[目的] 对不同地区地表可燃物温度与气温的差异、气温-可燃物温度转换模型在不同地区的适用性以及应用气温和地表可燃物温度分别驱动直接估计法模型的误差进行研究,为提高可燃物含水率预测精度提供参考。[方法] 在东北林业大学帽儿山试验林场红松和落叶松2个林分下,采用自动气象站测量距地表1.5 m处气温,采用热电偶测量距地表1,2,3,4 cm处地表可燃物温度。红松林分共观测10天,落叶松林分共观测4天,其中,1天在每个林分中设置2个采样点,对距地表1 cm的可燃物含水率每隔1 h测定1次。对气温和地表可燃物温度的差异进行比较,计算目前在可燃物含水率预测中常用的2个气温-地表可燃物温度转换模型(Byram & Jemison模型和Van Wagner模型)的预测误差,根据误差对其适用性进行评价。以目前常用的基于时滞和平衡含水率的可燃物含水率直接预测法为例,分析这2个模型其对可燃物含水率直接估计法精度的影响。[结果] 1) 地表可燃物温度与气温有差异,白天低于气温,夜间高于气温;2) 现有2个气温-地表可燃物温度转换模型的误差大于3℃,不能反映气温和地表可燃物温度之间白天和夜间的异向差异;3) 在可燃物含水率的直接估计法模型中,采用气温作为温度变量和采用通过气温-可燃物温度转换模型计算所得的可燃物温度作为温度变量所建立的模型效果相似。[结论] 现有的2个气温-可燃物温度转换模型所计算的可燃物温度都高于气温,误差很大,在研究地区不适合用于计算地表可燃物温度。对于以时为步长的可燃物含水率直接估计模型,无需利用现有气温-可燃物温度转换模型进行温度转换。利用气温建模还是利用地表可燃物温度建模的优劣目前尚无法确定,需进一步研究。研究新的可燃物温度模型,特别是能够反映气温和可燃物温度差异日变化的转换模型,将是未来研究的任务。
[Objective] Temperature is an important factor affecting fuel moisture and is frequently used for fuel moisture prediction. Fuel surface temperature is used in physical or quasi-physical moisture models instead of air temperature, thus, a conversion from air temperature to fuel surface temperature is required. Currently commonly used conversion models such as Byram & Jemison mdoeland Van Wagner model are statistically based models with varied applicability at different regions. In this study, we intend to answer following questions: 1) What are differences between air temperature and fuel surface temperature at different areas? 2) How about the applicability of these conversion models at different regions? 3) What is the deviation of fuel moisture prediction using these conversion models? [Method] Air temperatures at 1.5 m height in a Korean pine stand and a larch stand were measured using a automatically weather station in Maoershan Forest Farm in Harbin, Heilongjiang Province. The fuel surface temperatures at 1, 2, 3 and 4 cm above ground surface were measured at the same time using thermocouples. Temperature observation was conducted for ten days in the Korean pine stand and four days in the larch stand. Moisture contents of the fuels at 1 cm above surface ground were monitored at 1h intervals at two sites in each stand for a successive 24 h. Comparison of air temperature and fuel surface temperature at different heights were conducted. Deviation of fuel surface temperature computed using the two conversion models was evaluated. Applicability of the two models was assessed based on the deviation. Influences of conversion of fuel surface temperature from air temperature using the two models on direct estimation accuracy of fuel moisture via a model proposed by Catchpole et al. were evaluated. [Result] 1) There exist differences between air temperature and fuel temperature, that is, fuel temperature is lower than air temperature in daytime but higher at night. 2) The two conversion models have deviation of more than 3℃, however it cannot reflect the bidirectional differences of air temperature and fuel temperature at daytime and night. 3) Models for direct estimation of fuel moisture established using air temperature and using fuel temperature calculated from the two conversion models have similar accuracy. [Conclusion] Temperature computed from the two conversion models is higher than the measured values in field with much greater deviation, indicating that temperature conversion is not suitable in this study area. It is not necessary to convert air temperature to fuel temperature, but using air temperature directly at 1h intervals for direct estimation of fuel moisture. It can still not determine which one is better to establish fuel moisture mode by using air temperature or fuel surface temperature and further investigation is required. Another important task for future research is developing new temperature conversion models which can truly reflect daily differences between air temperature and fuel surface temperature.
全 文 :第 51 卷 第 7 期
2 0 1 5 年 7 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 51,No. 7
Jul.,2 0 1 5
doi:10.11707 / j.1001-7488.20150710
收稿日期: 2014 - 12 - 30; 修回日期: 2015 - 04 - 14。
基金项目: 国家自然科学基金项目(31370656)。
* 金森为通讯作者。
帽儿山两林分气温与地表可燃物温度差异及
对可燃物含水率预测的影响*
杨博文 陈鹏宇 金 森
(东北林业大学林学院 哈尔滨 150040)
摘 要: 【目的】对不同地区地表可燃物温度与气温的差异、气温 -可燃物温度转换模型在不同地区的适用性
以及应用气温和地表可燃物温度分别驱动直接估计法模型的误差进行研究,为提高可燃物含水率预测精度提供
参考。【方法】在东北林业大学帽儿山试验林场红松和落叶松 2 个林分下,采用自动气象站测量距地表 1. 5 m
处气温,采用热电偶测量距地表 1,2,3,4 cm 处地表可燃物温度。红松林分共观测 10 天,落叶松林分共观测 4
天,其中,1 天在每个林分中设置 2 个采样点,对距地表 1 cm 的可燃物含水率每隔 1 h 测定 1 次。对气温和地表
可燃物温度的差异进行比较,计算目前在可燃物含水率预测中常用的 2 个气温 - 地表可燃物温度转换模型
(Byram & Jemison 模型和 Van Wagner 模型)的预测误差,根据误差对其适用性进行评价。以目前常用的基于时
滞和平衡含水率的可燃物含水率直接预测法为例,分析这 2 个模型其对可燃物含水率直接估计法精度的影响。
【结果】1) 地表可燃物温度与气温有差异,白天低于气温,夜间高于气温;2) 现有 2 个气温 -地表可燃物温度转
换模型的误差大于3 ℃,不能反映气温和地表可燃物温度之间白天和夜间的异向差异;3) 在可燃物含水率的直
接估计法模型中,采用气温作为温度变量和采用通过气温 -可燃物温度转换模型计算所得的可燃物温度作为温
度变量所建立的模型效果相似。【结论】现有的 2 个气温 -可燃物温度转换模型所计算的可燃物温度都高于气
温,误差很大,在研究地区不适合用于计算地表可燃物温度。对于以时为步长的可燃物含水率直接估计模型,无
需利用现有气温 -可燃物温度转换模型进行温度转换。利用气温建模还是利用地表可燃物温度建模的优劣目
前尚无法确定,需进一步研究。研究新的可燃物温度模型,特别是能够反映气温和可燃物温度差异日变化的转
换模型,将是未来研究的任务。
关键词: 可燃物温度; 气温; 含水率; 直接估计法; 帽儿山林场
中图分类号: S762. 2 文献标识码: A 文章编号: 1001 - 7488(2015)07 - 0091 - 08
Differences of Air Temperature and Fuel Surface Temperature in Two
Stands in Maoershan Forest Farm and Their Effects on Fuel Moisture Modelling
Yang Bowen Chen Pengyu Jin Sen
(College of Forestry,Northeast Forestry University Harbin 150040)
Abstract: 【Objective】 Temperature is an important factor affecting fuel moisture and is frequently used for fuel
moisture prediction. Fuel surface temperature is used in physical or quasi-physical moisture models instead of air
temperature,thus,a conversion from air temperature to fuel surface temperature is required. Currently commonly used
conversion models such as Byram & Jemison mdoeland Van Wagner model are statistically based models with varied
applicability at different regions. In this study,we intend to answer following questions: 1) What are differences between
air temperature and fuel surface temperature at different areas? 2) How about the applicability of these conversion models
at different regions? 3) What is the deviation of fuel moisture prediction using these conversion models? 【Method】Air
temperatures at 1. 5 m height in a Korean pine stand and a larch stand were measured using a automatically weather station
in Maoershan Forest Farm in Harbin,Heilongjiang Province. The fuel surface temperatures at 1,2,3 and 4 cm above
ground surface were measured at the same time using thermocouples. Temperature observation was conducted for ten days
in the Korean pine stand and four days in the larch stand. Moisture contents of the fuels at 1 cm above surface ground were
林 业 科 学 51 卷
monitored at 1h intervals at two sites in each stand for a successive 24 h. Comparison of air temperature and fuel surface
temperature at different heights were conducted. Deviation of fuel surface temperature computed using the two conversion
models was evaluated. Applicability of the two models was assessed based on the deviation. Influences of conversion of
fuel surface temperature from air temperature using the two models on direct estimation accuracy of fuel moisture via a
model proposed by Catchpole et al. were evaluated. 【Result】1) There exist differences between air temperature and fuel
temperature,that is,fuel temperature is lower than air temperature in daytime but higher at night. 2) The two conversion
models have deviation of more than 3 ℃,however it cannot reflect the bidirectional differences of air temperature and fuel
temperature at daytime and night. 3) Models for direct estimation of fuel moisture established using air temperature and
using fuel temperature calculated from the two conversion models have similar accuracy. 【Conclusion】 Temperature
computed from the two conversion models is higher than the measured values in field with much greater deviation,
indicating that temperature conversion is not suitable in this study area. It is not necessary to convert air temperature to
fuel temperature,but using air temperature directly at 1h intervals for direct estimation of fuel moisture. It can still not
determine which one is better to establish fuel moisture mode by using air temperature or fuel surface temperature and
further investigation is required. Another important task for future research is developing new temperature conversion
models which can truly reflect daily differences between air temperature and fuel surface temperature.
Key words: fuel temperature; air temperature; fuel moisture; direct estimation; maoershan forest Farm
森林可燃物含水率,特别是地表细小死可燃物
含水率是影响林火发生及林火蔓延的重要因素之一
(Trevitt,1991),也是火险预报的重要内容,提高地
表死可燃物含水率预测的准确性对预测林火的发生
以及火灾的扑救防范工作有着重大意义 (郑焕能,
1992; Matthews et al.,2006)。温度是影响地表死可
燃物含水率的重要因素,也是含水率预报中常用的
预测因子。纯统计预测方法一般采用距地表 1. 5 m
处的气温作为预报因子,而物理和半物理预测方法
多采用地表可燃物温度作为预测因子(Viney et al.,
1989;Vinney,1991; 金森等,1999; Catchpole et al.,
2001; Matthews et al.,2007)。一般来说,地表死可
燃物温度要比气温更能准确衡量影响其含水率变化
的热量条件,用该温度建模更符合物理原理并具有
较高 的 精 度 ( Matthews, 2006; Matthews et al.,
2010)。Catchpole 等 ( 2001)提出利用野外数据直
接估测可燃物含水率的方法 (以下简称直接估计
法),该方法基于一种半物理的平衡含水率模型,
采用地表可燃物温度和湿度作为预测因子,方便快
捷,精度较高(金森等,2010);但直接测量地表可燃
物温度的气象站很少,在使用直接估计法时,往往需
要将气温转换为地表可燃物温度(Catchpole et al.,
2001)。目前常用的气温 - 可燃物温度转换模型
(以下简称温度转换模型)有 Byram & Jemison(以下
简称 B 模型) 和 Van Wagner(以下简称 V 模型)。
这 2 个模型是统计型模型,对于不同地区的适用性
不同。因此本文对不同地区地表可燃物温度与气温
的差异、温度转换模型在不同地区的适用性以及应
用气温和地表可燃物温度分别驱动直接估计法模
型的误差进行研究,为提高可燃物含水率预测精
度提供参考。
1 研究区概况与研究方法
1. 1 研究区概况
研究区位于东北林业大学帽儿山试验林场,地
理位置 45°20—45°25 N,127°30—127°34 N,属
温带大陆性气候,年平均气温 2. 8 ℃,1 月份最冷,
月平均气温 - 18 ~ - 23 ℃,7 月份最热,月平均气温
21 ~ 22 ℃。年降水量 723. 8 mm,集中在 6—8 月。
年蒸发量 1 093. 9 mm,干燥度 0. 7。≥10 ℃ 积温
2 530. 1 ℃,无霜期 120 天左右。最长积雪覆盖 152
天,结冻初日在 9 月下旬、终日在 5 月上旬,冻土深
度 150 cm。原生植被以红松 ( Pinus koraiensis) 为
主,目前主要是原生植被大量破坏后形成的天然次
生林。乔木有红松、日本落叶松 ( Larix kaempferi)、
白桦(Betula platyphylla)、山杨(Populus davidiana)、
蒙古栎 ( Quercus mongolica)、黄波罗 ( Phellodendron
amurense)、胡桃楸( Juglans mandshurica)等,平均胸
径 10 ~ 50 cm;灌丛有茶镳子(Ribes nigrum)、珍珠梅
(Sorbaria sorbifolia)、胡枝子 ( Lespedeza bicolor)、紫
丁 香 ( Syringa oblata )、刺 五 加 ( Acanthopanax
senticosus)等。
1. 2 相关模型介绍
Byram & Jemison 模 型 ( Byram,1963 ) 表 示
29
第 7 期 杨博文等: 帽儿山两林分气温与地表可燃物温度差异及对可燃物含水率预测的影响
如下:
T f = T a +
K
42 . 5U f + 32 . 7
。 (1)
式中:T f,T a分别表示地表可燃物温度和气温(℃ );
K 表示向下的阳光辐射照度(W·m - 2); U f表示风速
(m·s - 1)。
Van Wagner 模型 ( Van Wagner,1969 ) 表示
如下:
T f = T a + aKe
-0 . 224U f。 (2)
式中: a 为取决于叶片类型的参数,松林时为 0. 035
m2·W - 1,山杨林时为 0. 028 m2·W - 1。
含水率预测模型采用 Catchpole 等(2001)提出
的利用野外数据直接估计可燃物含水率的模型,表
示如下:
m(ti) = λ
2mi-1 + λ(1 - λ)qi-1 + (1 - λ)qi;(3)
Δt = ti - ti -1; (4)
λ = exp( - Δt2τ
); (5)
q = a + blg( - RT
M
lgH)。 (6)
式中: Δt 为 采样时间间隔(h); τ 为时滞( h); λ 为
方便表达的计算中间变量; m( ti )为 ti时刻的可燃
物含水率;mi - 1为 ti - 1时刻的可燃物含水率; q( t)为
t 时刻的可燃物平衡含水率;a 和 b 为待估参数;T
为温度 (℃ ); H 为相对湿度;R 为通用气体常数
(8. 314 J·K - 1 mol - 1);M 为水的相对分子质量。
1. 3 野外试验
在研究区平地上选择红松和落叶松 2 个林分。
红松林平均胸径 12. 9 cm,平均树高 13. 0 m,郁闭度
0. 85;落 叶 松 林 平 均 胸 径 15. 3 cm,平 均 树 高
15. 9 m,郁闭度 0. 9。为研究地表可燃物温度与气
温的差异及现有 2 种温度转换模型的误差,6 月
11—15 日、6 月 18—19 日和 6 月 24—26 日,在红松
林下距地表 1,2,3,4 cm 的地表可燃物上放置
Watch Dog 400 叶片温度测量记录仪的温度探头,每
隔 5 min 记录 1 次。在其上部安装 HOBO-U30 便携
式气象站,每隔 5 min 与地表可燃物温度同步测量 1
次距地表 1. 5 m 处的气温、空气湿度以及风速、太阳
辐射。7 月 12 日、7 月 15—18 日,按红松林做法,在
落叶松林分中测定距地表 1,2,3,4 cm 的地表可燃
物温度和距地表 1. 5 m 处的气温、空气湿度以及风
速、太阳辐射。
为研究温度转换模型对以时为步长的可燃物含
水率预测精度的影响,6 月 11 日,在测定温度的红
松林下设 2 个采样点,用 18 目尼龙网固定在塑料方
筛内制成地表凋落物容器,顶部使用 8 目尼龙网遮
盖,以阻止其他凋落物落入其中。在保持凋落层原
有结构的情况下,采集大小一致的地表凋落层样品,
放入方筛后使用精度为 0. 01 g 的电子天平称质量,
减去容器质量后得到样品湿质量。将样品置于原取
样处,保持破坏前的地表状况,每间隔 1 h 记录 1 次
样品质量,连续 24 h 测量。结束后将样品装于封口
袋置于 105 ℃烘箱中持续烘干 24 h 至恒质量并称
量,计算可燃物含水率。此时,用距地表可燃物顶部
1 cm 处的可燃物温度来表征方筛内可燃物表面
温度。
7 月 12 日,在落叶松林下设 2 个采样点,与红
松林做法相同,测定每隔 1 h 的可燃物含水率。
1. 4 数据处理与分析
绘制观测时段地表可燃物温度与气温的时间动
态曲线,分析二者的差异。为便于比较分析温度转
换对可燃物含水率预测精度的影响,将测量可燃物
含水率的 6 月 11 日和 7 月 12 日的数据与其他时段
数据分别绘制。
对于测定可燃物含水率的日期和全部观测日
期,根据实测的气温、辐射和风速,分别用 2 个温度
转换模型计算不同高度处的可燃物温度,其中,V 模
型中的 a 采用松林的 0. 035 m2·W - 1,然后按式(7)
计算温度转换模型的误差,误差大于二者差异的均
值(3 ℃ )则不适用:
RMSE = ∑
n
i = 1
(mi - m^ i)
2
槡 n 。 (7)
式中: RSME 为均方根误差(% ); mi 为实测的可燃
物表面含水率; m^ i 为计算的可燃物表面含水率;n
为观测样本数。
按式(8)计算可燃物含水率:
m = ( W h - W d) /W d × 100%。 (8)
式中: m 为死可燃物含水率(% ); W h为死可燃物湿
质量 ( g); W d为死可燃物干质量 ( g)。
分别采用下列方式对直接估计法模型进行参数
估计:
1) 采用气温作为温度变量。
2) 分别采用根据 2 个温度转换模型计算出来
的地表可燃物温度 (1 cm 处,下同)作为温度变量
(该方法是目前的常用做法)。
3) 采用实测的地表可燃物温度作为温度变量。
按式(7)计算可燃物含水率预测误差并比较采
39
林 业 科 学 51 卷
用不同温度数据时可燃物含水率预测的误差。
2 结果与分析
2. 1 地表可燃物温度与气温的比较
图 1 红松林不同高度地表可燃物温度与 1. 5 m 处气温的比较
Fig. 1 Comparison of fuel temperatures and air temperature at 1. 5 m height in korean pine stand
图 1 和图 2 给出了红松林中 6 月 11 日 2 个采
样点及 6 月 12—26 日 9 天的距地表1 ~ 4 cm处可燃
物温度和距地表 1. 5 m 处气温的动态和差异。从图
中可见,10 天的观测中,多数时候距地表 1 ~ 4 cm
处可燃物温度与距地表 1. 5 m 处气温差异很大,只
有 2 天地表可燃物温度和气温的差异较小。白天地
表可燃物温度低于气温,二者的差在中午附近某一
时刻(时刻 1)达到最大,然后开始变小,到晚上某时
刻(时刻 2)二者相同,而后地表可燃物温度超过气
温,在午夜左右(时刻 3)前者超过后者最大,此后二
者的差异开始变小,到早晨 7 点左右二者相等,然后
地表可燃物温度又开始低于气温。不同林分,时刻
1,2,3 出现的时间不同。时刻 1 出现在 10:00—
11:00,此时气温要高于地表可燃物温度 4 ~ 9 ℃ ;
对于红松林,时刻 2 出现在 19:00—20:00,时刻 3 时
可燃物温度超过气温 1 ℃以上。距地表 1 ~ 4 cm 的
可燃物温度差异不显著。
图 3 和图 4 给出了落叶松林中 7 月 12 日 2 个
采样点及 7 月 15—18 日的距地表 1 ~ 4 cm 处可燃
物温度和 1. 5 m 处气温的动态和差异。从图中可
49
第 7 期 杨博文等: 帽儿山两林分气温与地表可燃物温度差异及对可燃物含水率预测的影响
图 2 红松林不同高度地表可燃物温度与 1. 5 m 处气温的差
Fig. 2 Difference of fuel temperatures at different height and air temperature at 1. 5 m height in korean pinestand
见,地表可燃物温度与气温的关系与红松林相似,但
落叶松时刻 2 出现在 21:00 左右,较红松林略晚。
2. 2 现有温度转换模型的适用性分析
表 1 给出了用现有 2 个温度转换模型计算的地
表可燃物温度和实测地表可燃物温度之间的误差。
从表中可见,2 个温度转换模型在红松林地表可燃
物温度的误差在3 ~ 4 ℃,在落叶松林地表可燃物温
度的误差在 4 ~ 6 ℃,且误差都随着距地表高度的增
加而增加,V 模型的误差大于 B 模型。事实上,从这
2 个模型的公式[式 (1)和式 (2)]上看,附加项为
正,计算的地表可燃物温度要超过气温。从 2. 1 节
中可以看出,地表可燃物温度在某一时段高于气温,
在其他时段低于气温,2 个温度转换模型不能够反
映出气温和地表可燃物温度在白天和夜间差异的不
同方向性,这是现有 2 个模型误差大的主要原因。
结合 2 个模型的最小误差都超过了3 ℃,尤其是在
白天,火险最高的时段(中午附近),实测气温都高
于地表可燃物温度,而此时用这 2 个模型计算地表
可燃物温度,误差将最大,因此,现有 2 个温度转换
模型都不适用于本地的可燃物含水率预报。
2. 3 地表可燃物温度与气温对可燃物含水率直接
估计法模型精度的影响
表 2 给出了以气温、模型 B 计算的地表可燃物
温度、模型 V 计算的地表可燃物温度、实测的地表
可燃物温度为温度变量建立的可燃物含水率直接估
计法模型的参数。从表中可见,用气温作为温度变
量的可燃物含水率直接估计法模型与用计算的地表
可燃物温度作为温度变量的可燃物含水率直接估计
法模型的估计参数比较接近,而这 3 个模型的参数
与用实测地表可燃物温度的可燃物含水率直接估计
法模型的参数差别较大。表 3 给出了这 4 个可燃物
含水率直接估计法模型的含水率预测误差。从表 3
59
林 业 科 学 51 卷
图 3 落叶松林不同高度地表可燃物温度与 1. 5 m 处气温的比较
Fig. 3 Comparison of fuel temperatures and air temperature at 1. 5 m height in larch stand
可以看出,模型间的误差差异与估计参数具有相似
的模式,对于同一林分,用气温作为温度变量的可燃
物含水率直接估计法模型,与用计算的地表可燃物
温度作为温度变量的可燃物含水率直接估计法模型
的误差差异很小,而与用实测地表可燃物温度的可
燃物含水率直接估计法模型差异较大。这主要是由
于本研究以小时( h)为采样间隔,包括白天和夜间
的数据,很多时候向下的阳光辐射 K 值为零或很
小,从式(1)和(2)得到的地表可燃物温度与气温相
差不大,因此,用气温和计算所得的地表可燃物温度
所建模型的建模数据有很大的相似性,而与实测的
地表可燃物温度数据差别较大。对于误差而言,红
松林前 3 个可燃物含水率直接估计法模型的误差小
于实测地表可燃物温度的可燃物含水率直接估计法
模型,落叶松林恰好相反,这表明对于不同林型,采
用气温或地表可燃物温度建立可燃物含水率直接估
计法模型优劣不同。
3 结论与讨论
一天中不同时段气温与地表不同高度可燃物温
度存在着差异,白天地表可燃物温度低于气温; 夜
间地表可燃物温度高于气温,这与森林内外温度的
差异(陈宏志等,2007)具有一定的相似性。现有的
2 个可燃物温度转换模型所计算的地表可燃物温度
都高于气温,误差很大,不适合用于计算地表可燃物
的温度。
用气温和用现有的 2 个温度转换模型计算的地
表可燃物温度建立的以时为步长的可燃物含水率直
接预测模型的参数和误差比较相似,而与用实测地
表可燃物温度建立的含水率预测模型的参数和误差
差异较大,红松林前者误差小,落叶松林前者误差
大。这说明,在采用以时为步长的直接估计法进行
可燃物含水率预测时,以往文献中(Catchpole et al.,
2001)利用现有的温度转换模型从气温计算可燃物
温度后再建模的方法,与直接用气温建模的方法效
果一样,因此,直接利用气温建模即可,无需再进行
气温到地表可燃物温度的转换。而用地表可燃物温
度建模和用气温建模是有差异的,但目前还无法判
断哪个方法更优,需进一步研究。
69
第 7 期 杨博文等: 帽儿山两林分气温与地表可燃物温度差异及对可燃物含水率预测的影响
图 4 落叶松林不同高度地表可燃物温度与 1. 5 m 处气温的差
Fig. 4 Difference of fuel temperatures and air temperature at 1. 5 m height in larch stand
表 1 2 个温度转换模型的误差①
Tab. 1 Errors of two temperature conversion models ℃
模型
Model
红松林 Korean pine stand 落叶松林 Larch stand
1 cm 2 cm 3 cm 4 cm 1 cm 2 cm 3 cm 4 cm
B 3. 01(3. 43) 3. 10(3. 40) 3. 50(3. 49) 3. 32(3. 74) 3. 08(4. 13) 3. 22(4. 19) 3. 88(5. 25) 4. 15(5. 81)
V 3. 36(3. 81) 3. 46(3. 79) 3. 86(3. 87) 3. 68(4. 12) 3. 20(4. 77) 3. 22(4. 82) 4. 03(5. 89) 4. 30(6. 45)
①括号外数值为用全部温度观测数据计算的误差,括号内数值为仅用含水率测定日的温度数据计算的误差。Values outside parenthesis are
errors computed using all temperature data,values inside parenthesis are errors computed only using temperature data measured on the day when fuel
moisture content monitored.
本研究没有进行长期连续观测,且在低风速情
况下,因此无法反映气温与地表可燃物温度差异的
全部情况。在将温度转换模型用于可燃物含水率预
测时,只使用了 2 个 24 h 的数据,相当于 48 个数
据。Catchpole 等(2001)提出此方法时所用的数据
为 36 个,本研究的数据长度与其相似。重要的是,
本研究作为一个反证,足以证实现有温度转换模型
不适于以时为步长的可燃物含水率的直接预测法;
但对温度转换模型的全面评价,如这 2 个模型在其
他气象条件下应用的误差情况、是否可用于除直接
估计法之外的其他可燃物含水率预测方法仍需进一
步研究。
此外,由于可燃物含水率的变化情况直接受地
表可燃物温度影响,而目前无法判断利用气温建模
或地表可燃物温度建模的优劣性,所以研究新的可
燃物温度模型,特别是能够反映气温和可燃物温度
差异日变化的转换模型,将是未来研究的任务。
79
林 业 科 学 51 卷
表 2 用不同温度数据建立的可燃物
含水率直接估计法模型的参数①
Tab. 2 Estimated parameters of fuel moisture
prediction models by direct estimation methods
using different temperature data
林型
Stand
参数
Parameters
模型 1
Model 1
模型 2
Model 2
模型 3
Model 3
模型 4
Model 4
红松 λ 0. 989 0. 991 0. 994 0. 942
Korean pine a - 0. 006 - 0. 0054 - 0. 009 3. 660
b - 0. 012 - 0. 012 - 0. 012 - 0. 911
落叶松 λ 0. 853 0. 856 0. 855 0. 962
Larch a 0. 831 0. 833 0. 842 3. 011
b - 0. 111 - 0. 115 - 0. 131 - 0. 563
①模型 1 - 4 分别是以气温、模型 B 计算的可燃物温度、模型 V
计算的可燃物温度、实测的可燃物温度为温度自变量建立的模型。
下同。Models 1 - 4 refers to models established using air temperature,
fuel temperature computed by model B,fuel temperature computed by
model V,and measured fuel temperature,respectively. The same below.
表 3 用不同温度数据建立的可燃物含
水率直接估计法模型的误差
Tab. 3 Errors of fuel moisture prediction models
by direct estimation methods using different
temperature data ℃
林型
Stand
模型 1
Model 1
模型 2
Model 2
模型 3
Model 3
模型 4
Model 4
红松
Korean pine
0. 011 0. 013 0. 012 0. 026
落叶松
Larch
0. 074 0. 079 0. 75 0. 059
参 考 文 献
陈宏志,胡庭兴,龚 伟,等 . 2007. 我国森林小气候的研究现状。四
川林业科技,28(2) : 29 - 83.
(Chen H Z,Hu T X,Gong W,et al. 2007. An advance in research on
forest microclimate in China. Journal of Sichuan Forestry Science
and Technology,28(2) : 29 - 83. [in Chinese])
金 森,姜文娟,孙玉英 . 1999. 用时滞和平衡含水率准确预测可
燃物含水率的理论算法 . 森林防火,(4) : 12 - 14.
( Jin S,Jiang W J,Sun Y Y. 1999. Theoretical algorithm for predicting
fuel moisture using timelag and equilibrium moisture content. Forest
Fire Prevention,(4) : 12 - 14. [in Chinese])
金 森,李 亮 . 2010. 时滞和平衡含水率直接估计法的有效性分
析 . 林业科学,46(2) : 95 - 102.
( Jin S,Li L. 2010. Validation of the method for direct estimation of
timelag and equilibrium moisture content of forest fuel. Scientia
Silvae Sinicae,46(2) : 95 - 102. [in Chinese])
郑焕能 . 1992. 森林防火 . 哈尔滨: 东北林业大学出版社
(Zheng H N. 1992. Forest Fire Prevention. Harbin: Northeast Forestry
University Press. [in Chinese])
Byram G B. 1963. An analysis of the drying process in forest fuel
material. USDA Forest Service,Southern Forest Fire Laboratory,
Macon,GA,USA.
Catchpole E A,Catchpole W R,Viney N R. 2001. Estimating fuel
response time and predicting fuel moisture content from field data.
International Journal of Wildl and Fire,10:215 - 222.
Matthews S,Gould J,McCaw L. 2010. Simple models for predicting
dead fuel moisture in eucalyptus forests. International Journal of
Wildland Fire,19: 459 - 467.
Matthews S,McCaw W L. 2006. A next-generation fuel moisture model
for fire behavior prediction. Forest Ecology and Management,264
( supp. ) :s91.
Matthews S,McCaw W L,Neal J E,et al. 2007. Testing aprocess-based
fine fuel moisture model in two forest types. Can J For Res,37:
23 - 35.
Matthews S. 2006. A process-based model of fine fuel moisture.
International Journal of Wildland Fire,15(2) : 155 - 168.
Trevitt A C F. 1991. Weather parameters and fuel moisture content:
standards for fire model inputs ∥ Cheney N P, Gill A M.
Proceedings of the Conference on Bushfire Modelling and Fire
Danger Rating Systems,CSIRO Division of Forestry: Yarralumla,
Australia.
Van Wagner C E. 1969. Drying rates of some fine forest fuels. Fire
Control Notes,30(4) : 5 - 12.
Viney N R,Hatton T J. 1989. Assessment of existing fine fuel moisture
models applied to eucalyptus litter. Australian Forestry,52: 82 -
93.
Viney N R. 1991. A review of fine fuel moisture modeling. International
of Wildland Fire,1(4) : 215 - 234.
(责任编辑 朱乾坤)
89