免费文献传递   相关文献

Effects of Magnetized Water Irrigation on Growth and Quality of Ziziphus jujuba‘Dongzao’

磁化水灌溉对冬枣生长及品质的影响



全 文 :园艺学报,2016,43 (4):653–662.
Acta Horticulturae Sinica
doi:10.16420/j.issn.0513-353x.2015-0528;http://www. ahs. ac. cn 653
收稿日期:2015–12–11;修回日期:2016–04–11
基金项目:国家引进国际先进林业科学技术项目(‘948’项目)(2011-4-60)
* 通信作者 Author for correspondence(E-mail:wanght@sdau.edu.cn;Tel:0538-8242216)
磁化水灌溉对冬枣生长及品质的影响
王 渌 1,郭建曜 1,刘秀梅 1,朱 红 1,王华田 1,*,王 迎 2,万 晓 1,
马风云 1,仲凤维 2
(1 山东农业大学林学院,山东省高校森林培育重点实验室,山东泰安 271018;2泰安市泰山林业科学研究院,山东
泰安 271000)
摘 要:以‘沾化冬枣 1 号’和‘沾化冬枣 2 号’为试材,利用磁化处理的淡水和地下浅表层微咸
水灌溉,通过对枣吊、叶片及果实的生长和养分含量测定分析,探究磁化水灌溉对枣生长及品质的影响。
结果表明:(1)磁化水灌溉处理能显著提高叶片叶绿素含量和鲜质量,果实有机酸、维生素 C、花青素含
量,并且大幅度提高果实的耐贮性。(2)沾化冬枣 1 号经磁化(进口磁化器 A400p)淡水灌溉处理,相
比淡水对照枣吊长度与直径提高了 11.375%和 15.810%,单叶面积提高了 12.418%,单果质量、含水量、
果实横径和纵径分别提高了 23.779%、2.377%、3.650%和 5.071%;沾化冬枣 2 号经磁化(进口磁化器 A400p)
淡水灌溉处理,枣吊长度与直径提高了 23.602%和 13.710%,单叶面积与叶片厚度提高了 23.622%和
13.825%,单果质量和还原糖含量提高了 12.526%和 12.110%。(3)利用磁化(自主研发磁化器 DS-948-1)
地下浅表层微咸水灌溉处理沾化冬枣 2 号,与微咸水对照相比,果实含水量和还原糖含量分别提高了
4.386%和 9.158%。(4)灌溉水经磁化处理后,冬枣叶片矿质元素 N、P、Cu 含量提高(P < 0.05)。磁化
水灌溉处理有效促进了沾化冬枣的枝叶和果实生长发育,提高了果实的品质和耐贮性。
关键词:枣;磁化水灌溉;生长;品质
中图分类号:S 665.1 文献标志码:A 文章编号:0513-353X(2016)04-0653-10

Effects of Magnetized Water Irrigation on Growth and Quality of Ziziphus
jujuba‘Dongzao’
WANG Lu1,GUO Jian-yao1,LIU Xiu-mei1,ZHU Hong1,WANG Hua-tian1,*,WANG Ying2,WAN Xiao1,
MA Feng-yun1,and ZHONG Feng-wei2
(1Forestry College of Shandong Agricultural University,Key Laboratory of Silviculture of Shandong Province,Tai’an,
Shandong 271018,China;2Taishan Research Institute of Forestry Science,Tai’an,Shandong 271000,China)
Abstract:Ziziphus jujuba‘Zhandong 1’and‘Zhandong 2’were chosen as the experimental
material. The experimental materials were separately irrigated with magnetized fresh water and
underground shallow saline water to test the influence of magnetized fresh water on the growth of bearing
shoot,the growth and nutrient content of leaves and fruits. The results showed that:(1)Magnetized water
irrigation treatment could improve the fresh weight of leaf,leaf area,chlorophyll content,organic acid,
vitamin C and anthocyanin content significantly,and prolong the fruits storage period.(2)In the trial plot

Wang Lu,Guo Jian-yao,Liu Xiu-mei,Zhu Hong,Wang Hua-tian,Wang Ying,Wan Xiao,Ma Feng-yun,Zhong Feng-wei.
Effects of magnetized water irrigation on growth and quality of Ziziphus jujuba‘Dongzao’.
654 Acta Horticulturae Sinica,2016,43 (4):653–662.
of Z. jujuba‘Zhandong 1’,treatment with magnetized(A400p) fresh water irrigation could increase the
length and diameter of bearing shoot by 11.375% and 15.810%,single leaf area by 12.418%,single fruit
weight by 23.779%,water content by 2.377%,fruit transverse diameter and longitudinal diameter by
3.650% and 5.071%. It had a significant difference(P < 0.05)compared with the un-magnetized fresh
water irrigation treatment. In the trial plot of Z. jujuba‘Zhandong 2’,treatment with fresh water
magnetized by imported magnetizer(A400p)could increase the length and diameter of bearing shoot by
23.602% and 13.710%,single leaf area by 23.622%,thickness by 13.825%,single fruit weight by
12.526% and fruits reducing sugar by 12.110%. It also had a significant difference(P < 0.05)compared
with the un-magnetized fresh water irrigation treatment. (3)Treatment with magnetized(DS-948-1)
underground shallow saline water irrigation could increase fruits water content by 4.386% and reducing
sugar content by 9.158%. It also had a significant difference(P < 0.05) compared with the
un-magnetized shallow saline water irrigation treatment.(4)The irrigation water treatment with
magnetized could increase the leaf mineral nutrient content of N,P and Cu significantly(P < 0.05).
Irrigating with magnetized fresh water had good function to the growth and development of branch
leaves and fruits,and improved the quality and storage of fruits.
Key words:Ziziphus jujuba;magnetized water irrigation;growth;quality

磁化水灌溉技术是当今农林业应用的一项新技术。磁化水是液态水以一定的流速垂直经过磁
场,在洛伦兹力的作用下,其物理化学性质发生改变,如水分子之间氢键减弱、聚合度降低、表面
张力下降、离子水合反应增强(Barrett & Parsons,1998;Shimokawa et al.,2004;李言涛和薛永金,
2007),从而提高土壤矿物质的溶解度,土壤养分有效性,促进盐渍化土壤脱盐,盐碱地植物的生长
(Flórez et al.,2007;Vashisth & Nagarajan,2010)。
以往的研究表明,磁化水灌溉处理能促进土壤盐分淋溶,经磁化水灌溉后 0 ~ 60 cm 棉田土壤
脱盐率提高 20% ~ 30%(卜东升 等,2010);磁化水可提高芹菜(Celery coriandrum)和雪豌豆(Pisum
sativum)种植土壤的速效 P 含量(Basant & Harsharn,2009),促进植物对土壤养分的吸收利用率
(Podleoeny et al.,2004;Radhakrishnan & Ranjitha,2012);磁化水可促进作物的生长发育(Muraji
et al.,1998;Belyavskaya,2001;Turker et al.,2007),提高叶用莴苣(Lactuca sativa)种子的发芽
率(Reina & Pascual,2001;Reina et al.,2001);可提高西瓜(Citrullus vulgaris Schrad)中抗坏血
酸的含量(肖望 等,2003),提高雪豌豆和鹰嘴豆(Cicer arietinum L.)籽粒中 N、K、Zn、Mn、
Ca、Fe 和 Mg 等元素的含量(Harsharn et al.,2011),提高小麦(Triticum aestivum L.)的光合速率
及产量和品质(Mahmoud & Amira,2010)。
沾化冬枣(Ziziphus jujuba‘Dongzao’)是中国著名的优良晚熟鲜食枣品种,果实品质极佳。
然而,在黄河三角洲地区受灌溉淡水资源缺乏和土壤盐渍化严重的双重影响,枣树生长衰弱,果实
品质下降。本研究中以沾化冬枣 1 号和沾化冬枣 2 号为试材,研究磁化水灌溉对黄河三角洲地区冬
枣生长和果实品质的影响,并探讨在淡水资源贫乏地区开发利用地下浅表层微咸水灌溉的可行性,
为磁化水灌溉处理技术在土壤盐渍化地区的广泛应用提供依据。
王 渌,郭建曜,刘秀梅,朱 红,王华田,王 迎,万 晓,马风云,仲凤维.
磁化水灌溉对冬枣生长及品质的影响.
园艺学报,2016,43 (4):653–662. 655

1 材料与方法
1.1 试验地概况与材料
试验地点为山东省沾化县下洼镇西贾村(E118°00′07″,N37°70′95″),位于黄河三角洲腹地,暖
温带半干旱东亚季风气候。当年降雨量 315.8 mm,平均气温 14.1 ℃。粘壤土,地势平坦,属黄河
冲击平原的浅平洼地。试验地表层(0 ~ 20 cm)土壤旱季含盐量 6.5‰,雨季含盐量 3.9‰。地下水
位旱季 5 m,雨季 1 m。地下 10 m 以上浅表层地下水含盐量 7.2‰。
试验材料为 7 年生盛果期沾化冬枣 1 号(Z. jujuba‘Zhandong 1’)和沾化冬枣 2 号(Z. jujuba
‘Zhandong 2’),面积 20 hm2,株行距为 2 m × 3 m。
1.2 试验设计
在枣园打 10 m 深水井,潜水泵供水,作为灌溉用地下浅表层微咸水(含盐量 7.2 g · L-1);接入
自来水作为灌溉用淡水(pH 7.2,含盐量 0.1 g · L-1)。在树冠外围修整直径 1.0 m 的树盘,周围起土
埂。沿树行铺设内径 2.0 cm PE 管,插入内径 1.0 mm 发丝管对各树盘定点漫灌。发丝管出水量为 0.5
L · min-1,春秋旱季每 10 d 灌溉 1 次(7 月中旬到 8 月底雨季除外),每次持续灌水 2 h。
于 2014 年 4 月初发芽前开始灌溉,分别利用迪拜进口磁化器(A400p,出水量 40 m3 · h-1,Magnetic
Technologies L.L.C.)和自主研发磁化器(DS-948-1,出水量 20 m3 · h-1)接入淡水和地下浅表层微咸
水进行灌溉。根据枣树品种、灌溉水质和磁化水处理器种类,分别在枣园内选择有代表性地段,设
置两个磁化水灌溉处理试验区。
I 试验区:品种为‘沾化冬枣 1 号’,设淡水对照和进口磁化器磁化淡水灌溉(淡水 + A400p)
两个处理,随机区组设计,每小区 10 株,重复 4 次。
Ⅱ试验区:品种为‘沾化冬枣 2 号’,设淡水对照、进口磁化器磁化淡水灌溉(淡水 + A400p)、
地下浅表层微咸水灌溉(微咸水对照)和自主研发磁化器磁化地下浅表层微咸水灌溉(微咸水 +
DS-948-1)4 个处理,随机区组设计,每小区 20 株,重复 4 次。
1.3 标准株选择与调查
于 2014 年 10 月初果实成熟期调查取样,调查每株枣树的地径、树高和冠幅。按照平均直径 ±
2 cm、平均长度 ± 3 cm 的标准,在每标准株上选择 3 个有代表性的枝组,在每个枝组上选择 1 个有
代表性的基枝,用皮尺和千分尺实测枝组和基枝及其枣吊的直径和长度,调查枣吊上着生的叶片和
枣果数量。测量 10 片叶片厚度及果实横径和纵径,用 WDY-500A 型叶面积仪测定叶面积,称取叶
片鲜质量,单个鲜果质量和干质量(105 ℃烘干)。
将调查枣吊上的叶片和果实单株混合编号,装入自封袋置于冰盒内带回实验室,用于叶片和果
实生理生化指标的测定分析。采集全部标准株上的枣果,同处理混合编号,置于冰盒内带回果品冷
藏库贮藏。
1.4 生理生化指标测定与果实耐贮性调查
从每份单株叶片样品中随机抽取 50 片,95%乙醇研磨提取,采用双光束紫外可见分光光度计
(TU-1900)比色法测定叶片叶绿素含量(王学奎,2006)。
取叶片和果实烘干样品,粉碎研磨,消煮后采用分光光度法(TU-1900)测定 N、P 含量,采用
Wang Lu,Guo Jian-yao,Liu Xiu-mei,Zhu Hong,Wang Hua-tian,Wang Ying,Wan Xiao,Ma Feng-yun,Zhong Feng-wei.
Effects of magnetized water irrigation on growth and quality of Ziziphus jujuba‘Dongzao’.
656 Acta Horticulturae Sinica,2016,43 (4):653–662.
原子吸收分光光度计法(TAS-990MFG)测定矿质养分含量(GB/T5009,2003)。
从每份单株果实样品中取其果肉,采用 DNS 比色法测定还原糖含量,采用 NaOH 直接滴定法
测定有机酸含量,采用 2,6–二氯靛酚钠滴定法测定维生素 C 含量(王学奎,2006)。
采用分光光度法(TU-1900)测定果皮花青素含量(孔祥生和易现峰,2008)。
上述测定均设 3 次生物学重复,每次重复 8 ~ 10 个果。
将采收后的果实置于 4 ℃,80%相对湿度的恒温库(刘晓军 等,2004),自入库开始,每 10 d
观察 1 次果实的腐烂情况,连续贮藏 80 d。果皮发现褐斑或果肉腐烂即记为烂果并取出,计算烂果
率,每个处理 300 个果实,重复 3 次。
1.5 数据处理与分析
采用 Excel 处理及 SAS 9.0 处理数据,使用新复极差法(P < 0.05)做多重比较及相关性分析。
2 结果与分析
2.1 磁化水灌溉对枣吊和叶片生长及矿质营养含量的影响
果实成熟期标准株的地径、树高和冠幅等生长情况详见表 1。枣吊是枣树着生叶片、开花坐果
的脱落性枝条,枣吊发育状况直接影响开花结果数量和坐果能力;叶片是同化作用的器官,是形成
产量的基础。从表 2 中看出,磁化水灌溉处理可提高枣吊的长度与直径,可提高叶片的叶绿素含量、
叶片鲜质量、叶片面积及厚度。其中,在沾化冬枣 1 号和 2 号试验区,用 A400p 磁化淡水灌溉处理
的枣吊长度分别提高 11.375%和 23.602%,直径增加 15.810%和 13.710%,叶绿素含量提高 24.654%
和 6.078%,叶片鲜质量提高 18.595%以上,叶片面积提高 12.418%以上,显著高于淡水对照。在沾
化冬枣 2 号试验区中,A400p 磁化淡水灌溉处理与对照淡水灌溉相比叶片厚度提高 13.825%,差异
显著(P < 0.05);DS-948-1 磁化微咸水灌溉处理的叶片叶绿素含量和鲜质量较对照微咸水分别提高
6.736%和 21.219%,差异显著(P < 0.05)。沾化冬枣 2 号试验区 DS-948-1 磁化微咸水灌溉处理与微
咸水对照相比叶绿素含量提高量(6.736%)高于 A400p 磁化淡水灌溉处理与淡水对照之间的叶绿素
含量提高量(6.078%),A400p 磁化淡水灌溉处理与 DS-948-1 磁化微咸水灌溉处理仅叶面积显著提
高。由此可见,磁化水灌溉处理能有效地促进沾化冬枣的枝叶生长发育,提高叶绿素含量,进而增
强叶幕层的光合作用,提高树势和果品质量;同时可以看出,在灌溉淡水资源贫乏地区,应用地下
浅表层微咸水灌溉,并没有对枣树的枝叶生长产生明显的不良影响,一些指标的提高量甚至超过了
A400p 磁化淡水灌溉。

表 1 标准株生长基本情况调查表
Table 1 Growth status of sample trees
植株 Plant 枝组 Branch group 基枝 Basic branches 品种
Variety 树高/m
Height
地径/cm
Ground diameter
冠幅/(m × m)
Crown width
数量
Quantity
直径/cm
Diameter
长度/cm
Length
数量
Quantity
直径/cm
Diameter
长度/cm
Length
沾化冬枣 1 号
Zhandong 1
2.77 9.98 1.99 × 2.07 6 3.59 22.56 23 0.98 27.97
沾化冬枣 2 号
Zhandong 2
2.79 9.89 1.92 × 2.09 6 3.62 20.17 22 0.96 8.01


王 渌,郭建曜,刘秀梅,朱 红,王华田,王 迎,万 晓,马风云,仲凤维.
磁化水灌溉对冬枣生长及品质的影响.
园艺学报,2016,43 (4):653–662. 657

表 2 磁化水灌溉对沾化冬枣枣吊和叶片发育的影响
Table 2 Effects of magnetic water irrigation on jujube bearing shoot growth and leaves growth
枣吊 Bearing shoot 叶片 Leaf
品种
Variety
处理
Treatment 长/cm
Length
直径/cm
Diameter
叶绿素/
(mg · g-1)
Chlorophyll
鲜质量/g
Fresh weight
面积/dm2
Area
厚/cm
Thickness
淡水 Fresh water 24.589 ± 0.477 b 0.253 ± 0.008 b 1.517 ± 0.030 b 0.925 ± 0.055 b 0.153 ± 0.004 b 0.407 ± 0.009 a 沾化冬枣 1 号
Zhandong 1 淡水 + A400p
Fresh water + A400p
27.386 ± 0.445 a 0.293 ± 0.008 a 1.891 ± 0.047 a 1.097 ± 0.020 a 0.172 ± 0.005 a 0.431 ± 0.009 a
沾化冬枣 2 号 淡水 Fresh water 20.193 ± 0.523 b 0.248 ± 0.007 b 1.563 ± 0.010 b 0.783 ± 0.039 b 0.127 ± 0.005 b 0.434 ± 0.012 c
Zhandong 2 淡水 + A400p
Fresh water + A400p
24.959 ± 0.822 a 0.282 ± 0.007 a 1.658 ± 0.005 a 0.972 ± 0.061 a 0.157 ± 0.006 a 0.494 ± 0.012 a
微咸水 Saline water 22.995 ± 0.672 a 0.271 ± 0.006 ab 1.529 ± 0.018 b 0.820 ± 0.040 b 0.129 ± 0.003 b 0.463 ± 0.007 bc
微咸水 + DS-948-1
Saline water + DS-948-1
24.833 ± 0.914 a 0.284 ± 0.011 a 1.632 ± 0.008 a 0.994 ± 0.037 a 0.132 ± 0.004 b 0.466 ± 0.007 ab
注:A400p 为进口磁化器,DS-948-1 为自主研发磁化器。不同小写字母表示处理与对照之间在 0.05 水平上差异显著。下同。
Note:A400p is imported and magnetized. DS-948-1 is research and development magnetized. The different small letter means difference
significance between treatments and their controls at the 0.05 level. The same below.

从表 3 和表 4 中看出,沾化冬枣 1 号经 A400p 磁化淡水灌溉处理的叶片 N、P 含量提高 24.242%
和 26.093%,显著高于淡水对照。其他各磁化水灌溉处理与各自对照相比差异均不显著。沾化冬枣
2 号 A400p 磁化淡水灌溉处理 Zn 的含量较 DS-948-1 磁化微咸水灌溉处理和微咸水对照分别提高
22.817%和 25.344%,差异显著(P < 0.05);A400p 磁化淡水灌溉处理的 Cu 含量与 DS-948-1 磁化微
咸水灌溉处理、淡水和微咸水对照相比分别提高 28.416%、19.141%和 42.802%,差异显著(P < 0.05)。
上述结果可以看出,枣树经磁化水灌溉,叶片主要矿质营养含量有明显或显著提高。

表 3 磁化水灌溉对沾化冬枣叶片大量元素含量的影响
Table 3 Effects of magnetic water irrigation on leaves major element content
品种 Variety 处理 Treatment N/% P/% K/% Na/(mg · kg-1) Ca/(mg · kg-1) Mg/(mg · kg-1)
淡水 Fresh water 0.132 ± 0.003 b 0.640 ± 0.010 b 0.085 ± 0.001 a 64.681 ± 6.154 a 5 181.384 ± 223.875 a 465.441 ± 9.503 a 沾化冬枣 1 号
Zhandong 1 淡水 + A400p
Fresh water + A400p
0.164 ± 0.004 a 0.807 ± 0.034 a 0.087 ± 0.001 a 68.804 ± 7.755 a 5 385.728 ± 196.461 a 468.525 ± 9.873 a
沾化冬枣 2 号 淡水 Fresh water 0.136 ± 0.003 a 0.634 ± 0.016 a 0.089 ± 0.001 a 44.429 ± 6.242 a 5 063.733 ± 352.567 a 441.107 ± 16.721 a
Zhandong 2 淡水 + A400p
Fresh water + A400p
0.137 ± 0.004 a 0.637 ± 0.017 a 0.092 ± 0.002 a 57.650 ± 7.541 a 5 256.089 ± 233.320 a 440.954 ± 14.235 a
微咸水 Saline water 0.134 ± 0.003 a 0.624 ± 0.007 a 0.088 ± 0.001 a 66.944 ± 8.214 a 4 659.462 ± 370.481 a 436.122 ± 10.618 a
微咸水 + DS-948-1
Saline water + DS-948-1
0.141 ± 0.002 a 0.659 ± 0.041 a 0.091 ± 0.001 a 54.363 ± 8.901 a 4 783.067 ± 157.483 a 439.674 ± 6.977 a


表 4 磁化水灌溉对沾化冬枣叶片微量元素含量的影响
Table 4 Effects of magnetic water irrigation on leaves trace element content
品种 Variety 处理 Treatment Fe/(mg · kg-1) Mn/(mg · kg-1) Zn/(mg · kg-1) Cu/(mg · kg-1)
淡水 Fresh water 21.473 ± 3.301 a 24.524 ± 4.157 a 83.405 ± 5.372 a 7.987 ± 0. 502 a 沾化冬枣 1 号
Zhandong 1 淡水 + A400p
Fresh water + A400p
28.316 ± 5.662 a 24.019 ± 2.964 a 83.564 ± 3.921 a 7.987 ± 0. 393 a
沾化冬枣 2 号 淡水 Fresh water 58.964 ± 15.024 a 11.313 ± 2.750 a 82.515 ± 4.762 ab 10.924 ± 0. 813 b
Zhandong 2 淡水 + A400p
Fresh water + A400p
72.639 ± 6.888 a 13.384 ± 2.827 a 86.554 ± 5.450 a 13.015 ± 0. 680 a
微咸水 Saline water 47.992 ± 5.980 a 9.576 ± 3.020 a 69.053 ± 5.326 b 9.114 ± 0.201 b
微咸水 + DS-948-1
Saline water + DS-948-1
57.175 ± 7.553 a 14.033 ± 2.924 a 70.474 ± 4.499 b 10.135 ± 0.615 b
Wang Lu,Guo Jian-yao,Liu Xiu-mei,Zhu Hong,Wang Hua-tian,Wang Ying,Wan Xiao,Ma Feng-yun,Zhong Feng-wei.
Effects of magnetized water irrigation on growth and quality of Ziziphus jujuba‘Dongzao’.
658 Acta Horticulturae Sinica,2016,43 (4):653–662.
2.2 磁化水灌溉对果实生长发育和品质的影响
冬枣果实大小及品质直接影响枣园的经济效益。从表 5 可以看出,磁化水灌溉处理沾化冬枣的
单果质量、枣果含水量均有明显提高,沾化冬枣 1 号经 A400p 磁化淡水灌溉处理的果实横径和纵径
亦有明显提高。其中:沾化冬枣 1 号和沾化冬枣 2 号经 A400p 磁化淡水灌溉处理的单果质量与各自
淡水对照相比分别提高 23.779%和 12.526%,差异显著(P < 0.05)。沾化冬枣 1 号经 A400p 磁化淡
水灌溉处理与淡水对照相比果实含水量提高 2.377%,差异显著;沾化冬枣 2 号经 DS-948-1 磁化微
咸水灌溉处理与微咸水和淡水对照相比果实含水量分别提高 4.386%和 3.212%,差异显著(P < 0.05)。
沾化冬枣 1 号经 A400p 磁化淡水灌溉处理的果实横径和纵径较淡水对照分别提高 3.650%和 5.071%,
差异显著(P < 0.05)。这说明磁化水灌溉处理能有效促进枣果膨大,提高鲜果质量。

表 5 磁化水灌溉对沾化冬枣产量和果实生长发育的影响
Table 5 Effects of magnetic water irrigation on yield and growth of jujube fruits
枣吊 Bearing shoot 果实 Fruit
品种
Variety
处理
Treatment
坐果密度/个
Fruit set
density/ind
鲜果质量/g
Fresh fruit
weight
单果质量/g
Single fruit
Weight
含水量/%
Water content
横径/cm
Transverse
diameter
纵径/cm
Longitudinal
diameter
沾化冬枣 1 号 淡水 Fresh water 2.161 ± 0.122 a 41.657 ± 2.234 a 18.718 ± 0.347 b 78.798 ± 0.638 b 3.479 ± 0.028 b 3.471 ± 0.030 b
Zhandong 1 淡水 + A400p
Fresh water + A400p
2.271 ± 0.072 a 46.601 ± 1.709 a 23.169 ± 0.566 a 80.671 ± 0.199 a 3.606 ± 0.033 a 3.647 ± 0.036 a
沾化冬枣 2 号 淡水 Fresh water 1.839 ± 0.158 a 39.793 ± 2.696 a 20.852 ± 0.358 b 74.395 ±0.631 bc 3.575 ± 0.063 a 3.414 ± 0.027 a
Zhandong 2 淡水 + A400p
Fresh water + A400p
1.938 ± 0.114 a 41.301 ± 2.693 a 23.464 ± 0.773 a 76.050 ± 0.595 ab 3.614 ± 0.065 a 3.488 ± 0.042 a
微咸水 Saline water 1.728 ± 0.115 a 36.597 ± 2.295 a 20.659 ± 0.679 b 73.601 ± 0.626 c 3.519 ± 0.041 a 3.477 ± 0.040 a
微咸水 + DS-948-1
Saline water +
DS-948-1
1.926 ± 0.177 a 37.356 ± 3.176 a 21.398 ± 0.454 b 76.829 ± 0.807 a 3.523 ± 0.051 a 3.483 ± 0.051 a

果实中还原糖、有机酸、维生素 C 等含量决定冬枣的品质。从表 6 看出,沾化冬枣 1 号和沾化
冬枣 2 号试验区,A400p 磁化淡水灌溉处理的果实中有机酸、维生素 C 和花青素含量显著提高(P <
0.05)。沾化冬枣 2 号试验区,A400p 磁化淡水灌溉处理的果实还原糖含量与淡水对照相比提高
12.110%,差异显著(P < 0.05);DS-948-1 磁化微咸水灌溉处理的果实还原糖、有机酸、维生素 C
和花青素含量与对照微咸水相比分别提高了 9.158%、12.102%、7.106%和 20.646%,差异显著(P <
0.05)。由此可见,磁化水灌溉后明显提高了果实的营养成分含量,改善了冬枣的品质和口感。

表 6 磁化水灌溉对沾化冬枣果实品质的影响
Table 6 Effects of magnetic water irrigation on quality of jujube fruits
品种
Variety
处理
Treatment
还原糖/%
Reducing sugar
有机酸/%
Organic acid
维生素 C /(mg · g-1)
Vitamin C
花青素/(nmol · g-1)
Anthocyanin
淡水 Fresh water 6.984 ± 0.082 a 5.624 ± 0.230 b 2.464 ± 0.028 b 2 449.804 ± 45.653 b 沾化冬枣 1 号
Zhandong 1 淡水 + A400p
Fresh water + A400p
7.160 ± 0.046 a 7.166 ± 0.200 a 2.687 ± 0.046 a 2 873.950 ± 153.213 a
沾化冬枣 2 号 淡水 Fresh water 7.308 ± 0.072 b 7.881 ± 0.140 b 2.268 ± 0.018 b 1 803.476 ± 45.683 b
Zhandong 2 淡水 + A400p
Fresh water + A400p
8.193 ± 0.165 a 8.574 ± 0.080 a 2.341 ± 0.025 a 2 110.201 ± 31.900 a
微咸水 Saline water 7.032 ± 0.183 c 7.263 ± 0.160 c 2.153 ± 0.013 c 1 694.294 ± 35.878 b
微咸水 + DS-948-1
Saline water + DS-948-1
7.676 ± 0.141 b 8.142 ± 0.150 b 2.306 ± 0.028 a 2 044.105 ± 57.658 a

王 渌,郭建曜,刘秀梅,朱 红,王华田,王 迎,万 晓,马风云,仲凤维.
磁化水灌溉对冬枣生长及品质的影响.
园艺学报,2016,43 (4):653–662. 659

沾化冬枣 1 号和沾化冬枣 2 号试验区,磁化水灌溉处理后果实中的矿质养分与对照无明显变化
(表 7、表 8)。
表 7 磁化水灌溉对沾化冬枣大量元素含量的影响
Table 7 Effects of magnetic water irrigation on major element content of jujube fruits
品种 Variety 处理 Treatment P/(mg · kg-1) K/(mg · kg-1) Na/(mg · kg-1) Ca/(mg · kg-1) Mg/(mg · kg-1)
淡水 Fresh water 316.549 ± 30.651 a 167.564 ± 4.555 a 80.094 ± 6.581 a 1 579.819 ± 151.843 a 12.284 ± 0.511 a 沾化冬枣 1 号
Zhandong 1 淡水 + A400p
Fresh water + A400p
316.554 ± 26.540 a 169.142 ± 4.391 a 86.586 ± 5.310 a 1 580.562 ± 90.341 a 12.838 ± 0.212 a
沾化冬枣 2 号 淡水 Fresh water 336.386 ± 26.543 a 166.862 ± 2.354 a 91.103 ± 5.945 a 1 101.660 ± 136.874 a 11.214 ± 0.483 a
Zhandong 2 淡水 + A400p
Fresh water + A400p
360.582 ± 40.831 a 170.494 ± 3.570 a 101.393 ± 5.954 a 1 251.169 ± 122.221 a 12.576 ± 0.474 a
微咸水 Saline water 379.081 ± 35.252 a 172.643 ± 1.968 a 93.404 ± 6.243 a 1 063.653 ± 145.612 a 12.377 ± 0.281 a

微咸水 + DS-948-1
Saline water + DS-948-1
378.326 ± 21.482 a 174.543 ± 4.155 a 96.329 ± 5.794 a 1 115.724 ± 230.020 a 12.445 ± 0.543 a

表 8 磁化水灌溉对沾化冬枣微量元素含量的影响
Table 8 Effects of magnetic water irrigation on trace element content of jujube fruits
品种 Variety 处理 Treatment Fe/(mg · kg-1) Mn/(mg · kg-1) Zn/(mg · kg-1) Cu/(mg · kg-1)
淡水 Fresh water 14.742 ± 2.415 a 1.413 ± 0.234 a 6.256 ± 1.001 a 26.233 ± 2.284 a 沾化冬枣 1 号
Zhandong 1 淡水 + A400p
Fresh water + A400p
15.004 ± 1.081 a 1.425 ± 0.204 a 6.414 ± 0.920 a 26.080 ± 1.343 a
沾化冬枣 2 号 淡水 Fresh water 17.769 ± 2.592 a 1.183 ± 0.210 a 8.564 ± 1.885 a 30.675 ± 2.221 a
Zhandong 2 淡水 + A400p
Fresh water + A400p
19.020 ± 2.824 a 1.224 ± 0.153 a 8.562 ± 1.633 a 33.854 ± 2.413 a
微咸水 Saline water 18.635 ± 1.877 a 1.186 ± 0.174 a 9.057 ± 1.412 a 32.122 ± 2.647 a
微咸水 + DS-948-1
Saline water + DS-948-1
19.843 ± 1.452 a 1.269 ± 0.182 a 9.434 ± 1.581 a 35.065 ± 1.401 a

2.3 磁化水灌溉对果实耐贮性的影响
从表 9 可以看出,磁化水灌溉处理降低了冬枣贮藏期内的烂果率,延长了冬枣果实贮藏时间。
A400p 磁化淡水灌溉处理的果实贮藏 50 d 后出现烂果,比淡水对照约晚 10 d。沾化冬枣 1 号和沾化
冬枣 2 号在贮藏 80 d 时,A400p 磁化淡水灌溉处理的总烂果率较淡水对照分别降低 49.17%和
44.57%,差异显著(P < 0.05)。DS-948-1 磁化微咸水和微咸水对照灌溉处理后的沾化冬枣 2 号贮藏
30 d 后出现烂果,但磁化水灌溉处理的烂果数量少,贮藏 80 d 时 DS-948-1 磁化微咸水灌溉处理的
总烂果率较微咸水对照降低 44.45%,差异显著(P < 0.05)。由此可见,磁化水灌溉有效的减轻了果
实的腐烂程度,延长了冬枣贮藏时间。
表 9 磁化水灌溉对沾化冬枣耐贮性的影响
Table9 Effects of magnetic water irrigation on storage of jujube fruits
贮藏天数 Storage days 品种
Variety
处理
Treatment 40 d 50 d 60 d 70 d 80 d
总数
Total
淡水 Fresh water 0 a 0.67 ± 0.33 a 3.33 ± 0.88 a 15.33 ± 1.85 a 40.33 ± 3.18 a 59.67 ± 3.84 a 沾化冬枣 1 号
Zhandong 1 淡水 + A400p
Fresh water + A400p
0 a 0 a 1.33 ± 0.33 b 6.00 ± 1.00 b 23.00 ± 2.64 b 30.33 ± 2.60 b
沾化冬枣 2 号 淡水 Fresh water 0 b 1.33 ± 0.67 b 5.33 ± 1.20 ab 14.67 ± 1.45 b 37.00 ± 3.61 ab 58.33 ± 2.67 b
Zhandong 2 淡水 + A400p
Fresh water + A400p
0 b 0 b 1.67 ± 0.88 b 7.00 ± 0.58 c 29.67 ± 1.76 c 32.33 ± 2.40 d
微咸水 Saline water 1.33 ± 0.33 a 4.00 ± 0.58 a 7.67 ± 1.86 a 21.00 ± 2.08 a 44.00 ± 4.04 a 78.00 ± 3.00 a
微咸水 + DS-948-1
Saline water + DS-948-1
0.33 ± 0.33 b 1.00 ± 0.00 b 2.67 ± 0.67 b 7.33 ± 1.20 c 32.00 ± 1.53 bc 43.33 ± 1.45 c
注:所测数值为冬枣在每个时期内平均腐烂个数,总数为 0 ~ 80 d 内的腐烂总数。
Note:The number of jujube which was rotten in each period has been recorded. The total number is all the number of rotten jujube during 0–80 days.
Wang Lu,Guo Jian-yao,Liu Xiu-mei,Zhu Hong,Wang Hua-tian,Wang Ying,Wan Xiao,Ma Feng-yun,Zhong Feng-wei.
Effects of magnetized water irrigation on growth and quality of Ziziphus jujuba‘Dongzao’.
660 Acta Horticulturae Sinica,2016,43 (4):653–662.
3 讨论
本研究表明,磁化水灌溉处理能有效提高冬枣树枣吊、叶片和果实的生长量,提高叶片中多种
大量元素和微量元素含量,并显著提高沾化冬枣叶片叶绿素含量、叶片鲜质量和单叶面积,且使果
实中的还原糖、有机酸、维生素 C、花青素含量和单果质量显著增加,这些生长发育和品质状况的
改善证明了磁化水灌溉处理对提高土壤养分有效性、促进植物离子平衡吸收、促进植物生长发育、
提高产量和品质的作用效应(Danilov et al.,1994;何兴华 等,2003;Esitken & Turan,2004;Selim
& Mohamed,2011)。
有研究表明,高浓度 Na+限制植物的生长(Francois et al.,1994;Munns,2002),甚至产生毒
害作用,影响电子传递和光合作用,导致气孔的关闭,降低同化物的供应(Muranaka et al.,2002)。
依据本研究结果推测,磁化水灌溉有助于改善植物体内的离子平衡吸收作用,减轻 Na+的过量积累
造成的毒害作用,促进枣树对多种矿质营养吸收和转运,从而增强了枣树对盐渍化土壤生境的适应
能力,使植株生长势提高,生长量增大。
冬枣采摘以后极易发生软化、酒化褐变,并伴随有大量的维生素 C 损失,导致枣果腐烂变质(寇
晓虹 等,2000;薛梦林 等,2003)。有研究表明,细胞壁中的胶层果胶质与 Ca2+结合形成果胶钙,
具有连接植物细胞壁、维持细胞壁稳定的作用(龚云池 等,1992)。贮藏果实中较高的 Ca 含量,
有助于延缓果实软化,降低 PG、纤维素等酶的活性,抑制细胞壁中果胶钙的降解速度和贮藏期间
果实维生素 C 的消耗,从而延长果实的贮藏时期(邢尚军 等,2009;王玲利 等,2014)。本研究
中通过定期调查贮藏期内各处理枣果的烂果进程发现,经磁化水灌溉的冬枣树,烂果开始出现时期
明显推迟,相同贮藏期内冬枣果实的腐烂数量大幅度降低;这可能与磁化水灌溉处理后冬枣果实维
生素 C 和 Ca 的含量提高有关。

References
Barrett R A,Parsons S A. 1998. The influence of magnetic fields on calcium carbonate precipitation. Wat Res,32 (4):609–612.
Basant L M,Harsharn S G. 2009. Magnetic treatment of irrigation water:Its effects on vegetable crop yield and water productivity. Agricultural Water
Management,96 (8):1229–1236.
Belyavskaya N A. 2001. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Advances in
Space Research the Official Journal of the Committee on Space Research,28 (4):645–650.
Bu Dong-sheng,Feng Wen-gui,Cai Li-hua,Zhou Long. 2010. Effects of magnetization water on desalinization in cotton farmland of under-film
dripping irrigation in Xinjiang Province. Transactions of the Chinese Society of Agricultural Engineering,2 (Supplement):163–166. (in
Chinese)
卜东升,奉文贵,蔡利华,周 龙. 2010. 磁化水膜下滴灌对新疆棉田土壤脱盐效果的影响. 农业工程学报,2 (增刊):163–166.
Danilov V,Bas T,Eltez M,Rizakulyeva A. 1994. Artificial magnetic field effects on yield and quality of tomatoes. Acta Hortic,366:279–285.
Esitken A,Turan M. 2004. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry(Fragaria ananassa cv.
Camarosa). Acta Agriculturae Scandinavica:Section B-soil and Plant Science,54 (3):135–139.
Flórez M,Carbonell M V,Martínez E. 2007. Exposure of maize seeds to stationary magnetic fields:effects on germination and early growth.
Environmental and Experimental Botany,59 (1):68–75.
Francois L E,Donovan T J,Maas E V,Lesch S M. 1994. Time of salt stress affects growth and yield components of irrigated wheat. Agronomy
Journal,86 (1):100–107.
Gong Yun-chi,Xu Ji-e,Lü Rui-jiang. 1992. Studies on content of different forms of calcium compound and their change in the fruits of pear. Acta
王 渌,郭建曜,刘秀梅,朱 红,王华田,王 迎,万 晓,马风云,仲凤维.
磁化水灌溉对冬枣生长及品质的影响.
园艺学报,2016,43 (4):653–662. 661

Horticulturae Sinica,19 (2):129–134. (in Chinese)
龚云池,徐季娥,吕瑞江. 1992. 梨果实中不同形态钙的含量及其变化的研究. 园艺学报,19 (2):129–134.
Harsharn S G,Basant L,Maheshwari. 2011. Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and
nutrient contents of seedlings. Bioeletoromagnetics,32 (1):58–65.
He Xing-hua,Cheng Chang-ming,Chen Jie. 2003. Biological effects of magnetized water for crop seeds. Journal of Southwest Agricultural
University,25 (2):120–123. (in Chinese)
何兴华,程昌明,陈 杰. 2003. 磁化水对作物种子的生物效应研究. 西南农业大学学报,25 (2):120–123.
Kong Xiang-sheng,Yi Xian-feng. 2008. Determination of anthocyanidin content//Experiment techniques of plant physiology. Beijing:China
Agriculture Press. (in Chinese)
孔祥生,易现峰. 2008. 花色素含量的测定//植物生理学实验技术. 北京:中国农业出版社.
Kou Xiao-hong,Wang Wen-sheng,Wu Cai-e,Guo Ping-yi. 2000. Study on the changes of physiological-biochemical changes of fresh jujube during
cooling storage. Scientia Agricultura Sinica,33 (6):44–49. (in Chinese)
寇晓虹,王文生,吴彩娥,郭平毅. 2000. 鲜枣冷藏过程中生理生化变化的研究. 中国农业科学,33 (6):44–49. 
Liu Xiao-jun,Wang Qun,Zhang Yun-chuan. 2004. Physiological-biochemical changes of winter-jujube during humidicool storage. Transactions of
the Chinese Society of Agricultural Engineering,20 (1):215–217. (in Chinese)
刘晓军,王群,张云川. 2004. 冬枣湿冷贮藏过程中生理生化变化的研究. 农业工程学报,20 (1):215–217.
Li Yan-tao,Xue Yong-jin. 2007. Magnetic treatment and its applications to water systems. Industrial Water Treatment,27 (11):11–15. (in Chinese)
李言涛,薛永金. 2007. 水系统的磁化处理技术及其应用. 工业水处理,27 (11):11–15.
Mahmoud H,Amira M S A Q. 2010. Irrigation with magnetized water enhances growth,chemical constituent and yield of chickpea (Cicer arietinum
L). Agriculture and Biology Journal of North America,1 (4):671–676.
GB/T 5009.1~5009.100-2003. Methods of food hygienic analysis – Physical and chemical section(Ⅰ). Beijing:China Standard Press. (in Chinese)
GB/T 5009.1~5009.100-2003. 食品卫生检验方法理化部分(一). 北京:中国标准出版社.
Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell and Environment,25 (2):239–250.
Muraji M,Asai T,Tatebe W. 1998. Primary root growth rate of Zea mays seedlings grown in an alternating magnetic field of different frequencies.
Bioelectrochemistry and Bioenergetics,44 (2):271–273.
Muranaka S,Shimizu K,Kato M. 2002. Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different
drought tolerance. Photosynthetica,40 (2):201–207.
Podleoeny J,Pietruszewski S,Podleoena A. 2004. Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot
conditions. Int Agrophys,18 (1):65–71.
Radhakrishnan R,Ranjitha K B D. 2012. Pulsed magnetic field:a contemporary approach offers to enhance plant growth and yield of soybean. Plant
Physiology and Biochemistry,51 (2):139–144.
Reina F G,Pascual L A. 2001. Influence of a stationary magnetic field on water relations in lettuce seeds. Part I:Theoretical considerations.
Bioelectromagnetics,22 (8):589–595.
Reina F G,Pascual L A,Fundora I A. 2001. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II:Experimental results.
Bioelectromagnetics,22 (8):596–602.
Selim A H,Mohamed F E. 2011. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronautica,69 (7–8):
387–396.
Shimokawa S,Yokono T,Mizuno T. 2004. Effect of far-infrared light irradiation on water as observed by X-ray diffraction measurement. Jpn J Appl
Phys,43 (4):545–547.
Turker M,Temirci C,Battal P,Erez M E. 2007. The effects of an artificial and static magnetic field on plant growth,chlorophyll and phytohormone
levels in maize and sunflower plants. Phyton,46 (2):271–284.
Vashisth A,Nagarajan S. 2010. Effect on germination and early growth characteristics in sunflower(Helianthus annuus)seeds exposed to static
magnetic field. Journal of Plant Physiology,167 (2):149–156.
Wang Lu,Guo Jian-yao,Liu Xiu-mei,Zhu Hong,Wang Hua-tian,Wang Ying,Wan Xiao,Ma Feng-yun,Zhong Feng-wei.
Effects of magnetized water irrigation on growth and quality of Ziziphus jujuba‘Dongzao’.
662 Acta Horticulturae Sinica,2016,43 (4):653–662.
Wang Ling-li,Liu Chao,Huang Yan-hua,Li Xing-fa,Zeng Ming. 2014. Effects of postharvest heat and calcium treatments on calcium fractions and
cell wall metabolism of‘Huangguan’pear fruit. Acta Horticulturae Sinica,41 (2):249–258. (in Chinese)
王玲利,刘 超,黄艳花,李兴发,曾 明. 2014. ‘黄冠’梨采后热处理和钙处理对其钙形态及细胞壁物质代谢的影响. 园艺学报,
41 (2):249–258.
Wang Xue-kui. 2006. Principles and techniques of plant physiological biochemical experiment. Beijing:Higher Education Press. (in Chinese)
王学奎. 2006. 植物生理生化实验原理与技术. 北京:高等教育出版社.
Xiao Wang,Ye Su-qin,Wang Yu-ling,Guan Zhi-qiong. 2003. Effects of seeds soaking in magnetized water on seed germination and physiological
characteristics of watermelon seedings. Biotechnology,13 (6):39–41. (in Chinese)
肖 望,叶素琴,王玉玲,关志琼. 2003. 磁化水浸种对西瓜种子萌发及幼苗生理的影响. 生物技术,13 (6):39–41.
Xing Shang-jun,Liu Fang-chun,Du Zhen-yu,Zhao Qing-bing,Song Yu-min. 2009. Effects of preharvest calcium treatment on storage property,
calcium fractions,and subcellular distribution in Zizyphus jujuba Mill. cv. Dongzao fruits. Food Science,30 (2):235–239. (in Chinese)
邢尚军,刘方春,杜振宇,赵庆兵,宋玉民. 2009. 采前钙处理对冬枣贮藏品质、钙形态及亚细胞分布的影响. 食品科学,30 (2):
235–239.
Xue Meng-lin,Zhang Ji-shu,Zhang Ping,Wang Li. 2003. Effect of hypobaric storage on physiological and biochemical changes of Dong Jujube fruit
during cold storage. Scientia Agricultura Sinica,36 (2):196–200. (in Chinese)
薛梦琳,张继澍,张 平,王 莉. 2003. 减压对冬枣采后生理生化变化的影响. 中国农业科学,36 (2):196–200.



欢迎订阅《园艺学报》
《园艺学报》是中国园艺学会和中国农业科学院蔬菜花卉研究所主办的学术期刊,创刊于 1962 年,刊载有关果
树、蔬菜、观赏植物、茶及药用植物等方面的学术论文、研究报告、专题文献综述、问题与讨论、新技术新品种以
及园艺研究动态与信息等,适合园艺科研人员、大专院校师生及农业技术推广部门专业技术人员阅读参考。
《园艺学报》是中文核心期刊,中国科技核心期刊;被英国《CAB 文摘数据库》、美国 CA 化学文摘、日本 CBST
科学技术文献速报、俄罗斯 AJ 文摘杂志、CSCD 中国科学引文数据库等多家数据库收录。《园艺学报》荣获“第三
届国家期刊奖”及“新中国 60 年有影响力的期刊”、“中国国际影响力优秀学术期刊”、“百种中国杰出学术期刊”、
“中国权威学术期刊”、“中国精品科技期刊”等称号。
《中国学术期刊影响因子年报》2015 年公布的《园艺学报》复合总被引频次为 12 654,复合影响因子为 1.616。
《中国科技期刊引证报告》核心版 2015 年公布的《园艺学报》核心总被引频次为 4 265,核心影响因子为 1.052,
均为学科第 1 位,在全国 2 383 种核心期刊中排名第 6 位。
《园艺学报》为月刊,每月 25 日出版。每期定价 40 元,全年 480 元。国内外公开发行,全国各地邮局办理订
阅,国内邮发代号 82–471,国外发行由中国国际图书贸易总公司承办,代号 M448。漏订者可直接寄款至编辑部订购。
编辑部地址:北京市海淀区中关村南大街 12 号中国农业科学院蔬菜花卉研究所《园艺学报》编辑部。
邮政编码:100081;电话:(010)82109523。E-mail:yuanyixuebao@126.com。网址:http:// www. ahs. ac. cn。

征 订