上测序。
1. 3 测序数据的处理
通过 RNA-Seq 获取的原始数据 ( raw reads) 的
实质是众多短核苷酸序列组成的集合。这些原始数
据需经低质量序列(N 的比例大于 5%,20%以上为
Q≤10 的序列)和接头( adaptor)序列的剔除才能获
得可用于后续分析的数据( clean reads)。随后将首
尾重叠的 reads 序列通过 Trinity ( Grabherr et al.,
2011)这一主流序列组装软件组装成序列两端不能
再延伸的 Unigene 序列。最后将 Unigene 序列在蛋
白质数据库(non-redundant,nr; Swiss-Protein,Swiss-
Prot; Kyoto Encyclopedia of Genes and Genomes,
KEGG; Cluster of Orthologous Groups of Proteins,
COG)中与其他物种的同源序列进行比对,从而确
定 Unigene 序列的序列方向。
1. 4 Unigene 的功能注释和差异表达分析
将 Unigene 序列在 1. 3 所述的蛋白质数据库中
进行比对以获得其蛋白质的功能注释。随后分别利
用软件 Blast2GO(Conesa et al.,2005)和 KEGG 数据
库进行 Unigene 序列的 GO(Gene Ontology)分类和
代谢 途 径 ( Pathway ) 富 集 性 分 析。采 用 FPKM
( fragments per kb per million fragments ) 算 法
(Mortazavi et al.,2008 ) 从 转 录 组 数 据 中 获 取
Unigene 的表达丰度从而筛选在不同油脂合成期之
间差异表达的 Unigene。同一 Unigene 的表达丰度
在 2 个不同时期间进行比较时,如 Unigene 的 FDR
值≤0. 001 且测序丰度的比值在进行 log2 转化后所
得的 | log2Ratio | ≥ 1,则认为其为一个差异表达
Unigene(Audic et al.,1997)。随机抽取转录组测序
数据,使用 Sanger 测序和 real-time PCR 验证转录组
测序数据的准确性。
2 结果与分析
2. 1 RNA 质量检测
油桐种仁中含有大量的油脂,这对 RNA 的质量
会造成影响,因此提取的总 RNA 在用于构建测序文
库前需进行质量评估。通过毛细管电泳和 Agilent
34
林 业 科 学 51 卷
2100 Bioanalyzer 仪器分析油桐种仁总 RNA 的完整度
和浓度,发现各样本 RNA 没有降解(图 1),其完整度
(RIN > 7. 0,28S∶ 18S > 1. 5)和浓度(≥400 ng·μL - 1 )
均符合测序要求。
2. 2 测序数据统计
通过对Ⅰ -Ⅲ期的油桐种仁 RNA 进行测序,共
获得 58 439 条长度为 200 ~ 3 000 个核苷酸的非冗
余 Unigene 序列,其中Ⅰ,Ⅱ和Ⅲ期分别获得了
61 001,54 679 和 44 495 条 Unigene 序列。共有
41 059条 Unigene 序列能够与公共数据库中的已知
基因匹配,占所有非冗余基因的 70. 3% (表 1)。不
同长度的非冗余 Unigene 序列与数据库中序列匹配
的效率不同,越长的序列匹配效率越高(图 2)。序
列长度大于 2 000 bp 的序列匹配效率达到了
98. 28%,而 500 ~ 1 000 bp和 100 ~ 500 bp 的序列分
别只有 78. 86%和 48. 99%的匹配效率。
图 1 油桐种仁 3 个不同发育时期总 RNA 的毛细管电泳
Fig. 1 Capillary electrophoresis diagram of total RNA of
V. fordii kernels in three different developmental stages
Ⅰ,Ⅱ和Ⅲ分别表示油桐种仁的 3 个发育时期。
Ⅰ,Ⅱ and Ⅲ represent three developmental stages of
V. fordii kernel,respectively.
表 1 公共数据库注释的 Unigene 数
Tab. 1 The number of unigenes annotated in public database
NR NT SwissProt KEGG COG GO 总计 Total
Unigene 数
Unigene number
38 862 37 723 23 894 22 134 14 470 30 280 41 059
图 2 不同碱基对长度的 Unigene 序列在
GenBank 数据库中的匹配效率
Fig. 2 Matching percentage of Unigene sequences with
different lengths of base pairs to entries in the GenBank database
2. 3 油桐种仁中 α - 亚麻酸代谢途径基因表达变
化规律分析
Pathway 富集性分析表明,3 个种仁油脂合成期
的转录组数据中共有 105 个 Unigene 可被富集于
α -亚麻酸代谢( linolenic acid metabolism)途径,占
所有非冗余 Unigene 的 0. 47%。从 3 个转录组数据
的两两比较中分别鉴别出一些差异表达 Unigene,其
中也有一些可被富集于 α - 亚麻酸代谢途径 (图
3)。通过在 KEGG 数据库中进行检索后发现,105
个 Unigene 序列分别对应于 14 个 α -亚麻酸代谢途
径关键酶基因(表 2),这些基因在其他物种中都有
同源基因与之对应。随后利用转录组数据对这些基
因在油桐种仁 3 个不同油脂合成期的表达变化规律
进行解析 (表 2)。随机挑选其中 4 个基因,利用
real-time PCR 检测其油脂合成期的表达模式,结果
与测序数据一致,表明测序数据准确可靠(图 4)。
通过基因表达模式分析发现,整体上与合成代
谢相关的基因在油脂合成期呈现上调的表达模式,
而与分解代谢相关的基因则呈现下调的表达模式。
例如,与 α -亚麻酸合成代谢相关的乙酰辅酶 A 连
接酶 ( OPCL1 ) 基因和乙酰辅酶 A 酰基转移酶
(ACAA1)基因在油脂合成期持续上调表达(表 2)。
与 α - 亚麻酸分解代谢相关的酰基辅酶 A 氧化酶
(ACX)和烯酰辅酶 A 水合酶(MFP2)分别催化脂肪
酸 β -氧化的第 1 和第 2 步反应,生成乙酰辅酶 A
和能量(Bahnson et al.,2002; Carrozzo et al.,2008)。
ACX 和 MFP2 的表达量在油脂合成期持续下调,这
一表达模式降低了种仁中 ACX 和 MFP2 的含量,从
而有利于油脂合成期脂肪酸的大量积累(表 2)。磷
脂酶(Phospholipase,PL)是催化生物体内磷脂分解
的重要酶类,细胞中膜结构的损伤修复、信号转导等
生理过程都离不开磷脂酶的参与 ( Casado et al.,
2012)。在油脂合成期内,油桐 α -亚麻酸代谢途径
中的 2 个磷脂酶基因 pldA 和 PLA2G 的表达量始终
保持下降的趋势(表 2)。
44
第 3 期 陈 昊等: 基于油脂合成期油桐种仁转录组数据的 α -亚麻酸代谢途径解析
图 3 RNA-Seq 检测到的油桐油脂合成期 α -亚麻酸代谢途径差异表达基因
Fig. 3 Differentially expressed genes in α-linolenic acid metabolism pathway detected by RAN-Seq during tung oil synthesis stage of V. fordii
矩形框标示油桐种仁转录组两两比较时的差异表达基因。代谢途径图引自 KEGG 数据库(登录号:map00592)。
Rectangular boxes indicate differentially expressed genes across pairwise comparisons of V. fordii kernels
transcriptome. Metabolic pathway map was cited from KEGG database ( accession number: map00592) .
表 2 油桐种仁 α -亚麻酸代谢途径相关酶基因在油脂合成期的表达变化规律①
Tab. 2 The expression profiles of enzyme genes involved in α-linolenic acid metabolism
pathway of V. fordii kernels during tung oil synthesis stage
KEGG 编号
KEGG No.
EC 编号
EC No.
基因名
Gene name
蛋白名称
Protein name
基因表达模式 Gene expression profiles
ⅡvsⅠ ⅢvsⅡ ⅢvsⅠ
K08241
K01058
K10527
K05894
K10526
K00454
K01047
K10529
K00232
K10525
K01723
K10528
K07513
K14674
2. 1. 1. 141
3. 1. 1. 32
4. 2. 1. 17
1. 3. 1. 42
6. 2. 1
1. 13. 11. 12
3. 1. 1. 4
1. 13. 11. 41
1. 3. 3. 6
5. 3. 99. 6
4. 2. 1. 92
4. 1. 2
2. 3. 1. 16
3. 1. 1. 3
JMT
pldA
MFP2
PDAR
OPCL1
LOX25
PLA2G
DOX1
ACX
aoc
AOS
HPL1
ACAA1
TGL4
茉莉酮酸酯 O -甲基转移酶 Jasmonate O-methyltransferase
磷脂酶 A1 Phospholipase A1
烯酰辅酶 A 水合酶 Enoyl-CoA hydratase
12 -氧 -植物二烯酸还原酶 12-oxo-phytodienoic acid reductase
OPC - 8:0 乙酰辅酶 A 连接酶 1 OPC-8:0 CoA ligase 1
脂肪氧合酶 Lipoxygenase
分泌型磷脂酶 A2 Secretory phospholipase A2
α -双加氧酶 Alpha-dioxygenase
酰基辅酶 A 氧化酶 Acyl-CoA oxidase
丙二烯氧化物环化酶 Allene oxide cyclase
过氧化氢脱水酶 Hydroperoxide dehydratase
过氧化氢裂解酶 Hydroperoxide lyase
乙酰辅酶 A 酰基转移酶 1 Acetyl-CoA acyltransferase 1
三酯酰甘油脂肪酶 TAG lipase
U
D
D
D
U
D
D
U
D
N
U
D
U
D
U
D
D
D
U
D
D
U
D
D
D
D
U
D
U
D
D
D
U
D
D
U
D
D
N
D
U
D
①U:上调 Up-regulated; D: 下调 Down-regulated; N:差异不显著 No significant difference.
54
林 业 科 学 51 卷
图 4 油桐油脂合成期部分 α -亚麻酸代谢途径基因表达模式的 real-time PCR 检测
Fig. 4 Expression profiles of partial genes involved in α-linolenic acid
metabolism pathway detected by real-time PCR during tung oil synthesis stage of V. fordii
Ⅰ,Ⅱ和Ⅲ分别表示油桐种仁的 3 个发育时期。
Ⅰ,Ⅱ and Ⅲ represent three developmental stages of V. fordii kernel,respectively.
3 结论与讨论
油桐的全基因测序还未完成,可用的核酸序列
信息过少,这严重制约了油桐分子生物学研究的发
展,从而使油桐重要经济性状分子机理的解析变得
困难。RNA-Seq 这一基于第二代测序技术的转录组
研究方法的优越性在于其在进行转录组研究时会对
cDNA 进行测序,因此无需知道被研物种的序列信
息。另外,这一方法与传统的转录组研究手段
( cDNA 微阵列,LongSAGE,MPSS)相比,灵敏度大大
提高,甚至可检测到细胞中只有几个拷贝的转录本
(Alagna et al.,2009; González-Ballester et al.,2010;
Zenoni et al.,2010; Bennetzen et al.,2012)。本研究
在获得油桐种仁油脂合成期转录组数据的基础上,
通过一系列的生物信息学分析,揭示了油桐的
α -亚麻酸代谢途径,并分析了途径中基因的表达
规律,这为进一步研究油桐 α - 亚麻酸代谢途径中
关键酶基因的功能提供了线索,也为油桐 α - 桐酸
代谢通路的解析提供了必要的数据支持。
转录组测序数据中共有41 059条 Unigene 序列
能够与公共数据库中的已知基因匹配,占所有非冗
余基因的 70. 3% (表 1 ),这 意 味 着 有 30% 的
Unigene 在公共数据库中没有检测到同源序列。前
人的研究表明,大约有 64%通过 RNA-Seq 从人转录
组中获得的表达序列标签(Expressed sequence tag,
EST)能够较好地比对到已经注释过的人类基因上
(Mane et al.,2009)。其他植物的转录组研究中同
样有比例不等(13% ~ 80% )的序列不能进行有效
的注释,这些序列所占的比例受到物种、测序深度和
BLAST 程序参数等因素的影响(Wang et al.,2010;
Blanca et al.,2011; Ness et al.,2011)。考虑到油桐
缺少有用的基因组序列信息,本研究对 Unigene 的
注释率符合转录组测序数据注释标准。
α -亚麻酸是生物体脂肪酸的主要成分之一,
也是 α - 桐酸的同分异构体,因此对 α - 亚麻酸代
谢途径基因的研究有助于阐述 α -桐酸形成的分子
机理。植物的 α -亚麻酸代谢是一个多种酶类共同
参与的复杂过程,任何一种酶类的表达变化都会对
α -亚麻酸代谢造成影响,这也是不同植物乃至同
一植物的不同组织器官中 α -亚麻酸含量具有显著
差异的分子遗传基础。因此,通过对 α - 亚麻酸代
谢途径基因表达模式的整体阐述,有助于更深入地
揭示油桐 α - 亚麻酸代谢这一生理过程的分子机
制。在油桐 α - 亚麻酸代谢通路中,与合成代谢相
关的基因,如乙酰辅酶 A 连接酶(OPCL1)基因和乙
酰辅酶 A 酰基转移酶(ACAA1)基因在油脂合成期
持续上调表达(表 2),与分解代谢相关的基因,如酰
基辅酶 A 氧化酶(ACX)基因和烯酰辅酶 A 水合酶
(MFP2)基因则持续下调表达。磷脂分解代谢的关
键酶是磷脂酶(Phospholipase,PL),细胞中膜结构的
损伤修复、信号转导等生理过程都离不开磷脂酶的
参与(Casado et al.,2012)。在油脂合成期内,油桐
α - 亚麻酸代谢途径中的 2 个磷脂酶基因 pldA 和
PLA2G 持续下调表达 (表 2 )。从整体上看,油桐
α -亚麻酸代谢通路中与合成代谢相关的基因呈现
上调表达的趋势,而与分解代谢相关的基因则表现
出下调趋势,这与油桐油脂合成期油脂的大量积累
这一表型相吻合。
第二代测序技术能够获得大量的油桐转录本序
列,这将为后续的研究带来极大的便利。尽管利用
第二代测序技术研究转录组时技术优势明显,但也
存在一些问题。首先,随着第二代测序技术的发展,
如何高效地从越来越多的数据中发掘相关信息,将
对生物信息学的发展提出挑战 ( van Vliet,2010);
其次,高通量测序的成本仍然偏高,尤其在小规模测
序,如质粒测序、PCR 产物测序等方面,没有成本优
势;第三,高通量测序所需的起始样本量大,这使其
应用受到了限制。尽管第二代测序技术存在上述缺
64
第 3 期 陈 昊等: 基于油脂合成期油桐种仁转录组数据的 α -亚麻酸代谢途径解析
陷,但随着技术水平和生物信息学分析方法的不断
发展,第二代测序技术的测序成本必将逐步降低,从
而使其得到更广泛的应用。
参 考 文 献
傅伟昌,顾小红,陶冠军,等 . 2008. 桐油脂肪酸组成分析和甘三酯
结构判定 . 天然产物研究与开发,(6) : 964 - 968.
( Fu W C,Gu X H,Tao G J,et al. 2008. Analysis of fatty acids and the
structure identification of triacylglycerols in tung oil. Natural Product
Research and Development,(8) : 964 - 968. [in Chinese])
黄 坤,夏建陵 . 2008. 桐油及其衍生物的改性在高分子材料中的
应用进展 . 化工进展,27 (10) : 1588 - 1592.
(Huang K,Xia J L. 2008. Progress of modification of tung oil and its
derivatives in the application of polymer materials. Chemical
Industry and Engineering Progress,27 ( 10 ) : 1588 - 1592. [in
Chinese])
蔺定运,倪善庆 . 1980. 油桐枝、叶和果实物质代谢的初步研究 . 植
物生理学通讯,(3) : 37 - 40.
(Lin D Y,Ni S Q. 1980. Preliminary researches on material metabolism
of branches, leaves and fruits of tung tree. Plant Physiology
Communication,(3) : 37 - 40. [in Chinese])
刘金龙,郑小江,郑 威,等 . 2011. 油桐品种五爪桐含油量及桐油
质量研究 . 湖北农业科学,50 (10) : 2031 - 2035.
(Liu J L,Zheng X J,Zheng W,et al. 2011. Study on the oil content
and quality of Vernicia fordii cv. five fingernail tung. Hubei
Agricultural Sciences,50 (10) : 2031 - 2035. [in Chinese])
蒲 侠,张兴华,童速玲,等 . 2003. 桐油改性的研究进展及应用前
景 . 林产化工通讯,37 (6) : 41 - 46.
(Pu X,Zhang X H,Tong S L,et al. 2003. Study and application
prospect of modified tung oil. Journal of Chemical Industry of Forest
Products,37 (6) : 41 - 46. [in Chinese])
谭晓风,蒋桂雄,谭方有,等 . 2011. 我国油桐产业化发展战略调查
研究报告 . 经济林研究,29 (3) : 1 - 7.
(Tan X F,Jiang G X,Tan F Y,et al. 2011. Research report on
industrialization development strategy of Vernicia fordii in China.
Nonwood Forest Research,29 (3) : 1 - 7. [in Chinese])
王汉涛,段聪仁,徐树华,等 . 1985. 油桐种仁与油脂形成规律的研
究 . 经济林研究,3 (2) : 29 - 35.
(Wang H T,Duan C R,Xu S H,et al. 1985. Researches on the law of
the formulation of seeds and their oil in tung-oil trees. Nonwood
Forest Research,3 (2) : 29 - 35. [in Chinese])
杨 颖,田从学 . 2010. 我国生物柴油产业现状及发展对策 . 中国
粮油学报,25 (2) : 150 - 154.
(Yang Y,Tian C X. 2010. Current status and development strategies of
biodiesel industry in China. Journal of the Chinese Cereals and Oils
Association,25 (2) : 150 - 154. [in Chinese])
Alagna F,D’Agostino N,Torchia L,et al. 2009. Comparative 454
pyrosequencing of transcripts from two olive genotypes during fruit
development. BMC Genomics,10: 399.
Audic S,Claverie J M. 1997. The significance of digital gene expression
profiles. Genome Res,7 (10) : 986 - 995.
Bahnson B J,Anderson V E,Petsko G A. 2002. Structural mechanism
of enoyl-CoA hydratase: three atoms from a single water are added in
either an E1cb stepwise or concerted fashion. Biochemistry,
41(8) : 2621 - 2629.
Bennetzen J L,Schmutz J,Wang H,et al. 2012. Reference genome
sequence of the model plant Setaria. Nat Biotechnol,30 ( 6 ) :
555 - 561.
Bickford W G,DuPré E F,Mack C H,et al. 1953. The infrared spectra
and the structural relationships between alpha- and beta-eleostearic
acids and their maleic anhydride adducts. J Am Oil Chem Soc,
30(9) : 376 - 381.
Blanca J, Caizares J, Roig C, et al. 2011. Transcriptome
characterization and high throughput SSRs and SNPs discovery in
Cucurbita pepo (Cucurbitaceae) . BMC Genomics,12: 104.
Cahoon E B,Carlson T J,Ripp K G,et al. 1999. Biosynthetic origin of
conjugated double bonds: production of fatty acid components of
high-value drying oils in transgenic soybean embryos. Proc Natl
Acad Sci USA,96 (22) : 12935 - 12940.
Cahoon E B,Dietrich C R,Meyer K,et al. 2006. Conjugated fatty
acids accumulate to high levels in phospholipids of metabolically
engineered soybean and Arabidopsis seeds. Phytochemistry,
67(12) : 1166 - 1176.
Carrozzo R,Bellini C,Lucioli S,et al. 2008. Peroxisomal acyl-CoA-
oxidase deficiency: two new cases. Am J Med Genet A,146 (13) :
1676 - 1681.
Casado V,Martín D,Torres C,et al. 2012. Phospholipases in food
industry: a review. Methods Mol Biol,861: 495 - 523.
Conesa A,Gtz S,García-Gómez J M, et al. 2005. Blast2GO: a
universal tool for annotation,visualization and analysis in functional
genomics research. Bioinformatics,21 (18) : 3674 - 3676.
González-Ballester D, Casero D, Cokus S, et al. 2010. RNA-seq
analysis of sulfur-deprived Chlamydomonas cells reveals aspects of
acclimation critical for cell survival. Plant Cell, 22 ( 6 ) :
2058 - 2084.
Grabherr M G, Haas B J, Yassour M, et al. 2011. Full-length
transcriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol,29 (7) : 644 - 652.
Greenfield J. 1959. Tung oil. J Am Oil Chem Soc, 36 ( 11 ) :
565 - 574.
Li F,Larock R C. 2003. Synthesis,structure and properties of new tung
oil-styrene-divinylbenzene copolymers prepared by thermal
polymerization. Biomacromolecules,4 (4) : 1018 - 1025.
Mane S P, Evans C, Cooper K L, et al. 2009. Transcriptome
sequencing of the Microarray Quality Control ( MAQC ) RNA
reference samples using next generation sequencing. BMC
Genomics,10: 264.
Marioni J C,Mason C E,Mane S M, et al. 2008. RNA-seq: an
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res,18(9) : 1509 - 1517.
Mortazavi A,Williams B A,McCue K, et al. 2008. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods,
5(7) : 621 - 628.
Ness R W,Siol M,Barrett S C. 2011. De novo sequence assembly and
characterization of the floral transcriptome in cross- and self-
74
林 业 科 学 51 卷
fertilizing plants. BMC Genomics,12: 298.
O’Loughlin A,Lynn D J,McGee M, et al. 2012. Transcriptomic
analysis of the stress response to weaning at housing in bovine
leukocytes using RNA-seq technology. BMC Genomics,13: 250.
Shao W,Zhao Q Y,Wang X Y,et al. 2012. Alternative splicing and
trans-splicing events revealed by analysis of the Bombyx mori
transcriptome. RNA,18(7) : 1395 - 1407.
Torales S L,Rivarola M,Pomponio M F,et al. 2012. Transcriptome
survey of Patagonian southern beech Nothofagus nervosa ( = N.
alpina) : assembly, annotation and molecular marker discovery.
BMC Genomics,13: 291.
van Vliet A H. 2010. Next generation sequencing of microbial
transcriptomes: challenges and opportunities. FEMS Microbiol Lett,
302 (1) : 1 - 7.
Wang C,Jones F N. 2000. Stability and film properties of tung oil
modified soybean alkyd emulsion. J Appl Polym Sci,78 ( 9 ) :
1698 - 1706.
Wang X W,Luan J B,Li J M,et al. 2010. De novo characterization of
a whitefly transcriptome and analysis of its gene expression during
development. BMC Genomics,11: 400.
Yang D,Liu Q,Yang M,et al. 2012. RNA-seq liver transcriptome
analysis reveals an activated MHC-I pathway and an inhibited MHC-
II pathway at the early stage of vaccine immunization in zebrafish.
BMC Genomics,13: 319.
Zenoni S,Ferrarini A,Giacomelli E,et al. 2010. Characterization of
transcriptional complexity during berry development in Vitis vinifera
using RNA-Seq. Plant Physiol,152 (4) : 1787 - 1795.
(责任编辑 徐 红)
84