免费文献传递   相关文献

Compatible Tree Biomass Models for Natural White Birch (Betula platyphylla) in Northeast China Forest Area

东北林区天然白桦相容性生物量模型


基于东北林区天然白桦实测生物量数据,通过2种方案(以总生物量为基础分级控制和以总生物量为基础直接控制)建立天然白桦一元和二元相容性生物量模型,模型参数估计采用非线性度量误差联立方程组估计方法,并采用加权回归的方法进行异方差的消除。结果表明: 2种方案所建立的天然白桦一元、二元相容性生物量模型的确定系数R2=0.800~0.988,模拟效率(EF)=0.80~0.97; 2种方案所建立的相容性生物量模型的预测精度大多数在80%以上,树枝和树叶生物量模型的预测精度较差,但也在69%以上;所建立的相容性生物量模型中,总生物量和树干生物量模型效果较好,树根、树叶和树枝生物量模型效果较差。总的来说, 2种方案所建立的相容性生物量模型都具有一定的精度,都能对天然白桦生物量进行很好的预估,以总生物量为基础直接控制方案所建立的一元和二元相容性生物量模型好于以总生物量为基础分级控制方案所建立的一元和二元相容性生物量模型,所以在进行天然白桦生物量预估时,建议采用以总生物量为基础直接控制所建立的相容性生物量模型。

Based on data of tree biomass for natural white birch (Betula platyphylla) in northeast China forest area, two methods (controlling jointly from level to level and controlling directly under total biomass) were used to establish the mono-element and dual-element compatible tree biomass model of natural white birch. And using nonlinear measurement error simultaneous equation estimated the parameters in the model, at the same time, the weighted regression was used to eliminate the heteroscedasticity. The results showed that R2 of mono-element and dual-element compatible model in this paper was 0.800-0.988, and the fit efficiency(EF)was 0.80-0.97. Besides, the precision of these models reached beyond 80%. On the other hand, the precision of foliage and branch model was relatively lower, and it was more than 69%. Among the compatible models established, the effect of total tree and stem was better than root, foliage and branch. On the whole, the compatible models established by two methods had the precision that we could receive and they could be used to predict the biomass of natural white birch with good precision. But the mono-element and dual-element compatible tree biomass model based on controlling directly under total biomass was better than the way that using controlling jointly from level to level under total biomass. To be concluded, it was advised to use the compatible model that based on controlling directly under total biomass.


全 文 :第 49 卷 第 7 期
2 0 1 3 年 7 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 49,No. 7
Jul.,2 0 1 3
doi:10.11707 / j.1001-7488.20130711
收稿日期: 2012 - 10 - 09 ; 修回日期: 2013 - 04 - 26。
基金项目: 国家科技支撑计划课题(2012BAD22B02) ; 长江学者和创新团队发展计划资助( IRT1054)。
* 李凤日为通讯作者。
东北林区天然白桦相容性生物量模型*
董利虎 李凤日 贾炜玮
(东北林业大学林学院 哈尔滨 150040)
摘 要: 基于东北林区天然白桦实测生物量数据,通过 2 种方案(以总生物量为基础分级控制和以总生物量为
基础直接控制)建立天然白桦一元和二元相容性生物量模型,模型参数估计采用非线性度量误差联立方程组估计
方法,并采用加权回归的方法进行异方差的消除。结果表明: 2 种方案所建立的天然白桦一元、二元相容性生物量
模型的确定系数 R2 = 0. 800 ~ 0. 988,模拟效率(EF) = 0. 80 ~ 0. 97; 2 种方案所建立的相容性生物量模型的预测精
度大多数在 80%以上,树枝和树叶生物量模型的预测精度较差,但也在 69%以上;所建立的相容性生物量模型中,
总生物量和树干生物量模型效果较好,树根、树叶和树枝生物量模型效果较差。总的来说,2 种方案所建立的相容
性生物量模型都具有一定的精度,都能对天然白桦生物量进行很好的预估,以总生物量为基础直接控制方案所建
立的一元和二元相容性生物量模型好于以总生物量为基础分级控制方案所建立的一元和二元相容性生物量模型,
所以在进行天然白桦生物量预估时,建议采用以总生物量为基础直接控制所建立的相容性生物量模型。
关键词: 天然白桦; 立木生物量; 相容性模型; 度量误差模型
中图分类号: S757 文献标识码: A 文章编号: 1001 - 7488(2013)07 - 0075 - 11
Compatible Tree Biomass Models for Natural White Birch
(Betula platyphylla) in Northeast China Forest Area
Dong Lihu Li Fengri Jia Weiwei
(College of Forestry,Northeast Forestry University Harbin 150040)
Abstract: Based on data of tree biomass for natural white birch (Betula platyphylla) in northeast China forest area,two
methods ( controlling jointly from level to level and controlling directly under total biomass) were used to establish the
mono-element and dual-element compatible tree biomass model of natural white birch. And using nonlinear measurement
error simultaneous equation estimated the parameters in the model,at the same time,the weighted regression was used to
eliminate the heteroscedasticity. The results showed that R2 of mono-element and dual-element compatible model in this
paper was 0. 800 - 0. 988,and the fit efficiency(EF) was 0. 80 - 0. 97. Besides,the precision of these models reached
beyond 80% . On the other hand,the precision of foliage and branch model was relatively lower,and it was more than
69% . Among the compatible models established,the effect of total tree and stem was better than root,foliage and branch.
On the whole,the compatible models established by two methods had the precision that we could receive and they could be
used to predict the biomass of natural white birch with good precision. But the mono-element and dual-element compatible
tree biomass model based on controlling directly under total biomass was better than the way that using controlling jointly
from level to level under total biomass. To be concluded,it was advised to use the compatible model that based on
controlling directly under total biomass.
Key words: natural white birch (Betula platyphylla); tree biomass; compatible model; error-in-variable model
森林生物量是森林生态系统最基本的数量特
征,既可表明森林的经营水平和开发利用价值,又能
反映森林与其环境在物质循环和能量流动上的复杂
关系,特别是森林生物量在减小温室效益、稳定调节
全球碳平衡与碳循环、评价森林循环贡献和固碳能
力方面具有不可替代的作用(Caldeira et al.,2000;
Fang et al., 2001; 王 效 科 等, 2001; Houghton,
2005; Muukkonen,2006; Woodbury et al.,2007 )。
目前测算森林生物量常用的方法为生物量模型估算
法(Parresol,1999; 罗云建等,2009),它是利用林
林 业 科 学 49 卷
木易测因子来推算难以测定的立木生物量(特别是
树根生物量)(方精云等,1996; 宇万太等,2001),
可以减少测定生物量的外业工作。虽然在建模过程
中需要测定一定数量的样木生物量,但建立生物量
模型后,在同类林分中就可以利用森林资源清查资
料来估计整个林分和单木的生物量;特别是在大范
围的森林生物量调查中,利用生物量模型能大大减
少调查工作量。为了满足立木总生物量等于各分项
生物量之和这一逻辑关系,需要各分项生物量模型
之间具有可加性(相容性)。骆期邦等(1999)、张会
儒等(1999)引入用线性联立模型和非线性联合估
计模型来解决总量与各分项之间的相容性问题; 唐
守正等(2000)以及胥辉等 (2001)对不同非线性联
合估计方案进行对比研究,并提出了 2 级联合估计
的方法; Parresol(2001)提出采用非线性似乎不相
关模型来解决非线性生物量方程的可加性问题; Bi
等(2004)建立了以对数转换为基础的可加性生物
量方程系统,并采用似乎不相关模型对方程参数和
偏差校正因子进行联合估计。目前,利用非线性联
立方程组模型来确保总生物量与各分量相容的研究
已经有很多 ( Carvalho et al.,2003; Brandeis et al.,
2006; Bi et al.,2010; 曾伟生等,2010; 董利虎等,
2011; Li et al.,2013),与传统模型相比,联立方程
组模型不仅能一定程度上提高模型的精度,而且还
解决了总生物量与各分项生物量的相容性问题。
白桦 (Betula platyphylla)是我国东北地区分布
范围较广、所占比重较大的森林类型。白桦用途广
泛,价值昂贵,其资源受到越来越多的重视。目前,
我国研究白桦相容性生物量模型的报道还较少。本
文以天然白桦生物量实测数据为基础,利用非线性
度量误差联立方程组估计的方法,采用 2 种方案来
建立天然白桦一元和二元相容性生物量模型,为区
域及国家尺度上森林生态系统生物量和碳储量的估
算提供依据。
1 数据与方法
1. 1 数据来源
本文所用的 2011 年天然白桦林 22 块标准地主
要分布于黑龙江省大兴安岭 (塔河县和新林林业
局)、小兴安岭(黑河市和五营林业局)以及长白山
地区(宁安市、五常市和三岔子林业局)。由于天然
白桦林的林龄很难确定,因此本文选择树种组成和
立地质量类似的地块作为天然白桦的标准地。每个
标准地的大小为 0. 06 hm2,对每个标准地都进行每
木检尺。每个标准地根据胸径大小选取白桦优势
木、中等木和被压木各 1 株作为解析木。解析木需
在样地外选取,选取原则为解析木胸径与优势木、中
等木和被压木胸径大小的误差不超过 ± 5%。将选
好的解析木伐倒,树高超过 15 m 按 2 m 区分段,树
高低于 15 m 按 1 m 区分段,测定各区分段树干的鲜
质量。将树冠分为 3 层,每层选取 3 ~ 5 个标准枝称
其枝叶的鲜质量。每株解析木各区分段的树干和每
层的枝叶都分别取样。由于小根(直径 < 5 mm)对
根系总生物量的影响不大且全部挖掘出来非常困
难,所以只对直径大于 5 mm 的树根进行挖掘
(Wang,2006 ),分别测定大根 ( > 5 cm )、粗根
(2 ~ 5 cm)、细根 ( < 2 cm) 的鲜质量,并分别取样
品。所采集样品带回室内在 105 ℃烘干至恒重,测
定其含水量,计算出各分项干质量比,进而得出解析
木的生物量。
本文天然白桦解析木为 66 株,为了更好地建模
以及对模型进行检验,将数据按照 3 ∶ 1分为建模数
据与检验数据,建模数据与检验数据随机筛选,其生
物量统计量见表 1。
表 1 天然白桦解析木生物量统计①
Tab. 1 Statistics of sampling tree biomass for natural white birch
样本数
Number
of trees
地区
Region
样本数
Number
of trees
胸径 DBH /cm 树高 Tree height /m 总生物量 Total biomass / kg
平均值 ±
标准差
Mean ± SD
最小值
Min.
最大值
Max.
平均值 ±
标准差
Mean ± SD
最小值
Min.
最大值
Max.
平均值 ±
标准差
Mean ± SD
最小值
Min.
最大值
Max.
50(建模数据
Fitting
data)
1 18 17. 5 ± 7. 5 8. 0 33. 1 16. 8 ± 3. 5 11. 4 21. 0 213. 1 ± 192. 7 24. 2 654. 1
2 18 8. 9 ± 2. 6 5. 8 16. 2 11. 0 ± 2. 4 7. 6 16. 2 34. 45 ± 25. 9 10. 4 105. 8
3 14 12. 9 ± 5. 9 5. 4 27. 3 14. 1 ± 3. 1 8. 2 18. 1 102. 4 ± 122. 8 9. 8 471. 1
总计 Total 50 13. 3 ± 6. 7 5. 4 33. 1 14. 1 ± 3. 9 7. 6 21. 0 120. 4 ± 151. 2 9. 8 654. 1
16(检验数据
Validation
data)
1 6 18. 2 ± 8. 8 8. 0 31. 5 17. 4 ± 4. 4 11. 5 21. 1 228. 0 ± 216. 1 24. 2 598. 7
2 6 9. 2 ± 3. 0 5. 6 13. 4 12. 2 ± 3. 2 7. 7 16. 9 38. 9 ± 27. 3 10. 1 80. 5
3 4 16. 1 ± 8. 7 8. 2 27. 2 16. 2 ± 5. 2 11. 1 22. 6 211. 3 ± 254. 9 22. 3 569. 8
总计 Total 16 14. 3 ± 7. 7 5. 6 31. 5 14. 9 ± 4. 4 7. 7 22. 6 159. 2 ± 203. 5 10. 1 598. 7
①地区 Region: 1 为长白山 Changbai Mountain; 2 为大兴安岭 Daxing’anling; 3 为小兴安岭 Xiaoxing’anling.
67
第 7 期 董利虎等: 东北林区天然白桦相容性生物量模型
1. 2 研究方法
建立相容性立木生物量模型的目的是为了以后
进行更好的预估,所以在模型中尽可能选择和生物
量关系密切并在立木中容易获取的测树因子,而胸
径和树高容易获取且具有一定的准确性。基于以上
条件,本文选择相对生长方程(CAR)模型形式作为
总量和各分项基础模型,模型分为一元生物量模型
和二元生物量模型,其形式如下:
wi = aiD
bi; (1)
wi = ai(D
2H) b i。 (2)
式中: wi为生物量; D 为胸径; H 为树高; ai,bi为待
估计的模型参数,i = 1 ~ 7,分别代表总生物量、地上
部分、树根、树干、树枝、树叶和树冠。
天然白桦总生物量及各分项生物量采用式
(1),(2)分别拟合,然后从相容性的定义出发,构造
总生物量与各分项生物量的相容性生物量模型。本
文采用 2 种方案来建立天然白桦一元和二元相容性
立木生物量模型。
1. 2. 1 以总生物量为基础分级控制方案 1) 天然
白桦一元相容性立木生物量模型 参照唐守正等
(2000)提出的思路,以总生物量为基础,采用三级
控制的方法进行相容性立木生物量模型的建立: 一
级控制变量为总生物量,将所有树种总生物量的独
立模型进行回归估计,通过一级控制按比例分配使
地上部分生物量和树根生物量之和等于总生物量;
二级控制变量为地上部分生物量,通过二级控制按
比例分配使地上部分生物量等于树干生物量和树冠
生物量之和; 三级控制变量为树冠生物量,通过三
级控制按比例分配使树冠生物量等于树枝生物量和
树叶生物量之和。
一级控制:
w^2 =
f2( x)
f2( x) + f3( x)
× w^1,
w^3 =
f3( x)
f2( x) + f3( x)
× w^1; (3)
二级控制:
w^4 =
f4( x)
f4( x) + f7( x)
× w^2,
w^2 =
f7( x)
f4( x) + f7( x)
× w^2; (4)
三级控制:
w^5 =
f5( x)
f5( x) + f6( x)
× w^7,
w^6 =
f6( x)
f5( x) + f6( x)
× w^7。 (5)
式中: f2( x),f3( x),f4( x),f5( x),f6( x)和 f7( x)分别
为各树种地上部分、地下部分 (树根)、树干、树枝、
树叶、树冠生物量的基础模型; w^1 为总生物量的估
计值; w^ i 为联合估计后的估计值,i 为 2 ~ 7,分别代
表地上部分、树根、树干、树枝、树叶和树冠。
一级控制: 首先对式 w1 = a1D
b1 进行基础模型
的拟合,得到总生物量模型的参数和估计值 w^1,将
w^1 直接代入式(3),可组成如下方程组:
w^2 =
a2D
b2
a2D
b2 + a3D
b3
w^1 =
1
1 + r1D
r2
w^1; (6)
w^3 =
a3D
b3
a2D
b2 + a3D
b3
w^1 =
r1D
r2
1 + r1D
r2
w^1。 (7)
式中: w^1 为总生物量的估计值,w^2,^w3 为联合估计
后的地上部分生物量、树根生物量估计值。
对式(6),(7)进行参数简化,
a3
a2
= r1,b3 - b2 =
r2,其中,a2,b2 为地上部分生物量模型参数,a3,b3
为树根生物量模型参数,它们都为联合估计待估参
数,经过简化后得到 r1 和 r2。r1 和 r2 为联合估计待
估参数,其初值为地上部分 (树干、树冠生物量之
和)、树根基础模型的参数估计值。
二级控制: 以 w^2 为基础,可组成如下方程组:
w^4 =
a4D
b4
a4D
b4 + a7D
b7
w^2 =
1
1 + r1D
r2
w^2; (8)
w^7 =
a7D
b7
a4D
b4 + a7D
b7
w^2 =
r1D
r2
1 + r1D
r2
w^2。 (9)
对式(8),(9)进行参数简化,
a7
a4
= r1,b7 - b4 = r2,
其中 a4,a7,b4,b7 为联合估计待估参数(同理,a4,b4
为树干生物量模型参数; a7,b7 为树冠生物量模型
参数),经过简化后得到 r1 和 r2,r1 和 r2 为联合估计
待估参数,其初值为树冠 (树枝和树叶生物量之
和)、树干基础模型的参数估计值。
三级控制: 以 w^7 为基础,可组成如下方程组:
w^5 =
a5D
b5
a5D
b5 + a6D
b6
w^7 =
1
1 + r1D
r2
w^7; (10)
w^6 =
a6D
b6
a5D
b5 + a6D
b6
w^7 =
r1D
r2
1 + r1D
r2
w^7。 (11)
式中:
a6
a5
= r1,b6 - b5 = r2,a5,a6,b5,b6 为联合估计
待估参数(a5,b5 为树枝生物量模型参数; a6,b6 为
树叶生物量模型参数),经过简化后得到 r1 和 r2,r1
和 r2 为联合估计待估参数,其初值为树枝、树叶基
础模型的参数估计值。
2) 天然白桦二元相容性立木生物量模型 首
77
林 业 科 学 49 卷
先对总生物量用式 w1 = a1 (D
2H) b1 进行基础模型
的拟合,得到总生物量模型的参数和估计值 w^1,将
式(6),(7),(8),(9),(10 )和 (11 ) 中的 D 换为
D2H,得出二元相容性立木生物量模型。
1. 2. 2 以总生物量为基础直接控制方案 1) 天然
白桦一元相容性立木生物量模型 天然白桦一元相
容性立木生物量模型构建形式如下:
w3 = a3D
b3,
w4 = a4D
b4,
w5 = a5D
b5,
w6 = a6D
b6,
w1 = a1D
b1 = a3D
b3 + a4D
b4 + a5D
b5 + a6D
b6






(12)
式中: w1,w3,w4,w5 和 w6 分别表示总生物量、树
根、树干、树枝和树叶;a1,a3,a4,a5,b1,b3,b4,b5 和
b6 是其模型的参数。式(12)为以总生物量为基础
直接控制模型,其能确保总生物量 = 树干 + 树枝 +
树叶 +树根,满足总生物量与各分项生物量的相容。
由式(12)推出:
w3 =
a3D
b3
a3D
b3 + a4D
b4 + a5D
b5 + a6D
b6
a1D
b1 =
r3D
k3
1 + r1D
k1 + r2D
k2 + r3D
k3
a1D
b1;
w4 =
a4D
b4
a3D
b3 + a4D
b4 + a5D
b5 + a6D
b6
a1D
b1 =
1
1 + r1D
k1 + r2D
k2 + r3D
k3
a1D
b1;
w5 =
a5D
b5
a3D
b3 + a4D
b4 + a5D
b5 + a6D
b6
a1D
b1 =
r1D
k1
1 + r1D
k1 + r2D
k2 + r3D
k3
a1D
b1;
w6 =
a6D
b6
a3D
b3 + a4D
b4 + a5D
b5 + a6D
b6
a1D
b1 =
r2D
k2
1 + r1D
k1 + r2D
k2 + r3D
k3
a1D
b1




 。
(13)
式中: r1 = a5 / a4;r2 = a6 / a4; r3 = a3 / a4; k1 = b5 -
b4; k2 = b6 - b4; k3 = b3 - b4。
式(13)为以总生物量为基础直接控制方案一
元相容性立木生物量模型形式,r1,r2,r3,r4,k1,k2,
k3,k4,a1,b1 为联合估计待估参数,其初值为总生物
量、树干、树枝、树叶和树根基础模型的参数估计值。
2) 天然白桦二元相容性立木生物量模型 对
于式(13),将 D 换成 D2H,就为二元相容性立木生
物量模型的化简式,记为式(14):
w3 = a1 r3D
2k3 +2b1Hk3 + b1 /(1 + r1D
2k1Hk1 +
r2D
2k2Hk2 + r3D
2k3Hk3);
w4 = a1D
2b1Hb1 /(1 + r1D
2k1Hk1 + r2D
2k2Hk2 +
r3D
2k3Hk3);
w5 = a1 r1D
2k1 +2b1Hk1 + b1 /(1 + r1D
2k1Hk1 +
r2D
2k2Hk2 + r3D
2k3Hk3);
w6 = a1 r2D
2k2 +2b1Hk2 + b1 /(1 + r1D
2k1Hk1 +
r2D
2k2Hk2 + r3D
2k3Hk3





)。
(14)
1. 2. 3 模型参数估计方法 当自变量和因变量的
观测值中都含有度量误差,使得通常回归模型方法
不再适用时,需采用度量误差模型方法(Tang et al.,
2001; 2002; 唐守正等,2008)。本文在建立白桦总
生物量与各分项生物量模型时,直径 ( D)和树高
(H)是可以选定的精确观测的量,认为它是无误差
变量(外生变量)。生物量观测值的误差来自 2 方
面: 观测误差和随机抽样误差。生物量观测值是状
态变量(内生变量),因此可以用非线性度量误差模
型进行参数估计。本文采用 ForStat 2. 1 中的非线性
度量误差联立方程组模块进行计算。
另外,生物量模型普遍存在异方差性,本文生物
量模型也不例外,因此必须选用适当的权函数来进
行加权回归估计或者采用将模型化为对数模型以消
除异方差。对数转换能有效地解决异方差现象,但
对数转换会产生偏差,故需采用校正系数 CF
CF = EXP MSE( )[ ]2 校正后获得总生物量无偏估计
值(Baskerville,1972; 曾伟生等,2011a)。目前在
加权回归方面已经有了许多成果(曾伟生等,1999;
胥辉,1999; Saint-André et al.,2005; Vallet et al.,
2006),研究表明,在进行加权回归时所用的权函数
是针对某一个模型,并不对任何一类模型都是适宜
的。所以,本文对幂函数这种简单形式的模型采用
对数转换的方式进行异方差的消除,对于复杂的相
容性模型采用加权回归的方法来消除异方差。本文
权函数的选取方法为: 用各分项基础模型拟合产生
残差的方差来建立自变量为胸径的回归方程g( x),
则权函数为 G = 1 /g ( x),即权重变量为 G = 1 /Dx。
在采用 ForStat 2. 1 软件对参数进行求解时,在每一
个方程两边同乘以权重变量 G = 1 /Dx。
1. 2. 4 模型的评价指标 本文采用以下 6 个指标
对模型拟合和检验进行评价: 确定系数(R2 )、均方
误差 ( MSE )、模 拟 效 率 ( EF )、平 均 相 对 误 差
(ME,% )、平均相对误差绝对值 (MAE,% )和预测
87
第 7 期 董利虎等: 东北林区天然白桦相容性生物量模型
精度(P,% ),具体定义见文献(李凤日,2004; 曾伟
生等,2011b)。
2 结果与分析
2. 1 以总生物量为基础分级控制方案(方案 1)相
容性立木生物量模型拟合
利用以总生物量为基础分级控制方案(方案 1)
建立天然白桦相容性立木生物量时,首先将 w1 =
a1 ( )D b1 和 w1 = a1 (D
2H) b1 转化为对数形式来消除
总生物量模型的异方差,即将模型转变为 lnw1 =
r1 + r2 lnD和 lnw1 = r1 + r2 ln(D
2H) (其中: r1 = lna1,
r2 = lnb1),进而采用分级控制方法得出总生物量与
各分项生物量模型的参数估计值以及模型的评价指
标(表 2)。
由表 2 可知,以总生物量为基础分级控制方案
所建立的天然白桦总生物量与各分项生物量模型的
确定系数(R2)均在 0. 80 以上,均方误差 MSE 都较
小。所建立的一元相容性生物量模型中,总生物量、
树根、树干、树叶和树枝生物量模型的平均相对误差
ME 都在 ± 10%以内; 绝大多数模型的平均相对误
差绝对值 MAE 在 30%以内,只有树叶模型的 MAE
略高于 30%。总体来说各分项及总生物量模型拟
合程度较好。对于二元相容性生物量模型来说,绝
大多数模型的平均相对误差均在 ± 10%内; 绝大多
数模型的平均相对误差绝对值 MAE 均未超过
30%,其中树枝、树叶生物量模型的平均相对误差绝
对值较大; 在一元、二元相容性生物量模型中,总生
物量和树干生物量模型的模拟效率 EF 接近于 1,树
根、树枝和树叶冠的模拟效率相对较小,但也都在
0. 8 以上; 总生物量和树干模型的预测精度 P 相对
较高,树根、树枝和树叶的较低,但都在 70% 以上。
总生物量选用对数模型不仅能很好地预估生物量,
还能有效地消除总生物量模型的异方差 (图 1、图
3)。本文各分项所采用的加权回归方法不仅能改
善模型的异方差现象,还能很好地估计天然白桦各
部分生物量(图 2、图 4)。总的来说,利用总生物量
为基础分级控制方案所建立的一元、二元相容性生
物量模型曲线与各样本点之间具有较好的切合程
度,所建立的相容性生物量模型能很好地对天然白
桦生物量进行估计。
表 2 基于方案 1 的天然白桦相容性立木生物量模型参数估计值、拟合优度和检验结果①
Tab. 2 Results of parameter estimates,fitting statistics and validations of the compatible tree biomass
models of program 1 for natural white birch
模型类型
Model type
参数估计
Parameter estimates
拟合优度
Goodness of fit
检验结果
Validation result
r1 r2 R2 MSE EF ME(% ) MAE(% ) P(% )
CF
总量 Total
1 - 1. 974 2 2. 453 8 0. 981 492. 6 0. 95 5. 4 10. 5 89. 3 1. 000 2
2 - 3. 106 8 0. 953 4 0. 988 308. 4 0. 96 3. 6 12. 4 88. 9 1. 000 1
树干 Stem
1 0. 065 7 0. 481 7 0. 968 294. 6 0. 94 2. 3 15. 1 90. 5 —
2 0. 103 4 0. 109 4 0. 970 257. 1 0. 96 2. 1 11. 3 92. 8 —
树根 Root
1 0. 269 1 0. 030 1 0. 830 109. 1 0. 88 - 2. 2 26. 4 82. 0 —
2 0. 247 8 0. 020 6 0. 824 120. 6 0. 86 - 7. 0 26. 8 81. 2 —
树枝 Branch
1 0. 262 3 - 0. 099 8 0. 863 21. 8 0. 87 - 9. 9 28. 1 76. 7 —
2 0. 406 0 - 0. 081 0 0. 828 28. 7 0. 82 - 13. 5 34. 0 71. 3 —
树叶 Foliage
1 0. 262 3 - 0. 099 8 0. 821 1. 6 0. 84 7. 0 32. 8 72. 1 —
2 0. 406 0 - 0. 081 0 0. 800 2. 2 0. 80 - 8. 9 33. 6 71. 3 —
①模型类型: 1 为一元模型; 2 为二元模型。天然白桦树干、树根、树枝和树叶的权重变量分别为 1 /D1. 5,1 /D,1 /D,1 /D。Model type:
1. Mono-element model; 2. Dual-element model. The weighting factors of stem,root,branch and foliage for natural white birch are 1 /D1. 5,1 /D,1 /D,
1 /D.
从表 2 可以看出,树根、树枝和树叶一元相容性
生物量模型的评价指标都优于二元相容性生物量模
型,而总生物量、树干二元相容性生物量模型的评价
指标稍好于一元相容性生物量模型,即增加树高作
为变量可以有效地提高总生物量和树干生物量的预
测精度,这与许多研究一致 ( Cole et al.,2006;
Wang,2006; António et al.,2007)。总的来说,2 种
模型类型的相容性生物量模型都能对天然白桦生物
量进行很好的预估,以总生物量为基础分级控制方
案所建立的一元相容性生物量模型优于二元相容性
生物量模型。
2. 2 以总生物量为基础直接控制方案(方案 2)相
容性立木生物量模型拟合
利用以总生物量为基础直接控制方案(方案 2)
所建立的总生物量与各分项相容性生物量模型的参
数估计值以及模型的评价指标见表 3、表 4。
97
林 业 科 学 49 卷
图 1 方案 1 天然白桦一元总生物量模型残差
Fig. 1 Residuals of mono-element total biomass models of program 1 for natural white birch
图 2 方案 1 天然白桦各分项一元相容性生物量模型消除异方差后残差
Fig. 2 Residuals of mono-element compatible tree biomass models of program
1 for natural white birch after eliminating heteroscedasticity
a.树干 Stem; b.树枝 Branch; c.树叶 Foliage; d.树根 Root.
图 3 方案 1 天然白桦二元总生物量模型残差
Fig. 3 Residuals of dual-element total biomass models of program 1 for natural white birch
08
第 7 期 董利虎等: 东北林区天然白桦相容性生物量模型
图 4 方案 1 天然白桦各分项二元相容性生物量模型消除异方差后残差
Fig. 4 Residuals of dual-element compatible tree biomass models of program
1 for natural white birch after eliminating heteroscedasticity
a.树干 Stem; b.树枝 Branch; c.树叶 Foliage; d.树根 Root.
表 3 基于方案 2 的天然白桦相容性立木生物量模型参数估计值①
Tab. 3 Results of parameter estimates of the compatible tree biomass models of
program 2 for natural white birch
模型类型
Model type
参数估计值 Parameter estimates
a1 b1 r1 k1 r2 k2 r3 k3
一元 Mono-element 0. 165 3 2. 391 7 0. 058 3 0. 457 7 0. 020 8 0. 259 4 0. 221 3 0. 183 8
二元 Dual-element 0. 033 6 0. 987 5 0. 032 4 0. 219 6 0. 011 6 0. 117 5 0. 179 2 0. 084 1
①天然白桦树干、树根、树枝和树叶的权重变量分别为: 1 /D1. 5、1 /D、1 /D、1 /D。The weighting factors of stem,root,branch and foliage for
natural white birch are 1 /D1. 5,1 /D,1 /D,1 /D.
表 4 基于方案 2 的天然白桦相容性立木生物量模型拟合优度和检验结果①
Tab. 4 Results of fitting statistics and validations of the compatible tree biomass models of
program 2 for natural white birch
模型类型
Model type
拟合优度 Goodness of fit 检验结果 Validation result
R2 MSE EF ME(% ) MAE(% ) P(% )
总量 Total
1 0. 982 326. 1 0. 95 3. 7 11. 1 90. 2
2 0. 986 286. 5 0. 96 5. 8 11. 7 90. 6
树干 Stem
1 0. 969 292. 3 0. 93 1. 4 14. 4 91. 7
2 0. 988 207. 2 0. 97 1. 8 10. 7 93. 4
树根 Root
1 0. 836 48. 7 0. 86 0. 8 21. 4 85. 3
2 0. 815 87. 4 0. 84 1. 9 27. 2 83. 7
树枝 Branch
1 0. 863 20. 2 0. 87 - 11. 4 32. 2 78. 7
2 0. 856 24. 5 0. 85 - 14. 4 33. 8 72. 6
树叶 Foliage
1 0. 829 1. 8 0. 83 2. 5 31. 5 73. 5
2 0. 808 2. 3 0. 81 15. 7 33. 5 69. 9
①模型类型 Model type: 1 为一元模型 Mono-element model; 2 为二元模型 Dual-element model.
由表 4 可知,一元、二元相容性生物量模型的确
定系数(R2)均在 0. 80 以上,其中以总生物量和树
干较大,树根、树叶和树枝较小,所有模型均方误差
MSE 都较小; 绝大多数模型的平均相对误差 ME 在
± 10%内,所建立模型的平均相对误差绝对值 MAE
在 11. 1% ~ 33. 8%之间; 总生物量和树干的模拟效
率 EF 在 0. 90 以上,树根、树枝和树叶的模拟效率
相对较差,但也都在 0. 8 以上; 总生物量和树干的
18
林 业 科 学 49 卷
预测精度 P 较高,都达到了 90%以上,树根、树枝和
树叶较低,但基本都在 70%以上。利用加权回归方
法对模型进行异方差的改善和消除,效果也很明显
(图 5 ~ 8)。总之,2 种模型类型的相容性生物量模
型曲线与各样本点之间具有较好的切合程度,模型
具有一定的预估性。
利用以总生物量为基础直接控制方案建立的天
然白桦相容性立木生物量模型中,树根、树枝和树叶
一元相容性生物量模型的评价指标优于二元相容性
生物量模型,总生物量和树干二元相容性生物量模
型的模型评价指标略好于一元相容性生物量模型。
2 种形式的相容性生物量模型都能对天然白桦生物
量进行很好的预估。总的来说,以总生物量为基础
直接控制方案所建立的一元相容性生物量模型优于
二元相容性生物量模型。
2. 3 天然白桦不同方案相容性生物量模型比较
结合表 2 和表 4,对 2 种方案的一元相容性立
木生物量模型进行对比: 以总生物量为基础直接
控制方案建立的总生物量、树干、树枝和树叶模型
的相关系数 R2 高于以总生物量为基础分级控制
方案建立的生物量模型; 均方误差方面: 以总生
物量为基础直接控制方案好于以总生物量为基础
分级控制方案; 2 种方案的模拟效率差异不大; 以
总生物量为基础直接控制方案建立的绝大多数模
图 5 方案 2 天然白桦一元总生物量模型残差
Fig. 5 Residuals of mono-element total biomass models of program 2 for natural white birch
图 6 方案 2 天然白桦各分项一元相容性生物量模型消除异方差后残差
Fig. 6 Residuals of mono-element compatible tree biomass models of program 2 for natural white birch after eliminating heteroscedasticity
a.树干 Stem; b.树枝 Branch; c.树叶 Foliage; d.树根 Root.
28
第 7 期 董利虎等: 东北林区天然白桦相容性生物量模型
图 7 方案 2 天然白桦二元总生物量模型残差
Fig. 7 Residuals of dual-element total biomass models of program 2 for natural white birch
图 8 方案 2 天然白桦各分项二元相容性生物量模型消除异方差后残差
Fig. 8 Residuals of dual-element compatible tree biomass models of program 2 for natural white birch
after eliminating heteroscedasticity
a.树干 Stem; b.树枝 Branch; c.树叶 Foliage; d.树根 Root.
型的平均相对误差 ME、平均相对误差绝对值
MAE 以及预测精度 P 都优于以总生物量为控制
分级控制方案。从模型的构造及应用性来说,以
总生物量为基础直接控制方案所建立的一元相
容性立木生物量模型优于以总生物量为基础分
级控制方案所建立的一元相容性立木生物量模
型。同理,对于 2 种方案的二元相容性立木生物
量模型来说,以总生物量为基础直接控制方案略
好于以总生物量为基础分级控制方案。
3 结论与讨论
本文采用 2 种方案,利用非线性度量误差联立
方程组的方法建立了天然白桦一元、二元相容性立
木生物量模型,并采用对数转换和加权回归的方法
进行异方差的消除。结果表明: 2 种方案都能解决
总生物量与各分项生物量的相容性问题; 2 种方案
所建立的天然白桦一元、二元相容性生物量模型的
确定系数 R2 都在 0. 8 以上,模拟效率 EF 在 0. 8 以
38
林 业 科 学 49 卷
上; 2 种方案中绝大多数总生物量与各分项生物量
模型的平均相对误差和平均相对误差绝对值在
± 10%和 ± 30%内,总体来说各分项生物量和总生
物量模型的拟合效果较好; 2 种方案所建立的相容
性生物量模型的预测精度基本都在 80%以上,树枝
和树叶生物量模型的预测精度较差,但也在 69%以
上。本文所建立的相容性生物量模型中,总生物量
和树干生物量模型效果较好,树根、树叶和树枝生物
量模型效果较差,可能是由于白桦树梢经常分叉或
者抽样误差的存在使数据变动范围变大影响了模型
拟合和估计的效果。这与 Wang(2006)对中国东北
地区 10 个温带树种、董利虎等 (2011)对黑龙江主
要 树 种、Li 等 ( 2013 ) 对 中 国 南 方 杉 木
(Cunninghamia lanceolata)生物量模型的研究结果
一致。
许多研究表明,在生物量模型中加入树高(H)
能提高立木生物量模型的精度 ( Cole et al.,2006;
Wang,2006; António et al.,2007),Wang(2006)和
Zhou 等(2007)研究显示树高是预测树干、树枝、树
叶生物量的重要变量。本文研究表明,一元相容性
生物量模型好于二元相容性生物量模型,以总生物
量为基础直接控制方案所建立的一元和二元相容性
立木生物量模型好于以总生物量为基础分级控制方
案所建立的相容性生物量模型。主要原因是总生物
量与树干生物量与胸径(D)和树高(H)的关系都非
常密切(Wang,2006; António et al.,2007),而树枝、
树叶和树根生物量只与胸径关系密切,与树高关系
不是很密切,在其生物量模型中加入树高(H)在一
定程度上可能降低了模型的精度,所以 2 种方案建
立的一元相容性生物量模型好于二元相容性生物量
模型。另外,以总生物量为基础分级控制方案会使
每级产生的误差叠加,所以以总生物量为基础直接
控制方案建立的相容性生物量模型效果更好。总的
来说,2 种方案所建立的相容性生物量模型都具有
一定精度,都能对天然白桦生物量进行很好的预估,
但考虑到模型形式的复杂程度,在进行生物量预估
时,建议采用以总生物量为基础直接控制方案建立
相容性生物量模型。
为了提高生物量模型的精度,以后应在外业进
行枝解析时应尽量避免树枝、树叶部分生物量的损
失。在实地进行调查时,应选取各个径阶的样木,这
样建立的模型具有一定的适用性。本文白桦样木主
要集中在中小径阶,在样木大小选取方面有所欠缺。
本文数据来源于 3 个地区共 66 株解析木,所建
立的生物量模型存在着估计尺度的问题。考虑样本
数的局限性,本文所建立的生物量模型更适合应用
于东北林区天然白桦的生物量估算。本文建立了一
元和二元相容性生物量模型,对于省级行政区域等
大尺度的生物量估计而言,采用一元模型可能是最
为合适的; 而对于某些小尺度的生物量估计,采用
二元模型进行生物量估计可能会更为准确。
参 考 文 献
董利虎,李凤日,贾炜玮,等 . 2011.含度量误差的黑龙江省主要树种
生物量相容性模型 . 应用生态学报,22 (10) : 2653 - 2661.
方精云,刘国华,徐崇玲 . 1996. 我国森林植被的生物量和净生产
量 .生态学报,16 (5) : 497 - 508.
李凤日 . 2004. 长白落叶松人工林树冠形状的模拟 . 林业科学,40
(5) : 16 - 24.
骆期邦,曾伟生,贺东北,等 . 1999. 立木地上部分生物量模型的建
立及其应用研究 . 自然资源学报,14 (3) : 271 - 277.
罗云建,张小全,王效科,等 . 2009. 森林生物量的估算方法及其研
究进展 . 林业科学,45 (8) : 129 - 134.
唐守正,张会儒,胥 辉 . 2000. 相容性生物量模型的建立及其估计
方法研究 . 林业科学,36 (专刊 1) : 19 - 27.
唐守正,郎奎建,李海奎 . 2008. 统计和生物数学模型计算 ( ForStat
教程) . 北京: 科学出版社 .
王效科,冯宗炜 . 2001. 中国森林生态系统的植物碳储量和碳密度
研究 . 应用生态学报,12 (1) : 13 - 16.
胥 辉,刘伟平 . 2001. 相容性生物量模型研究 . 福建林学院学报,
21 (1) : 18 - 23.
胥 辉 . 1999. 生物量模型方差非齐性研究 . 西北林学院学报,19
(2) : 73 - 77.
宇万太,于永强 . 2001. 植物地下生物量研究进展 . 应用生态学报,
12 (6) : 927 - 932.
张会儒,赵有贤,王学力,等 . 1999. 应用线性联立方程组方法建立
相容性生物量模型研究 . 林业资源管理,(6) : 93 - 96.
曾伟生,骆期邦,贺东北 . 1999. 论加权回归与建模 . 林业科学,35
(5) : 5 - 11.
曾伟生,唐守正 . 2010. 利用度量误差模型方法建立相容性立木生
物量方程系统 . 林业科学研究,23 (6) : 797 - 803.
曾伟生,唐守正 . 2011a. 非线性模型对数回归的偏差校正及与加权
回归的对比分析 . 林业科学研究,24 (2) : 137 - 143.
曾伟生,唐守正 . 2011b. 立木生物量模型的优度评价和精度分析 .
林业科学,47 (11) : 106 - 113.
António N A N,Tomé M T M,Tomé J T J,et al. 2007. Effect of tree,
stand,and site variables on the allometry of Eucalyptus globulus tree
biomass. Can J For Res,37 (5) : 895 - 906.
Baskerville G L. 1972. Use of logarithmic regression in the estimation of
plant biomass. Can J For Res,2 (1) : 49 - 53.
Bi H,Turner J,Lambert M J. 2004. Additive biomass equations for
native eucalypt forest trees of temperate Australia. Trees,18 (4) :
467 - 479.
Bi H, Long Y, Turner J, et al. 2010. Additive prediction of
aboveground biomass for Pinus radiata ( D. Don) plantations. For
Ecol Manage. 259 (12) : 2301 - 2314.
Brandeis T J,Delaney M,Parresol B R,et al. 2006. Development of
48
第 7 期 董利虎等: 东北林区天然白桦相容性生物量模型
equations for predicting Puerto Rican subtropical dry forest biomass
and volume. For Ecol Manage,233 (1) : 133 - 142.
Caldeira K,Duffy P B. 2000. The role of the southern ocean in uptake
and storage of anthropogenic carbon dioxide. Science,287 (5453) :
620 - 622.
Carvalho J P,Parresol B R. 2003. Additivity in tree biomass components
of Pyrenean oak ( Quercus pyrenaica Willd. ) . For Ecol Manage,
179 (1 /3) : 269 - 276.
Cole T G,Ewel J J. 2006. Allometric equations for four valuable tropical
tree species. For Ecol Manage,229 (1 /3) : 351 - 360.
Fang Z,Bailey R L. 2001. Nonlinear mixed effects modeling for Slash
pine dominant height growth following intensive silvicultural
treatments. Forest Science,47 (3) : 287 - 300.
Houghton R A. 2005. Aboveground forest biomass and the global carbon
balance. Global Change Biology,1(6) : 945 - 958.
Li H K, Zhao P X. 2013. Improving the accuracy of tree-level
aboveground biomass equations with height classification at a large
regional scale. For Ecol Manage,289: 153 - 163.
Muukkonen P. 2006. Forest inventory-based large-scale forest biomass
and carbon budget assessment: new enhanced methods and use of
remote sensing for verification. Helsinki: Department of Geography,
University of Helsinki.
Parresol B R. 1999. Assessing tree and stand biomass: a review with
examples and, critical comparisons. Forest Science, 45 ( 4 ) :
573 - 593.
Parresol B R. 2001. Additivity of nonlinear biomass equations. Can J For
Res,31 (5) : 865 - 878.
Saint-André L,M Bou A T,Mabiala A, et al. 2005. Age-related
equations for above-and below-ground biomass of a Eucalyptus hybrid
in Congo. For Ecol Manage,205 (1 /3) : 199 - 214.
Tang S Z,Li Y,Wang Y H. 2001. Simultaneous equations,error-in-
variable models and model integration in systems ecology. Ecol
Model,142 (3) : 285 - 294.
Tang S Z,Wang Y H. 2002. A parameter estimation program for the
error-in-variable model. Ecol Model,156 (2) : 225 - 236.
Vallet P,Dhte J F,Le Moguédec G,et al. 2006. Development of total
aboveground volume equations for seven important forest tree species
in France. For. Ecol. Manage,229 (1 /3) : 98 - 110.
Wang C K. 2006. Biomass allometric equations for 10 co-occurring tree
species in Chinese temperate forests. For Ecol Manage,222 (1 /3) :
9 - 16.
Woodbury P B,Smith J E,Heath L S. 2007. Carbon sequestration in
the U. S. forest sector from 1990 to 2010. For Ecol Manage,241
(1 /3) : 14 - 27.
Zhou X,Brandle J R,Schoeneberger M M,et al. 2007. Developing
above-ground woody biomass equations for open grown,multiple-
stemmed tree species: Shelterbelt-grown Russian-olive. Ecol Model,
202 (3) : 311 - 323.
(责任编辑 石红青)
58