免费文献传递   相关文献

Comparison of Nonlinear Regression Equation with Intercept and Segmented Modeling Approach for Estimation of Single-Tree Biomass

带截距的非线性方程与分段建模方法对立木生物量估计的比较



全 文 :!"#$%&
 2011,24(4):453 457
ForestResearch
  
!"#$
:10011498(2011)04045305
îïð5ñò€VóŠ?ôõöVWê
çר˦­T5 ¡
hi
1,
jBk
2,
l(m

(1.
(!"#$%&)!"%&*

56
 100091;2.
(!"#$%&)ó;B¯%&*

56
 100091)
ABCD
:20100903
EFGH

(+n¡#$EF
(31070485)
ó"

PQRS

܊F
(1980—),
W

×:|œþ

XYm

[\%&]^

ð¡!N?¼
。Email:zlianjin1102@126.com
/PQ:Ñpÿ¼ò。Email:zengweisheng@sohu.com
89

tzÉ3,l«K¼æ†m”]]Ïzƒx¸µ!-o֜®ØWPQ

~L5_`aŽî]h
yaMˆm”]ÎD!

pq¸ÉP¢Hl«K]ώ—L:¼]ÕUs“z[-m”]oÖ

oz=Q
úovš“L”·¦

™š›œ

¢c]Õ1uØv* ¸µ!-ØWoÖPQ

ÌzX|¼æúov
š)Ø,–Ïׁs{

Âz·—˜™šS

—L†]ρúovšð\=þ,ý

:;<

[-m”]

l«K]Ï

—L:¼

¢H

·¦

_`a

hya
=>?@$
:S711
!ABCD
:A
ComparisonofNonlinearRegressionEquationwithInterceptandSegmented
ModelingApproachforEstimationofSingleTreeBiomass
ZHANGLianjin1,ZENGWeisheng2,TANGShouzheng2
(1.ReseachInstituteofForestry,ChineseAcademyofForestry,Beijing 100091,China;
2.ReseachInstituteofForestResourceInformationTechniques,ChineseAcademyofForestry,Beijing 100091,China)
Abstract:Singletreebiomassequationswithconstantparameterswithintherangeofsizeclassesmayresultinobvi
ousbiasedestimationforsmalyoungtrees.Basedontheabovegroundbiomassdataoflarch(Larixspp.)ofthe
northeastandMassonpine(Pinusmasoniana)ofthesouthinChina,twomethodswerepresentedtoimprovethe
estimationoftreebiomass,whichwerenonlinearregressionequationwithinterceptandsegmentedmodelingap
proach,andthefitstatisticsofthemodelswerecompared.Theresultsshowed:(i)thetwomethodsnotonlywere
efectivetosolvetheproblemofbiasedestimationforsmaltrees,butalsoimprovedthepredictionofbiomassmodel
foralsampletreesinsomeextents;(i)thesegmentedregressionmodelswereslightlybeterthannonlinearregres
sionequationwithinterceptforsingletreebiomassestimation.
Keywords:singletreebiomass;nonlinearequation;segmentedmodeling;intercept;comparison;larch;
Massonpine
i!%áMm_œ[@

%º^m{
Žs{mŸ÷0\]¡

FÈzWáST³è
~øMé1¦ÆPÉ

0w

&(ÛUÛ
0¢zi!m”]¢•

Ý\=>W(i!m”
]¢•Žòo

:[û†¦=U4ÈɁ/ÉK[
-m”]¼æ®%:é1ƒ,GEýòP


l«K[-m”]¼æ,ø™£Œ½
[1]:
y=β0x1β
1… xiβ
i (1)
½
,y
!-m”]
,xinP!-=³],βi
¼æÄÎ

‘n³]
xi„î3!-€¸ D,
(1)
½ú%ÈÉ(JžŸÎI½
M=aDb(
½

m”]
,a、b
ÄÎ
)[2-6]。
Œš:¼z<!-
! 
"
 
#
 
$
 
%
 
& û
24
ü
€¸

£×¦=

Ö}%‘`+),oî3

3,¼æ¡¡j~W#ÃK

Ù

³è

BondLamberty
ä
[7]
F%&:[ê¤=h¥†\9
5]i!

|+cm”]¼æ~Ñ

m”]
‡€¸ß‚5_F
3cm
~í~m”®¯³è

wDPQzL5_`a
(Larixspp.)
Žî]hya
(PinusmasonianaLamb.)
[-Mˆm”]ÎD
“L—˜

Œš®é×sM¯¸
(6cm
¸µ~í


`+),oć:¼

çz¸µ!-m”]o
Öz?Fœ®W¬

tzŠ,PQ

mn®BCÊ
ÉP¢Hl«K]ώ—L:¼¢c]Õ

Us
“z[-m”]oÖ

ozŠ¢c]ՁoÖv
š“Lz·

1 
nopq
mn*ÉÎDý(L5_`aŽî]hya
Mˆm”]2•ÎD

x|+c
150
z~-

}
L5_`a¸ºM1¦eاô

¥bÌ

é
!

78

9U

î]hya¸ºM1¦ē

¨Ì

Áš

×:

ÌG

Çî

JL

JG

Ôêä

9U

~m3>Îk9ó;̓—_

oE†ð
¡Žþòg;

x|+c~-k
2、4、6、8、12、16、
20、26、32、38cm

10
|¸µ»Ä—å

x|¸µ
~-k+¼ÿ)j]»Ä—å

F=M×ÈÉØ
ÅØJcÆ›K

WA~-1É©ÉMåñ•]
€¸

®~-|}à

ÉbM•]+Á²×



Ž%+J²×


),
—Á‰

Áb

+d

+``
aú]

o—µày~ùP‚234

F
85℃
ªO
íbÁ¢ú]

wD~ùaú]ŽÁú]—µI
×~-A—Áú]o«"ôäMˆA—Áú]

›

¢|+c[-Mˆm”]2•ÎDEm
Es

Z
1 
ç×Gå¨Ë¦‹OQR5kÐ÷I
+c ~m] ³] {»Ÿ (Ÿ (=Ÿ Ðå¬ ³E_Î
/%
_`a
150
hya
150
€¸
/cm 16.6 1.6 44.1 11.9 71.83

/m 12.9 2.5 28.2 7.0 54.52

/m 4.32 0.85 10.60 2.29 53.08

/m 8.35 1.25 23.60 4.57 54.77
Mˆm”]
/kg 177.040 0.614 1160.740 234.024 132.19
€¸
/cm 16.6 1.5 47.2 12.1 73.13

/m 12.0 2.0 27.6 7.2 60.20

/m 4.47 0.60 12.00 2.55 57.12

/m 6.24 1.30 17.52 3.56 57.06
Mˆm”]
/kg 169.100 0.317 1039.144 233.739 138.23
2 
23
”ÅØÄ¡¬t¹

mn~ŒíŒ½=
>[-m”]¼æP%&z·Eý

M =aDbHc (2)
½
,M
[-Mˆm”]
(kg),D
€¸
(cm),H
+¼
(m),a、b、c
ÄÎ

®¡
,(2)
½„D
°


0,
ôäm”]o֟ú
0。
wDM"L
­

„\+¼V½
13m,
€¸

ú
0,
Ý+¼ƒþ
ä½
13m
!-X®ÅØ,–m”]

`%Š
,0w÷ø

ƒxÉ
(1)
°
(2)
½ôäm”]o
֟F¸µzëm®¯W¬

Œš:¼~mé¦
e¸µ~-

çŠ,÷øEm1~¯=éÖ

ú
Œ†+¼

€¸_«,~

,øEsí1~éî
3€¸ä½

+¼ä½
13m
Š,2ƞ

Ý
Œš%tz`Û!

ç,–\EÖ
H=13+f(D)
Œ½

ÚçúzØ®¯÷ø

E½~ˆî3

Fl«K¼æ
(2)
Eýˆê
ˆ,|¢HiÎ
a0,³~팽:
M =a0+aD
bHc (3)
ŠJ`
(3)
P¢Hl«K]Ï

\s
(3)
½m”]]ÏjŠoéiu

0)Øô?ÈÉ

ŒF
Zianis
ä
[8]
«Î]h|+c
607
|m”
]]Ï

¦e
39
|+c



úØ
78
|]ό
(3)
½,~PØ¢HiÎ

é3zζhŒ½]Ï
)。
éê

wDzm”]ÎD—˜™šL

¼æ
(2)
ʔƒx
2、4cm
䐸µ~-o֙šqÑ
W¬~ê

ðz4
6、8cm
¸µ~-o֙š
ëm,–÷ø

0w

+n¸µ~-oÖW¬
é,`¸%—L:¼]Õ

—L:¼]ÕF!"°4auÈÉ

0F}Ã
°4çTJcÈÉ
[9-14]。
ŒÀ­l
[10]
ÊɗL:
454
û4
D ܊Fä

P¢Hl«K]χ—L:¼]Õz[-m”]oց·¦
¼]Õzöî¼HMU¼äÿI¿
GPS
¼Ï“L
—L†

Øvp¼”
GPS
¼Ï†N×

•

[11]
~£±HL(=Ÿ—¤±HLŽà±
HL

ÊÉ
Logistic
_«z²º³*Ae}âKä
S´Ë_ΓL”—L†

™š›œ—L:¼]
Õ%1L

Ü$¶

!UL
[14]
tzÅ¿§S°4
zÅØZƒl«KvKÅ¤§éu¸É3,
µN¶·:¼PQ
,¸
ɗL:¼]Õé>îV
”¼æZƒ×

ðp¼”¼æØvK

—L:¼Á\+n¢|MPQ

,%¸ä†
û‚1

=%ñ]‚1NX¹z°

û,|PQ
/¥ÎD—˜o™†Í]<úš:¼z·úuôä
+n

m%&N¥z¢|+cÎD“L—˜

o
/¥E–
5cm
Ž
6cm
¢|‚1“L:¼z·

›
œd–
6cm
P‚1%†û

û=|PQ+
n

\/¥z¼æÄÎEQ,ý2ƞU2Ñ

Fm!

—¢LU:[~í¼æ

M1 =a1D
b1Hc1(D≥6cm) (4)
M2 =a2D
b2Hc2(D<6cm) (5)
0
6cm
~ˆ!-%i!m”][@

šÊ
É
120
z
6cm
~ˆ~-†¼æ
(4),
¡à~¼æ
(4)
Eý

/¥z¼æ
(5)
ÄΓL2Æ


‡¼æ
(4)
F€¸
6cm
NX¹z°

z½R3,
>¼æ

„ÁE–,|1
D0P‚1;Ýz½=>
¼æ

ç:;E–,ž«3u®—L¼æŠ°gU

ºEŠž«N¥
(D0,H),}D0=6cm。\]ȼ
æ
(4)、(5)
FŠž«ˆm”]o֟4ä

ç}
ÄÎ:;çè~힍

c2 =c1 (6)
lna2 =(lna1+b1lnD0)-b2lnD0 (7)
z
(5)
½yzÎàôä

lnM2 =lna2+b2lnD+c2lnH (8)
»®
(6)、(7)
¢½Æ¾
(8)
½

N¥èRà

ôä

b2 =(lna1+b1lnD0+c1lnH-lnM2)/(lnD0-
lnD) (9)
ºE

y=lna1+b1lnD0+c1lnH-lnM2 (10)
x=lnD0-lnD (11)
ç
(9)
½³

y=b2x (12)
0w

ÊÉ
6cm


|¸µ
30
z~-
D、H、M(
FˆK—L†¼æ›K
M2),šk
(10)、(11)
½Ö×q

Ž

Ÿ

»†¢H

«
K]Ï
(12)
½

úôä”
b2o֟;¡àƾ(7)
½

ú1~×q
a2o֟。
”zP¢Hl«K]Ï
(3)
Ž—L†]
Ï
(4)、(5)
úovš“Lz·

[\î3"4z

TRE(TotalRelativeEror)
Ž{»_œO¬
MSE
(MeanSystemEror)
Š

GÏÐ
[15]:
TRE=∑

i=1
(yi-y^i)/∑

i=1
y^i×100 (13)
MSE=1n∑

i=1
(yi-y^i)/^yi×100 (14)
½
,yi2´—•Ÿ,^yi¼æúoŸ。ʔtz
X|~m~ê

01%\—¸µs3

ȯ
(2)
½†™š“L·¦

éê

¼æmkœÖÏ
Ð

ðî3~í

G
[1,15]:
R2 =1-∑(yi-y^i)2/∑(yi-珋y)2 (15)
SEE= ∑(yi-y^i)2/(n-p槡 ) (16)
MPE=tα·(SEE/珋y) 槡/n×100 (17)
MPSE=1n∑

i=1
(yi-y^i)/^yi ×100 (18)
}
R2
Ž
SEE
%‚c¼æiÉÏÐ
,MPE
%nP{»m”]o֟N×ÏÐ
,MPSE
%n
P3zm”]o֟N×ÏÐ

3 
45
™šÊÉWA
150
z~-

k
(2)
½—µ¢|+
c†Mˆm”]¼æ

™šu›
2。
0m”]
ÎD?F­]¬K
[1,15-17],
0w¸Éê‚coÖ
]Õ«+¼æÄÎ

Z
2 
%&JøùGå¨Ë¦ö¤
(2)
5úx¸û
+c
ÄÎo֟
a b c
œ Ö Ï Ð
R2 SEE MPE MPSE TRE MSE
_`a
0.083047 2.09269 0.44231 0.9680 42.15 3.84% 17.06% 0.19% 2.64%
hya
0.072234 2.07953 0.49113 0.9653 43.84 4.19% 19.88% 1.28% 3.43%
554
! 
"
 
#
 
$
 
%
 
& û
24
ü
›

S"@†vš1éé

}_`a
œÖÏл·hya\þ

0%¼k¸µU—˜

ç~Ñz¸µ!-m”]oÖ?Fœ®W¬


1)。
0¸µ!-m”]ƒ

ŠcW¬
?FzX|i!m”]o֟÷øoé=

0
¼\p¼¸µ!-m”]úoN×

ç:;¸
yØ5s“«í
,¸
ÉP¢Hl«K]Ï°—L
:¼]Õ

k
(3)
½—µ¢|+c†Mˆm”]¼æ

™šu›
3。
Z
3 
%&JøùGå¨Ë¦ö¤
(3)
5úx¸û
+c
ÄÎo֟
a0 a b c
œ Ö Ï Ð
R2 SEE MPE MPSE TRE MSE
_`a
0.33033 0.063068 2.00684 0.63090 0.9688 41.76 3.81% 15.07% -0.02% 0.05%
hya
0.27659 0.057693 2.13254 0.50974 0.9656 43.79 4.19% 17.78% 0.00% 1.12%
Ò
1 
hyam”]¼æ
(2)
4zO¬—å
›

‡›

z·1~Sq

¼æ
(3)
G
œÖÏÐ1\þ½¼æ
(2),
5œÜê¢HiÎ
a0
F,–Ï׈s“”X|¼æúovš

Ä0%

¸µ!-oÖØWPQ1~ô䜮s
   
Ò
2 
hyam”]¼æ
(3)
4zO¬—å
{


2)。
(àk—L:¼]Õ

—µ
6cm
¸µ~ˆŽ~í
U†¼æ

™šu›
4。
Ø5œÖÏÐ%tzX|~
mÝ́

Ö×
SEE
Ïн[ÄÎ|Îy

|

 
Z
4 
%&JøùGå¨Ë¦?ôõöúx¸û
+c
ÄÎo֟
a1 b1 c1 a2 b2 c2
œ Ö Ï Ð
R2 SEE MPE MPSE TRE MSE
_`a
0.0641552.06331 0.56287 0.13820 1.63501 0.56287 0.9682 42.29 3.86% 14.67% -0.31% 0.56%
hya
0.0581462.13174 0.50805 0.11743 1.73947 0.50805 0.9656 43.93 4.20% 18.09% 0.11% 2.00%
›

S

X|¼æ"@œÖÏз¼æ
(2)
)Øs“

݇¼æ
(3)
4Ž=

Œš“,âî
3¸µo֙š

ç1~~Ñ
,¸
ɗL:¼]
ÕØvM+n”¸µØWoÖPQ

›

:q
”

coÖ]Õz|¸µ"4zO¬
TRE
Ž
{»_œO¬
MSE
ÏП

›

L

_`a¼æ
(2)
z
2cm
¸µúo
W¬ãä
30%


hya¼æ
(2)
z
2、4cm
¸µ
úoW¬1ãä
20%
Z[

¸ÉP¢Hl«
K]Ï
(3)
Ž—L†]Õ

1~Øvdʐ¸µ
?F_œW¬

Œ_`a¸É—L:¼]Õ


|¸µ"@4zO¬
TRE
Em1é¤q
±5%

ÈÉ

>
16cm
¸µãä
5.28%。
hyaʔ
4、20
cm
Š¢|¸µÎDØ*­iê

}øµ
TRE
Ž
MSE
ÏÐEm)F
±5%


›

z·™
šS

—L:¼]Õ\=þ½P¢Hl«K]Ï

4 
49
mn~L5_`aŽî]hyaMˆm”]
ÎD!

tzÉ3,l«K¼æ
(2)
†m”
]]Ïzƒx¸µ!-o֜®ØWPQ

pq¸ÉP¢Hl«K]Ï
(3)
Ž—L:¼]Õ
654
û4
D ܊Fä

P¢Hl«K]χ—L:¼]Õz[-m”]oց·¦
  
Z
5 
%&Jøù[\Gå¨Ë¦ö¤?cüê ¸û
D/cm
_
 
`
 
a
"4zO¬
TRE/%
¼æ
(2)
¼æ
(3)
¼æ
(4/5)
{»_œO¬
MSE/%
¼æ
(2)
¼æ
(3)
¼æ
(4/5)
h
 
y
 
a
"4zO¬
TRE/%
¼æ
(2)
¼æ
(3)
¼æ
(4/5)
{»_œO¬
MSE/%
¼æ
(2)
¼æ
(3)
¼æ
(4/5)
2 30.96 2.56 1.34 39.08 3.83 5.22 21.20 -9.58 -5.99 30.45 -8.35 -0.72
4 4.48 3.84 -0.54 5.69 4.68 0.01 18.40 20.11 14.88 21.71 23.10 18.24
6 -9.39 -5.95 -1.86 -8.57 -4.29 -0.32 -5.85 -0.57 2.44 -4.04 1.26 4.18
8 -8.62 -6.94 -3.68 -8.25 -6.04 -2.93 -9.87 -4.60 -2.85 -6.46 -0.89 1.07
12 -6.28 -4.50 -2.91 -5.18 -2.93 -1.47 -6.44 -2.45 -1.92 -7.28 -3.29 -2.76
16 2.47 4.65 5.28 2.24 4.85 5.29 1.28 4.01 4.26 2.10 4.98 5.24
20 -1.97 -1.99 -1.27 -2.63 -2.50 -1.86 -10.40 -9.15 -9.04 -11.31 -10.01 -9.90
26 2.59 2.35 2.42 2.56 2.48 2.47 4.38 4.12 4.20 4.00 3.77 3.84
32 4.19 3.38 3.08 4.05 3.29 2.97 2.76 1.08 1.16 2.73 1.10 1.17
≥38 -2.44 -2.79 -3.74 -2.56 -2.84 -3.80 2.16 -0.68 -0.61 2.49 -0.28 -0.20
Us“¼æúovš

wDØ5%&™š

1~
ôä~í™B

(1)
l«K¼æ
(2)
o½mØî3+¼ä½
13

!-:¡ÅØ,–m”]Š,Em-pž


ÂÝz‹¼æúovšiä,–Ïׁ÷ø

Ö}%z¸µ!-oÖ

zëmœ®_œW
¬

¢|+c™šS
,2cm
¸µúoW¬1
~ãä
20%
¡¢
30%


(2)¸
ÉP¢Hl«K]Ï
(3)
1~Øv*
 ¸µ!-ØWoÖPQ

ÌzX|¼æ
úovš)Ø,–Ïׁs{

¢|+c™š
S

¼æ
(3)
¢HiÎ=5F
0.3
Z[

5œ+¼
1.3m
_`aŽhya!-

}m”]{»5
03kg。
(3)
ÊɗL:¼]ÕÌ~1~+n¸µ!
-ØWoÖPQ

oF,–Ï׈s“X|¼æ
úovš

‡P¢Hl«K]Ï
(3)
z·
™šS

—L†]ρúovšð\=þ,ý
,^
]Õ1~IJÈÉä!"Λ°4‰$]Ïä}Ã
¼æ%:

ef!A

[1]ParesolBR.Assessingtreeandstandbiomass:areviewwithexam
plesandcriticalcomparisons[J].ForSci,1999,45(4):573
-593
[2]TerMikaelianMT,KorzukhinMD.Biomassequationsforsixtyfive
NorthAmericantreespecies[J].ForestEcologyandManagement,
1997,97:1-24
[3]JenkinsJC,ChojnackyDC,HeathLS,etal.Nationalscalebio
massestimatorsforUnitedStatestreespecies[J].ForSci,2003,49
(1):12-35
[4]MuukkonenP.Generalizedalometricvolumeandbiomassequations
forsometreespeciesinEurope[J].EurJForestRes,2007,126:
157-166
[5]CaseB,HalRJ.Assessingpredictionerorsofgeneralizedtreebio
massandvolumeequationsfortheborealforestregionofwestcentral
Canada[J].CanJForRes,2008,38:878-889
[6]NávarJ.Alometricequationsfortreespeciesandcarbonstocksfor
forestsofnorthwesternMexico[J].ForestEcologyandManagement,
2009,257:427-434
[7]BondLambertyB,WangBC,GowerST.Abovegroundandbelow
groundbiomassandsapwoodareaalometricequationsforsixboreal
treespeciesofnorthernManitoba[J].CanJForRes,2002,32:
1441-1450
[8]ZianisD,MuukkonenP,MkipR,etal.Biomassandstemvolume
equationsfortreespeciesinEurope[J].SilvaFennica,Mono
graphs,2005,4:1-63
[9]
±¾¿

{ÀÁ

ÖבÂ"`æ_«(V—L†
[J].

òÏ
,1993,13(3):48-52
[10]
À­l

¼HU¼äÿI¿
GPS
•¼—L†eNח˜
[J].
•Ø/8
,2005(12):38-40
[11]
•

²º³*Ae}âKäS´Ë_΁
Logistic
_«—
L†
[J].
²Ã‡Æƒ$8
,2006,S1:242-244
[12]
œŒd

—L†fgF²DÞÕ:¼¥ÏÅ@ÈÉ
[J].
&#f%&‡~>
,2008,30(3):363-369
[13]
Ð+Ü

Ó
 
“

uðâ

ä

ĉÂE@E¤€—L:¼
]ÕeEÖ_œ%&
[J].
‘]EÖ
,2008,25(7):23-25
[14]
Ü$¶

!UL

E½µN¶·Å¤§—L:¼]Õ
[J].
”A23
,2009,29(12):20-22
[15]
vÅm

ÚDÆ

ÇL5

Bê‚c‡:¼
[J].
!"#$

1999,35(5):5-11
[16]
ÜzÈ

ó·`

É
 
¨

5½m”]¼æ­]¬PQ
[J].
!"ó;ŠA
,1999(1):46-49
[17]
É
 
¨

m”]¼æ]¬l.K%&
[J].
G5!$)$8

1999,19(2):73-77
754