免费文献传递   相关文献

Comparison of Nonlinear Regression Equation with Intercept and Segmented Modeling Approach for Estimation of Single-Tree Biomass

带截距的非线性方程与分段建模方法对立木生物量估计的比较



全 文 :!"#
:10011498(2011)04045305
îïð5ñò€VóŠ?ôõöVWê
çר˦­T5 ¡
hi
1,
jBk
2,
l(m

(1.
(!"#%&)ó;B¯%&*

56
 100091)
ABCD
:20100903
EFGH

(+n¡#EF (31070485) ó" 。 PQRS : ÜŠF (1980—), W , ×:|œþ , XYm , [\%&]^ : ð¡!N?¼ 。Email:zlianjin1102@126.com /PQ:Ñpÿ¼ò。Email:zengweisheng@sohu.com 89 : tzÉ3,l«K¼æ†m”]]Ïzƒx¸µ!-o֜®ØWPQ , ~L5_`aŽî]h yaMˆm”]ÎD! , pq¸ÉP¢Hl«K]ώ—L:¼]ÕUs“z[-m”]oÖ , oz=Q úovš“L”·¦ 。 ™š›œ : ¢c]Õ1uØv* ¸µ!-ØWoÖPQ , ÌzX|¼æúov š)Ø,–Ïׁs{ ; Âz·—˜™šS , —L†]ρúovšð\=þ,ý 。 :;< : [-m”] ; l«K]Ï ; —L:¼ ; ¢H ; ·¦ ; _`a ; hya =>?@$ :S711 !ABCD :A ComparisonofNonlinearRegressionEquationwithInterceptandSegmented ModelingApproachforEstimationofSingleTreeBiomass ZHANGLianjin1,ZENGWeisheng2,TANGShouzheng2 (1.ReseachInstituteofForestry,ChineseAcademyofForestry,Beijing 100091,China; 2.ReseachInstituteofForestResourceInformationTechniques,ChineseAcademyofForestry,Beijing 100091,China) Abstract:Singletreebiomassequationswithconstantparameterswithintherangeofsizeclassesmayresultinobvi ousbiasedestimationforsmalyoungtrees.Basedontheabovegroundbiomassdataoflarch(Larixspp.)ofthe northeastandMassonpine(Pinusmasoniana)ofthesouthinChina,twomethodswerepresentedtoimprovethe estimationoftreebiomass,whichwerenonlinearregressionequationwithinterceptandsegmentedmodelingap proach,andthefitstatisticsofthemodelswerecompared.Theresultsshowed:(i)thetwomethodsnotonlywere efectivetosolvetheproblemofbiasedestimationforsmaltrees,butalsoimprovedthepredictionofbiomassmodel foralsampletreesinsomeextents;(i)thesegmentedregressionmodelswereslightlybeterthannonlinearregres sionequationwithinterceptforsingletreebiomassestimation. Keywords:singletreebiomass;nonlinearequation;segmentedmodeling;intercept;comparison;larch; Massonpine i!%áMm_œ[@ , %º^m{ Žs{mŸ÷0\]¡ , FÈzWáST³è ~øMé1¦ÆPÉ 。 0w , &(ÛUÛ 0¢zi!m”]¢• 。 Ý\=>W(i!m” ]¢•Žòo , :[û†¦=U4ÈɁ/ÉK[ -m”]¼æ®%:é1ƒ,GEýòP 。 iÉ l«K[-m”]¼æ,ø™£Œ½ [1]: y=β0x1β 1… xiβ i (1) ½ ,y !-m”] ,xinP!-=³],βi ¼æÄΠ。 ‘n³] xi„î3!-€¸ D, (1) ½ú%ÈÉ(JžŸÎI½ M=aDb( ½ M m”] ,a、b ÄΠ)[2-6]。 Œš:¼z<!- !  "   #   $   %   & û 24 ü €¸ D £×¦= , Ö}%‘`+),oî3 , 3,¼æ¡¡j~W#ÃK M Ù D ³è 。 BondLamberty ä [7] F%&:[ê¤=h¥†\9 5]i! 6 |+cm”]¼æ~Ñ , m”] ‡€¸ß‚5_F 3cm ~í~m”®¯³è 。 wDPQzL5_`a (Larixspp.) Žî]hya (PinusmasonianaLamb.) [-Mˆm”]ÎD “L—˜ , Œš®é×sM¯¸ (6cm ¸µ~í )  `+),oć:¼ , çz¸µ!-m”]o Öz?Fœ®W¬ 。 tzŠ,PQ , mn®BCÊ ÉP¢Hl«K]ώ—L:¼¢c]Õ , Us “z[-m”]oÖ , ozŠ¢c]ՁoÖv š“Lz· 。 1  nopq mn*ÉÎDý(L5_`aŽî]hya Mˆm”]2•ÎD , x|+c 150 z~- , } L5_`a¸ºM1¦eاô 、 ¥bÌ 、 é ! 、 78 4 9U , î]hya¸ºM1¦ē 、 ¨Ì 、 Áš 、 ×: 、 ÌG 、 Çî 、 JL 、 JG 、 Ôêä 9 9U 。 ~m3>Îk9ó;̓—_ , oE†ð ¡Žþòg; 。 x|+c~-k 2、4、6、8、12、16、 20、26、32、38cm ~ˆ 10 |¸µ»Ä—å , x|¸µ ~-k+¼ÿ)j]»Ä—å , F=M×ÈÉØ ÅØJcÆ›K 。 WA~-1É©ÉMåñ•] €¸ , ®~-|}à , ÉbM•]+Á²× ( +¼ ) Ž%+J²× ( J² ), —Á‰ 、 Áb 、 +d 、 +`` aú] , o—µày~ùP‚234 , F 85℃ ªO íbÁ¢ú] , wD~ùaú]ŽÁú]—µI ×~-A—Áú]o«"ôäMˆA—Áú] 。 › 1 ¢|+c[-Mˆm”]2•ÎDEm Es 。 Z 1  ç×Gå¨Ë¦‹OQR5kÐ÷I +c ~m] ³] {»Ÿ (Ÿ (=Ÿ Ð嬠³E_Π/% _`a 150 hya 150 €¸ /cm 16.6 1.6 44.1 11.9 71.83 +¼ /m 12.9 2.5 28.2 7.0 54.52 J´ /m 4.32 0.85 10.60 2.29 53.08 J² /m 8.35 1.25 23.60 4.57 54.77 Mˆm”] /kg 177.040 0.614 1160.740 234.024 132.19 €¸ /cm 16.6 1.5 47.2 12.1 73.13 +¼ /m 12.0 2.0 27.6 7.2 60.20 J´ /m 4.47 0.60 12.00 2.55 57.12 J² /m 6.24 1.30 17.52 3.56 57.06 Mˆm”] /kg 169.100 0.317 1039.144 233.739 138.23 2  23 ”ÅØÄ¡¬t¹ , mn~ŒíŒ½= >[-m”]¼æP%&z·Eý : M =aDbHc (2) ½ ,M [-Mˆm”] (kg),D €¸ (cm),H +¼ (m),a、b、c ÄΠ。 ®¡ ,(2) ½„D ° H  0, ôäm”]o֟ú 0。 wDM"L ­ , „\+¼V½ 13m, €¸ D ú 0, Ý+¼ƒþ ä½ 13m !-X®ÅØ,–m”] 。 `%Š ,0w÷ø , ƒxÉ (1) ° (2) ½ôäm”]o ÖŸF¸µzëm®¯W¬ 。 Œš:¼~m馠e¸µ~- , çŠ,÷øEm1~¯=éÖ 。 ú Œ†+¼ - €¸_«,~ , ,øEsí1~éî 3€¸ä½ 0 +¼ä½ 13m Š,2ƞ , Ý Œš%tz`Û! , ç,–\EÖ H=13+f(D) Œ½ , ÚçúzØ®¯÷ø 。 E½~ˆî3 , Fl«K¼æ (2) Eýˆê ˆ,|¢HiΠa0,³~팽: M =a0+aD bHc (3) ŠJ` (3) P¢Hl«K]Ï 。 \s (3) ½m”]]ÏjŠoéiu , 0)Øô?ÈÉ , ŒF Zianis ä [8] «Î]h|+c 607 |m” ]]Ï ( ¦e 39 |+c )  , úØ 78 |]ό (3) ½,~PØ¢HiΠ( é3zζhŒ½]Ï )。 éê , wDzm”]ÎD—˜™šL , ¼æ (2) Ê”ƒx 2、4cm ä¸µ~-o֙šqÑ W¬~ê , ðz4 6、8cm ¸µ~-o֙š ëm,–÷ø 。 0w , +n¸µ~-oÖW¬ é,`¸%—L:¼]Õ 。 —L:¼]ÕF!"°4auÈÉ , 0F}à°4çTJcÈÉ [9-14]。 ŒÀ­l [10] ÊɗL: 454 û4 D ÜŠFä : P¢Hl«K]χ—L:¼]Õz[-m”]oց·¦ ¼]Õzöî¼HMU¼äÿI¿ GPS ¼Ï“L —L† , Øvp¼” GPS ¼Ï†N× ; ¬ï  [11] ~£±HL(=Ÿ—¤±HLŽà± HL , ÊÉ Logistic _«z²º³*Ae}âKä S´Ë_ΓL”—L† , ™š›œ—L:¼] Õ%1L ; Ü

!UL
[14]
tzÅ¿§S°4
zÅØZƒl«KvKÅ¤§éu¸É3,
µN¶·:¼PQ
,¸
ɗL:¼]Õé>îV
”¼æZƒ×

ðp¼”¼æØvK

—L:¼Á\+n¢|MPQ

,%¸ä†
û‚1

=%ñ]‚1NX¹z°

û,|PQ
/¥ÎD—˜o™†Í]<úš:¼z·úuôä
+n

m%&N¥z¢|+cÎD“L—˜

o
/¥E–
5cm
Ž
6cm
¢|‚1“L:¼z·

›
œd–
6cm
P‚1%†û

û=|PQ+
n

\/¥z¼æÄÎEQ,ý2ƞU2Ñ

Fm!

—¢LU:[~í¼æ

M1 =a1D
b1Hc1(D≥6cm) (4)
M2 =a2D
b2Hc2(D<6cm) (5)
0
6cm
~ˆ!-%i!m”][@

šÊ
É
120
z
6cm
~ˆ~-†¼æ
(4),
¡à~¼æ
(4)
Eý

/¥z¼æ
(5)
ÄΓL2Æ


‡¼æ
(4)
F€¸
6cm
NX¹z°

z½R3,
>¼æ

„ÁE–,|1
D0P‚1;Ýz½=>
¼æ

ç:;E–,ž«3u®—L¼æŠ°gU

ºEŠž«N¥
(D0,H),}D0=6cm。\]ȼ
æ
(4)、(5)
FŠž«ˆm”]o֟4ä

ç}
ÄÎ:;çè~힍

c2 =c1 (6)
lna2 =(lna1+b1lnD0)-b2lnD0 (7)
z
(5)
½yzÎàôä

lnM2 =lna2+b2lnD+c2lnH (8)
»®
(6)、(7)
¢½Æ¾
(8)
½

N¥èRà

ôä

b2 =(lna1+b1lnD0+c1lnH-lnM2)/(lnD0-
lnD) (9)
ºE

y=lna1+b1lnD0+c1lnH-lnM2 (10)
x=lnD0-lnD (11)
ç
(9)
½³

y=b2x (12)
0w

ÊÉ
6cm


|¸µ
30
z~-
D、H、M(
FˆK—L†¼æ›K
M2),šk
(10)、(11)
½Ö×q

Ž

Ÿ

»†¢H

«
K]Ï
(12)
½

úôä”
b2o֟;¡àƾ(7)
½

ú1~×q
a2o֟。
”zP¢Hl«K]Ï
(3)
Ž—L†]
Ï
(4)、(5)
úovš“Lz·

[\î3"4z

TRE(TotalRelativeEror)
Ž{»_œO¬
MSE
(MeanSystemEror)
Š

GÏÐ
[15]:
TRE=∑

i=1
(yi-y^i)/∑

i=1
y^i×100 (13)
MSE=1n∑

i=1
(yi-y^i)/^yi×100 (14)
½
,yi2´—•Ÿ,^yi¼æúoŸ。ʔtz
X|~m~ê

01%\—¸µs3

ȯ
(2)
½†™š“L·¦

éê

¼æmkœÖÏ
Ð

ðî3~í

G
[1,15]:
R2 =1-∑(yi-y^i)2/∑(yi-珋y)2 (15)
SEE= ∑(yi-y^i)2/(n-p槡 ) (16)
MPE=tα·(SEE/珋y) 槡/n×100 (17)
MPSE=1n∑

i=1
(yi-y^i)/^yi ×100 (18)
}
R2
Ž
SEE
%‚c¼æiÉÏÐ
,MPE
%nP{»m”]o֟N×ÏÐ
,MPSE
%n
P3zm”]o֟N×ÏÐ

3 
45
™šÊÉWA
150
z~-

k
(2)
½—µ¢|+
c†Mˆm”]¼æ

™šu›
2。
0m”]
ÎD?F­]¬K
[1,15-17],
0w¸Éê‚coÖ
]Õ«+¼æÄÎ

Z
2 
%&JøùGå¨Ë¦ö¤
(2)
5úx¸û
+c
ÄÎo֟
a b c
œ Ö Ï Ð
R2 SEE MPE MPSE TRE MSE
_`a
0.083047 2.09269 0.44231 0.9680 42.15 3.84% 17.06% 0.19% 2.64%
hya
0.072234 2.07953 0.49113 0.9653 43.84 4.19% 19.88% 1.28% 3.43%
554
! 
"
 
#
 
]Ïä}Ã
¼æ%:

ef!A

[1]ParesolBR.Assessingtreeandstandbiomass:areviewwithexam
plesandcriticalcomparisons[J].ForSci,1999,45(4):573
-593
[2]TerMikaelianMT,KorzukhinMD.Biomassequationsforsixtyfive
NorthAmericantreespecies[J].ForestEcologyandManagement,
1997,97:1-24
[3]JenkinsJC,ChojnackyDC,HeathLS,etal.Nationalscalebio
massestimatorsforUnitedStatestreespecies[J].ForSci,2003,49
(1):12-35
[4]MuukkonenP.Generalizedalometricvolumeandbiomassequations
forsometreespeciesinEurope[J].EurJForestRes,2007,126:
157-166
[5]CaseB,HalRJ.Assessingpredictionerorsofgeneralizedtreebio
massandvolumeequationsfortheborealforestregionofwestcentral
Canada[J].CanJForRes,2008,38:878-889
[6]NávarJ.Alometricequationsfortreespeciesandcarbonstocksfor
forestsofnorthwesternMexico[J].ForestEcologyandManagement,
2009,257:427-434
[7]BondLambertyB,WangBC,GowerST.Abovegroundandbelow
groundbiomassandsapwoodareaalometricequationsforsixboreal
treespeciesofnorthernManitoba[J].CanJForRes,2002,32:
1441-1450
[8]ZianisD,MuukkonenP,MkipR,etal.Biomassandstemvolume
equationsfortreespeciesinEurope[J].SilvaFennica,Mono
graphs,2005,4:1-63
[9]
±¾¿

{ÀÁ

ÖבÂ"`æ_«(V—L†
[J].

òÏ
,1993,13(3):48-52
[10]
À­l

¼HU¼äÿI¿
GPS
•¼—L†eNח˜
[J].
•Ø/8
,2005(12):38-40
[11]
•

²º³*Ae}âKäS´Ë_΁
Logistic
_«—
L†
[J].
²Ã‡Æƒ8 ,2006,S1:242-244 [12] œŒd . —L†fgF²DÞÕ:¼¥ÏÅ@ÈÉ [J]. &#f%&‡~> ,2008,30(3):363-369 [13] Ð+Ü , Ó   “ , uðâ , ä . Ä‰ÂE@E¤€—L:¼ ]ÕeEÖ_œ%& [J]. ‘]EÖ ,2008,25(7):23-25 [14] Ü

!UL

E½µN¶·Å¤§—L:¼]Õ
[J].
”A23
,2009,29(12):20-22
[15]
vÅm

ÚDÆ

ÇL5

Bê‚c‡:¼
[J].
!"#ÜzÈó·É ¨5½m”]¼æ­]¬PQ!"ó;ŠAÉ ¨m”]¼æ]¬l.K)$8

1999,19(2):73-77
754

  鄂ICP备06018747号 Copyright @ 2017
  植物通 All Rights Reserved
  Email:23198511@qq.com
回顶部
51La