免费文献传递   相关文献

Research Advances and Prospects of ABA in Fleshy Fruit

果实中脱落酸的研究进展与展望



全 文 :园艺学报,2015,42 (9):1664–1672.
Acta Horticulturae Sinica
1664 doi:10.16420/j.issn.0513-353x.2015-0187;http://www. ahs. ac. cn
收稿日期:2015–02–13;修回日期:2015–08–07
基金项目:国家自然科学基金项目(31471837);北京市属高等学校创新团队建设与教师职业发展计划项目(IDHT20140509);“十二五”
国家科技支撑计划项目(2013BAD02B00)
* 并列第一作者
** 通信作者 Author for correspondence(E-mail:guojiaxuangjx@163.com)
果实中脱落酸的研究进展与展望
祝 军 1,*,柴 璐 2,*,侯柄竹 2,*,沈元月 2,郭家选 2,**
(1 青岛农业大学园艺学院,山东青岛 266109;2 北京农学院植物科学技术学院,北京 102206)
摘 要:综述了果实中脱落酸(abscisic acid,ABA)的生理作用、代谢及信号转导的研究进展,并
提出了果实中ABA从产生到作用的分子机制。果实中ABA的积累主要受 4种关键酶的调控,包括NCEDs、
CYP707As、GTs 和 BGs。在果实成熟过程中,ABA 信号的启动是通过 PYRs 等受体蛋白感知,并通过
ABI1 和 SnRK2 等蛋白的可逆磷酸化作用将信号传递给下游转录因子和顺式元件,最终促发果实软化、糖
分积累及着色等成熟相关基因的表达。进一步深入研究 ABA 调控果实成熟的信号转导分子机制及 ABA、
糖和乙烯交叉调控网络是未来重要的研究领域。
关键词:果实发育和成熟;脱落酸;代谢;信号转导
中图分类号:S 6 文献标志码:A 文章编号:0513-353X(2015)09-1664-09

Research Advances and Prospects of ABA in Fleshy Fruit
ZHU Jun1,*,CHAI Lu2,*,HOU Bing-zhu2,*,SHEN Yuan-yue2,and GUO Jia-xuan2,**
(1College of Horticulture,Qingdao Agricultural University,Qingdao,Shandong 266109,China;2College of Plant Science
and Technology,Beijing University of Agriculture,Beijing 102206,China)
Abstract:This review summarizes abscisic acid(ABA)physiological function,metabolism and
signaling transduction,and provides insight into the molecular mechanism of ABA from production to
action. ABA accumulation in fruit is mainly regulated by four key enzymes,including NCEDs,
CYP707As,GTs and BGs. In the processes of fruit ripening,ABA signal is perceived by some receptor
proteins,such as PYRs,in turn is transmitted to the downstream transcription factors and cis-elements
through protein reversible phosphorylation of ABI1 and SnRK2 to trigger the expression of the genes
related to fruit ripening,such as softening,sugar accumulation and coloration. The molecular mechanisms
of ABA in the regulation of fruit ripening and regulatory network of ABA,sugar and ethylene will be
important research area in the future.
Key words:fruit development and ripening;abscisic acid;metabolism;signaling transduction

根据果实成熟过程中呼吸速率和乙烯释放高峰的有无,可将其分为呼吸跃变型和非呼吸跃变型
两种类型。以番茄(Solanum lycopersicum)果实为模式研究试材,以乙烯合成及信号转导为理论基
础,呼吸跃变型果实成熟调控的分子机制已经阐明(Alexander & Grierson,2002;Adams-Phillips et

祝 军,柴 璐,侯柄竹,沈元月,郭家选.
果实中脱落酸的研究进展与展望.
园艺学报,2015,42 (9):1664–1672. 1665

al.,2004;Prasanna et al.,2007;Gapper et al.,2013;Seymour et al.,2013;Perotti et al.,2014)。
但非呼吸跃变型果实成熟的分子机制研究进展缓慢。
近年来,模式植物拟南芥中 ABA 受体研究方面的突破(Fujii et al.,2009;Ma et al.,2009;
Melcher et al.,2009;Miyazono et al.,2009;Nishimura et al.,2009;Santiago et al.,2009;Shang et
al.,2010),极大促进了分子水平果实中 ABA 的研究,并产生了一系列重要突破性成果,不仅证实
了 ABA 在非呼吸跃变型果实发育和成熟过程中发挥着重要的作用,而且在呼吸跃变型果实发育中
也起着一定的作用(Zhang et al.,2009;Gambetta et al.,2010;Chai et al.,2011;Jia et al,2011;
Akagi et al.,2012;Romero et al.,2012;Sun et al.,2012a,2012b;Li et al.,2013;Nicolas et al.,
2014)。
本文中综述了果实中 ABA 的作用,代谢及信号转导最新研究进展,并展望果实成熟未来的研
究方向,以期为果实发育和成熟研究提供理论支撑。
1 ABA 对果实发育与成熟的调控作用
最早建立 ABA 与果实成熟关系主要是基于对葡萄(Vitis vinifera)果实的研究结果(Coombe &
Hale,1973;Coombe,1976;Inaba et al.,1976;Scienza et al.,1978;Cawthon & Morris,1982;
Palejwala et al.,1985;Davies et al.,1997)。ABA 可以明显加速葡萄果实的成熟过程,包括着色、
糖分积累、酸性下降和果肉变软(Coombe & Hale,1973;Inaba et al.,1976;Kataoka et al.,1982;
Palejwala et al.,1985;Matsushima et al.,1989;Jeong et al.,2004)。近几年来,ABA 在调控葡萄
果实成熟中的关键作用不断得到证实(Yu et al.,2006;Wheeler et al.,2009;Gambetta et al.,2010;
Giribaldi et al.,2010;Koyama et al.,2010;Gagné et al.,2011;Nicolas et al.,2014)。
除了葡萄果实以外,近年来一系列重要研究进展证实,ABA 在草莓果实成熟过程中也发挥着重
要的作用(Chai et al.,2011;Jia et al.,2011,2013;Li et al.,2013)。水分胁迫草莓植株可显著提
高草莓果实中 ABA 水平及糖酸比,但却降低果实的大小(Terry et al.,2007)。外源 ABA 可以明显
促进果实成熟,而 ABA 抑制剂氟啶酮(fluridone)则明显抑制果实成熟(Jia et al.,2011)。大量的
研究证实 ABA 是调控草莓果实成熟的重要激素(Kano & Asahira,1981;Manning,1994;
Perkins-Veazie,1995;Jiang & Joyce,2003;Terry et al.,2007;Jia et al.,2011;Li et al.,2013)。
值得关注的是,ABA 还参与多种果实发育的生理过程,包括柿(Diospyros kaki)果实涩味的产
生(Akagi et al.,2012)、柑橘果皮的发育(Romero et al.,2012)、樱桃(Prunus species)果实颜色
的变化(Ren et al.,2010)。
除了 ABA 在葡萄、草莓、柑橘和樱桃等非呼吸跃变型果实发育与成熟中的重要作用外,近年
来研究还证实 ABA 还参与呼吸跃变型果实的发育与成熟的调控。ABA 缺陷型番茄(high-pigment 3)
果实含有更多的类胡萝卜素,并且比野生类型果实积累更多的质体和番茄红素(Galpaz et al.,2008),
表明 ABA 参与番茄果实的色素、软化及大小的调控(Nitsch et al.,2012;Sun et al.,2012a,2012b)。
此外还发现,ABA 还参与番茄果实茎疤痕组织的栓化愈合(Leide et al.,2012)、鳄梨果实生长(Cowan
et al.,1997)及桃果实糖分积累(Kobashi et al.,2001)等生理过程。
总之,ABA 参与呼吸跃变型和非呼吸跃变型果实发育和成熟过程中多方面的生理调控,包括果
实的大小、果实的着色、糖分积累、酸性下降及果实的软化等,是果实发育重要的调控激素。
Zhu Jun,Chai Lu,Hou Bing-zhu,Shen Yuan-yue,Guo Jia-xuan.
Research advances and prospects of ABA in fleshy fruit.
1666 Acta Horticulturae Sinica,2015,42 (9):1664–1672.
2 果实中 ABA 信号的产生及代谢
高等植物细胞中的 ABA 水平是其合成—降解、结合—解离综合作用的结果(Nambara &
Marion-Poll,2005)。ABA 合成主要是通过氧化裂解类胡萝卜素途径实现的,其中 9–顺式–环氧类
胡萝卜素双加氧酶(NCED)是 ABA 生物合成的关键酶;而 ABA 的分解代谢主要是通过 8’–羟化
酶催化的 8’–羟基化作用,其中小家族的 P450 单加氧酶 CYP707A 是关键酶(Zeevaart et al.,1999)。
另外还发现,ABA 在糖基转移酶(glycosyltransferases,GTs)的作用下可转变为 ABA–葡萄糖基酯
(ABA glucosyl ester,ABA-GE;Xu et al.,2002)。近年来证实,ABA-GE 在 β–葡萄糖苷酶
(β-glucosidases,BGs)作用下可重新解离成游离的 ABA(Lee et al.,2006)。因此,NCED-CYP707A
和 GT-BG 分别从合成—分解及结合—解离途径调控了植物细胞内的 ABA 水平。结合—解离途径属
于一步催化的化学反应,更能迅速地改变 ABA 水平,以满足植物发育与适应环境的需要。
借鉴模式植物 ABA 的代谢研究成果,近年来果实中 ABA 积累的酶学调控机制也取得了重要的
研究进展(Jia et al.,2011;Li et al.,2011,2013;Sun et al.,2012b)。利用病毒诱导基因沉默技术
(VIGS)下调草莓果实中的 FaNCED1 基因的表达,导致了 ABA 水平显著降低,最终抑制了果实
的着色,证实 FaNCED1 是草莓果实中 ABA 生物合成的关键酶(Jia et al.,2011)。同样,调低草莓
果实中的 FaBG3 基因的表达,也显著降低了果实中 ABA 水平,并且果实的成熟受到抑制(Li et al.,
2013)。这些研究表明,NCED 和 BG 在草莓果实成熟过程中发挥的重要作用。另外,在番茄果实中
也发现类似的研究结果,果实中 ABA 水平受到 SlNCED1 和 SlCYP707A1 基因的共同调节(Nitsch et
al.,2009;Zhang et al.,2009)。通过 RNA 干扰技术抑制 SlNCED 的表达,果实的保质期延长到了
3 周(Sun et al.,2012b)。
ABA 的代谢研究除了在草莓和番茄果实中取得重要进展外,关于其他物种的果实也有相似的研
究报告。在玫瑰香葡萄果实发育后期,VvNCED1 和 VvBG1 基因的高水平表达,同时伴随 VvCYP1
和 VvGT 基因的低水平表达,协同促进了 ABA 的持续积累,尤其是在着色阶段,VvBG1 转录比
VvNCED1 增加更快,VvBG1 蛋白具有很高的酶活性,表明其在果实成熟期发挥着更重要的作用(Sun
et al.,2015)。Chernys 和 Zeevaart(2000)研究发现,鳄梨果实中 ABA 的生物合成受类胡萝卜素
裂解水平的调节,PaNCED1 和 PaNCED3 高表达促进了果实的成熟。在柑橘果皮和液囊中,
CitNCED2和/或CitNCED3表达量的增加,与ABA的大量积累相一致(Kato et al.,2006)。西瓜ClBG1、
ClNCED4 和 ClCYP707A1 基因的表达量随着果实成熟迅速增加,并在收获期达到最高水平(Li et
al.,2012)。甜樱桃果实中内源 ABA 含量受 PacNCED1、PacCYP707A1 和 PacCYP707A3 的协同调
控(Ren et al.,2010)。桃果实成熟过程中,PpNCED1 是促发 ABA 生物合成的关键酶(Zhang et al.,
2009)。
终上所述,在大多数肉质果实中 ABA 的积累与果实的成熟密切相关。ABA 水平的调节主要是
通过 NCED1 和 CYP707A1 进行的。在果实发育后期,β–葡萄糖苷酶(BGs)发挥着重要的作用。
3 果实中的 ABA 受体识别及信号转导
3.1 ABA 受体
目前在模式植物拟南芥上已鉴定出 3 种 ABA 受体,并提出了两个核心 ABA 信号转导途径:受
体包括质膜上的 GTG1/GTG2(Pandey et al.,2009)、胞质内的 PYR/PYL/RCAR(Ma et al.,2009;
祝 军,柴 璐,侯柄竹,沈元月,郭家选.
果实中脱落酸的研究进展与展望.
园艺学报,2015,42 (9):1664–1672. 1667

Park et al.,2009)和叶绿体内的镁螯合酶 H 亚基 ABAR/CHLH(Shen et al.,2006;Wu et al.,2009;
Shang et al.,2010);信号途径包括“ABA-PYR/PYL/RCAR-PP2C-SnRK2”通路(Fujii et al.,2009)
和“ABA-ABAR-WRKY40-ABI5”通路(Shang et al.,2010)。
早期关于果实 ABA 受体识别的研究发现,在葡萄浆果微粒体的内膜上存在特异的 ABA 受体
(Kd:17.5 ~ 50 nmol · L-1),而细胞质膜或细胞质中则检测不到结合活性(Zhang et al.,1999)。在
苹果果肉微粒体的细胞质中检测到高亲和力(Kd:2.3 nmol · L-1)和低亲和力(Kd:58.8 nmol · L-1)
ABA 结合活性(Zhang et al.,2001),表明果实中 ABA 受体的存在。借鉴拟南芥 ABA 受体研究结
果,下调草莓果实中 FaPYR1 或 FaCHLH/ABAR 的表达量,都能抑制果实成熟(Chai et al.,2011;
Jia et al.,2011);而下调 2C 型蛋白磷酸酶基因 FaABI1 却促进了草莓果实的成熟(Jia et al.,2013),
表明 FaPYR1 或 FaCHLH/ABAR 作为正调控因子参与了草莓果实的成熟,而 FaABI1 作为负调控因
子参与草莓果实的成熟,“ABA-FaPYR1-FaPP2C-FaSnRK2”信号系统可能是 ABA 调节草莓果实成
熟过程中的核心机制。以草莓果实为试验材料,以 ABA 受体及其信号转导为理论基础,提出了非
呼吸跃变型果实成熟调控的分子机制(Li et al.,2011)。
值得关注的是,ABA 受体核心信号机制的研究除了在草莓果实中有重要进展外,在其他果实上
也得到证实。葡萄中 VvPYL1、VvRCAR6 和 VvRCAR5 是 ABA 识别的主要受体,信号主要是通过
VvPP2C4 传递(Boneh et al.,2011;Li et al.,2012)。番茄果实中,SlPYL1 和 SlPYL2 在果实发育与
成熟的整个阶段都处在高水平表达,SlPP2C1 和 SlPP2C5 在始红期高表达,而 SlSnRK2.2、SlSnRK2.3、
SlSnRK2.4 和 SlSnRK2C 在成熟过程中也处在高水平表达(Sun et al.,2011)。
3.2 ABA 信号转导的下游信号组分
3.2.1 蛋白激酶和磷酸酶
植物蛋白激酶和磷酸酶包括 Ca2+依赖蛋白激酶(CDPKs)、SNF1 相关的蛋白激酶(SnRKs)、
分裂原活化蛋白激酶(MAPKs)、受体型激酶(RPKs)和蛋白磷酸酶 PP2Cs(Hirayama & Shinozaki,
2007)。拟南芥中 SnRK2 和磷酸化酶 ABI1 的相互作用在 ABA 信号转导过程中发挥着重要的作用
(Fujii et al.,2009)。
关于果实中蛋白激酶和磷酸酶的研究,除了在草莓果实成熟过程中已鉴定的 PP2C-SnRK2 核
心磷酸化信号系统(Jia et al.,2013)外,早期的研究(Shen et al.,2004)还发现,在葡萄浆果中
存在钙依赖蛋白激酶(CDPK)和分裂原活化蛋白激酶(MAPK)。后续的研究鉴定了一个 58 kD
的定位于原生质膜和叶绿体/质体上的受 ABA 激活的钙依赖蛋白激酶 ACPK1,并发现 ACPK1 调
控了原生质膜上 H+-ATP 酶的活性,正调控葡萄果实的发育(Yu et al.,2006)。另外,葡萄浆果中
蛋白激酶 VvSK1 随着果实积累可溶糖和 ABA 而强烈表达,VvSK1 过量表达导致了单糖转运体
(VvHT3、VvHT4、VvHT5 和 VvHT6)的转录水平上调,葡萄糖摄入速率增加 5 倍,证实 VvSK1
通过糖/ABA 诱导蛋白激酶控制糖分的运输与积累(Lecourieux et al.,2010)。Wang 等(2010)证
实了苹果果实中存在受 ABA 激活的 MAPK 信号级联(MdMKK1-MdMPK1)反应,MdMPK1 通
过特殊残基 Ser314,使得 ABI5 蛋白磷酸化,Ser 残基使 ABI5 蛋白成为 ABA 信号转导过程中 MAPK
的直接靶点。
3.2.2 转录因子、顺式元件及靶基因
近年来,果实中许多参与 ABA 信号相关的转录因子、顺式元件和靶基因得到鉴定。柿果实中
DkbZIP5 在 DkMyb4 的启动子区域识别 ABA 应答元件,并以依赖 ABA 的作用方式参与原花青素
(PA)的合成调控(Akagi et al.,2012)。番茄中,SlAREB1 超表达株系中己糖积累可能与液泡转化
Zhu Jun,Chai Lu,Hou Bing-zhu,Shen Yuan-yue,Guo Jia-xuan.
Research advances and prospects of ABA in fleshy fruit.
1668 Acta Horticulturae Sinica,2015,42 (9):1664–1672.
酶及蔗糖合酶的基因高水平表达有关,表明通过 AREB 介导的 ABA 信号转导影响番茄果实发育的
糖代谢(Bastías et al.,2011,2014)。ABA 通过影响调节番茄果实成熟过程中细胞壁分解代谢相关
酶(SlPG、SlPME、SlTBG、SlXET、SlCels 和 SlExp)基因的表达,从而影响番茄果实的保鲜期(Sun
et al.,2012b)。调控草莓果实中 FaABI1 转录水平可以调节 ABA 应答相关基因的表达(包括 ABI3、
ABI4、ABI5、SnRK2、ABRE1、CHS、PG1、PL、CHI、F3H、DFR、ANS 和 UFGT),最终影响了
果实成熟,包括硬度、色泽和糖含量等(Jia et al.,2013)。一个受 ABA 胁迫和成熟诱导 FaASR 基
因被证实在草莓果实成熟过程中发挥着重要作用(Chen et al.,2011)。最近研究发现,转录因子
PcMYBA 和 VvABF2 在 ABA 诱导甜樱桃和葡萄果实成熟过程中发挥着重要的作用(Nicolas et al.,
2014;Shen et al.,2014)。
综上所述,近年来果实中的 ABA 信号转导分子机制研究取了很大的进展,鉴定了一些重要的
相关蛋白,包括 ABA 受体、蛋白激酶、蛋白磷酸化酶、转录因子、顺式元件及靶基因,尤其确立
了几个重要的核心信号转导组分及其重要的靶基因,核心信号转导组分包括草莓果实“ABA-
FaPYR1-FaPP2C-FaSnRK2”,葡萄果实“ABA-VvACPK1-H+-ATPase”和“ABA-VvSK1-VvHTs”,
苹果果实“ABA-MdMKK1-MdMPK1-ABI5”,柿果实“ABA-DkbZIP5-DkMyb4-PA”;靶基因包括与
果实软化(PG、PL、PME、TBG、XET、Cels 和 Exp)、糖代谢(VvHTs 和 MiADH2)、色素积累(PA、
CHS、CHI、F3H、DFR、ANS 和 UFGT)等相关基因。
4 ABA 调控果实成熟的协同机制
值得关注的是,近年来研究发现,ABA、乙烯和糖在果实的成熟过程中存在相互作用,并可能
共同调控果实成熟(Gambetta et al.,2010;Jia et al.,2011,2013;Nitsch et al.,2012;Sun et al.,
2012b;Klie et al.,2014)。
早期的研究发现,ABA 可能通过提高乙烯的敏感性(Jiang et al.,2000)或者乙烯水平(Riov et
al.,1990)调控果实的成熟。在葡萄果实成熟中,糖和 ABA 可以激活共同的调节因子,包括蔗糖
传感器 SUT2、核心 G 蛋白信号组件 GPA1 和 RGS1、己糖激酶(HXK)、PP2C 蛋白磷酸激酶、Snf1
相关激酶(SnRK)和糖相关的 WRKY、ABRE 结合因子(ABF)和 AP2 转录因子(Gambetta et al.,
2010)。在果实成熟过程中,不同种类的果实存在保守的代谢途径(Klie et al.,2014)。在番茄果实
生长阶段,ABA 通过抑制乙烯的合成刺激细胞膨大(Nitsch et al.,2012;Sun et al.,2012b);在果
实成熟阶段,ABA 合成显著降低,导致了 ABA 生物合成的上游物质(包括番茄红素、胡萝卜素)
的积累,从而促进果实着色(Sun et al.,2012a,2012b)。在柑橘类果实中,ABA 在转录水平诱导
自身生物合成,导致柑橘液囊中类胡萝卜素含量下降(Zhang et al.,2012)。草莓中,蔗糖可以作为
一种信号分子能促进 FaNCED1 表达,并在 ABA 积累和果实成熟过程中发挥着重要的作用(Jia et al.,
2011,2013)。
综上所述,为了适应果实发育和响应环境的需要,肉质果实可以合成 ABA。肉质果实中 ABA
的积累主要受 4 种关键酶的调控,包括 NCEDs、CYP707As、GTs 和 BGs。在果实成熟过程中,ABA、
乙烯和糖类的相互作用发生在生理及分子水平上。ABA 信号的启动是通过 PYRs 和 ABAR 受体感知
触发的,进而通过 ABI1、SnRK2、ACPK1、SK1、MKK1 和 MPK1 等蛋白的可逆磷酸化作用将信
号传递给下游转录因子及顺式元件,包括 bZIP5、MYb4、ABI3、ABI4、ABI5 和 ABRE 等,并诱导
果实软化、糖分积累及着色等成熟相关基因的表达,最终促进果实成熟。
祝 军,柴 璐,侯柄竹,沈元月,郭家选.
果实中脱落酸的研究进展与展望.
园艺学报,2015,42 (9):1664–1672. 1669

5 展望
近年来,虽然证实 ABA 在非呼吸跃变型果实成熟调控中发挥着重要的作用,但其调控的分子
机理目前仍不十分清楚。以非呼吸跃变型草莓果实为模式材料,通过转录组学、蛋白组学和代谢组
学研究发现 ABA 调控非呼吸跃变型果实成熟的新的信号组分,包括 ABA 受体、蛋白激酶、转录因
子等,有助于进一步阐明 ABA 作用的分子机制。鉴于非呼吸跃变型果实成熟调控的复杂性,研究
ABA、乙烯和糖之间的相互作用及其对果实成熟的交叉调控机制,是未来重要的研究领域。另外,
通过 T-DNA 插入和 EMS 化学诱变发现新的与果实成熟相关的草莓突变体,并完善草莓稳定遗传转
化体系,是未来亟待解决的重要问题。

References
Adams-Phillips L,Barry C,Giovannoni J. 2004. Signal transduction systems regulating fruit ripening. Trends in Plant Science,9:331–338.
Akagi T,Katayama-Ikegami A,Kobayashi S,Sato A,Kono A,Yonemori K. 2012. Seasonal abscisic acid signal and a basic leucine zipper
transcription factor,DkbZIP5,regulate proanthocyanidin biosynthesis in persimmon fruit. Plant Physiology,158:1089–1102.
Alexander L,Grierson D. 2002. Ethylene biosynthesis and action in tomato:A model for climacteric fruit ripening. Journal of Experimental Botany,
53:2039–2055.
Bastías A,López-Climent M,Valcárcel M,Rosello S,Gómez-Cadenas A,Casaretto J A. 2011. Modulation of organic acids and sugar content in
tomato fruits by an abscisic acid-regulated transcription factor. Physiologia Plantarum,141:215–226.
Bastías A,Yañez M,Osorio S,Arbona V,Gómez-Cadenas A,Fernie A R,Casaretto J A. 2014. The transcription factor AREB1 regulates primary
metabolic pathways in tomato fruits. Journal of Experimental Botany,65 (9):2351–2363.
Boneh U,Biton I,Zheng C,Schwartz A,Ben-Ari G. 2011. Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Reports,31:
311–321.
Cawthon D,Morris J. 1982. Relationship of seed number and maturity to berry development,fruit maturation,hormonal changes and uneven
ripening of “Concord”(Vitis labrusca L.)grapes. Journal of the American Society for Horticultural Science,107:1097–1104.
Chai Y M,Jia H F,Li C L,Dong Q H,Shen Y Y. 2011. FaPYR1 is involved in strawberry fruit ripening. Journal of Experimental Botany,62:
5079–5089.
Chen J Y,Liu D J,Jiang Y M,Zhao M L,Shan W,Kuang J F,Lu W J. 2011. Molecular characterization of a strawberry FaASR gene in relation
to fruit ripening. PLoS ONE,6:e24649.
Chernys J T,Zeevaart J A. 2000. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid
biosynthesis in avocado. Plant Physiology,124:343–353.
Coombe B. 1976. The development of fleshy fruits. Annual Review Plant Physiology,27:507–528.
Coombe B G,Hale C R. 1973. The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiology,51:
629–634.
Cowan A K,Moore-Gordon C S,Bertling I,Wolstenholme B N. 1997. Metabolic control of avocado fruit growth(Isoprenoid growth regulators and
the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme a reductase). Plant Physiology,114:511–518.
Davies C,Boss P,Robinson S. 1997. Treatment of grape berries,a nonclimateric fruit with a synthetic auxin,retards ripening and alters the
expression of developmentally regulated genes. Plant Physiology,115:1155–1161.
Fujii H,Chinnusamy V,Rodrigues A,Rubio S,Aatoni R,Park S Y,Cutler S R,Sheen J,Rotrigues P L,Zhu J K . 2009. In vitro reconstitution
of an abscisic acid signalling pathway. Nature,462:660–664.
Gagné S,Cluzet S,Merillon J M,Gény L. 2011. ABA initiates anthocyanin production in grape cell cultures,Journal of Plant Growth Regulation,
30:1–10.
Galpaz N,Wang Q,Menda N,Zamir D,Hirschberg J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased
Zhu Jun,Chai Lu,Hou Bing-zhu,Shen Yuan-yue,Guo Jia-xuan.
Research advances and prospects of ABA in fleshy fruit.
1670 Acta Horticulturae Sinica,2015,42 (9):1664–1672.
plastid number and higher fruit lycopene content. Plant Journal,53:717–730.
Gambetta G A,Matthews M A,Shaghasi T H,McElrone A J,Castellarin S D. 2010. Sugar and abscisic acid signaling orthologs are activated at the
onset of ripening in grape. Planta,232:219–234.
Gapper N E,McQuinn R P,Giovannoni J J. 2013. Molecular and genetic regulation of fruit ripening. Plant Molecular Biology,82:575–591.
Giribaldi M,Geny L,Delrot S,Schubert A. 2010. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries. Journal of
Experimental Botany,61:2447–2458.
Hirayama T,Shinozaki K. 2007. Perception and transduction of abscisic acid signals:Keys to the function of the versatile plant hormone ABA.
Trends in Plant Science,12:343–351.
Inaba A,Ishida M,Sobajima Y. 1976. Changes in endogenous hormone concentrations during berry development in relation to the ripening of
Delaware grapes. Journal of the Japanese Society for Horticultural Science,45:245–262.
Jeong S,Goto-Yamamoto N,Kobayashi S,Esaka M. 2004. Effects of plant hormones and shading on the accumulation of anthocyanins and the
expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science,167:247–252.
Jia H F,Chai Y M,Li C L,Lu D,Luo J J,Qin L,Shen Y Y. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening.
Plant Physiology,157:188–199.
Jia H F,Lu D,Sun J H,Li CL,Xing Y,Qin L,Shen Y Y. 2013. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit
ripening. Journal of Experimental Botany,64:1677–1687.
Jiang Y,Joyce D C. 2003. ABA effects on ethylene production,PAL activity,anthocyanin and phenolic contents of strawberry fruit. Plant Growth
Regulation 39:171–174.
Jiang Y,Joyce D C,Macnish A J. 2000. Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. Journal of Plant Growth
Regulation 19:106–111.
Kano Y,Asahira T. 1981. Roles of cytokinin and abscisic acid in the maturing of strawberry fruits. Journal of the Japanese Society for Horticultural
Science,50:31–36.
Kataoka I,Sugiura A,Utsunomiya N,Tomana T. 1982. Effect of abscisic acid and defoliation on anthocyanin accumulation in Kyoho grapes. Vitis,
21:325–332.
Kato M,Matsumoto H,Ikoma Y,Okuda H,Yano M. 2006. The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles
during maturation in citrus fruit. Journal of Experimental Botany,57:2153–2164.
Klie S,Osorio S,Tohge T,Drincovich M F,Fait A,Giovannoni J J,Fernie A R,Nikoloski Z. 2014. Conserved changes in the dynamics of metabolic
processes during fruit development and ripening across species. Plant Physiology,164:55–68.
Kobashi K,Sugaya S,Gemma H,Iwahori S. 2001. Effect of abscisic acid(ABA)on sugar accumulation in the flesh tissue of peach fruit at the start
of the maturation stage. Plant Growth Regulation,35:215–223.
Koyama K,Sadamatsu K,Goto-Yamamoto N. 2010. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon
grape. Functional & Integrative Genomics,10:367–381.
Lecourieux F,Lecourieux D,Vignault C,Delrot S. 2010. A sugar-inducible protein kinase,VvSK1,regulates hexose transport and sugar
accumulation in grapevine cells. Plant Physiology,152:1096–1106.
Lee K H,Piao H L,Kim H Y,Choi S M,Jiang F,Hartung W,Hwang I,Kwak J M,Lee I J,Hwang J. 2006. Activation of glucosidase via
stress-induced polymerization rapidly increases active pools of abscisic acid. Cell,126:1109–1120.
Leide J,Hildebrandt U,Hartung W,Riederer M,Vogg G. 2012. Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits.
New Phytologist,194:402–415.
Li C L,Jia H F,Chai Y M,Shen Y Y. 2011. Abscisic acid perception and signaling transduction in strawberry:A model for non-climacteric fruit
ripening. Plant Signaling & Behavior,6:1950–1953.
Li Q,Ji K,Sun Y,Luo H,Wang H,Leng P. 2013. The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry. Plant Journal,
76:24–35.
Li Q,Li P,Sun L,Wang Y,Ji K,Sun Y,Dai S,Chen P,Duan C,Leng P. 2012. Expression analysis of glucosidase genes that regulate abscisic
祝 军,柴 璐,侯柄竹,沈元月,郭家选.
果实中脱落酸的研究进展与展望.
园艺学报,2015,42 (9):1664–1672. 1671

acid homeostasis during watermelon(Citrullus lanatus)development and under stress conditions. Journal of Plant Physiology,169:78–85.
Ma Y,Szostkiewicz I,Korte A,Moes D,Yang Y,Christmann A,Grill E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid
sensors. Science,324:1064–1068.
Manning K. 1994. Changes in gene expression during strawberry fruit ripening and theirr egulation by auxin. Planta,94:62–68.
Matsushima J,Hiratsuka S,Taniguchi N,WSada R,Suzaki N. 1989. Anthocyanin accumulation and sugar contgent in the skin of grape cultivar
“Olympia”treated with ABA. Journal of the Japanese Society for Horticultural Science,58:551–555.
Melcher K,Ng L M,Zhou X E,Soon F F,Xu Y,Suino-Powell K M,Park S Y,Weiner J J,Fujii H,Chinnusamy V,Kovach A,Li J,
Wang Y,Li J,Peterson F C,Jensen D R,Yong E L,Volkman B F,Cutler S R,Zhu J K,Xu H E. 2009. A gate-latch-lock mechanism for
hormone signalling by abscisic acid receptors. Nature,462:602–608.
Miyazono K,Miyakawa T,Sawano Y,Kubota K,Kang H J,Asano A,Miyauchi Y,Takahashi M,Zhi Y,Fujita Y,Yoshida T,Kodaira K
S,Yamaguchi-Shinozaki K,Tanokura M. 2009. Structural basis of abscisic acid signalling. Nature,462:609–614.
Nambara E,Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology,56:165–185.
Nicolas P,Lecourieux D,Kappel C,Cluzet S,Cramer G R,Delrot S,Lecourieux F. 2014. The bZIP transcription factor VvABF2 is an important
transcriptional regulator of ABA-dependent grape berry ripening processes. Plant Physiology,164:365–383.
Nishimura N,Hitomi K,Arvai A S,Rambo R P,Hitomi C,Cutler S R,Schroeder J I,Getzoff E D. 2009. Structural mechanism of abscisic acid
binding and signaling by dimeric PYR1. Science,326:1373–1379.
Nitsch L,Kohlen W,Oplaat C,Charnikhova T,Cristescu S,Michieli P,Wolters-Arts M,Bouwmeester H,Mariani C,Vriezen W H,Rieu
I. 2012. ABA-deficiency results in reduced plant and fruit size in tomato. Journal of Plant Physiology,169:878–883.
Nitsch L M,Oplaat C,Feron R,Ma Q,Wolters-Arts M,Hedden P,Mariani C,Vriezen W H. 2009. Abscisic acid levels in tomato ovaries are
regulated by LeNCED1 and SlCYP707A1. Planta,229:1335–1346.
Palejwala V,Himanshu R P,Vinod V M. 1985. The role of abscisic acid in the ripening of grapes. Physiologia Plantarum,65:498–502.
Pandey S,Nelson D C,Assmann S M. 2009. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell,136:136–148.
Park S Y,Fung P,Nishimura N,Jensen D R,Fujii H,Zhao Y,Lumba S,Santiago J,Rodrigues A,Chow T F,Alfred S E,Bonetta D,Finkelstein
R,Provart N J,Desveaux D,Rodriguez P L,McCourt P,Zhu J K,Schroeder J I,Volkman B F,Cutler S R. 2009. Abscisic acid inhibits
type 2C protein phosphatases via the PYR/PYL family of START proteins. Science,324:1068–1071.
Perkins-Veazie P. 1995. Growth and ripening of strawberry fruit. Horticultural Reviews,17:267–297.
Perotti V E,Moreno A S,Podestá F E. 2014. Physiological aspects of fruit ripening:The mitochondrial connection. Mitochondrion,17C:1–6.
Prasanna V,Prabha T N,Tharanathan R N. 2007. Fruit ripening phenomena–An overview. Critical Reviews in Food Science and Nutriton,47:1–19.
Ren J,Sun L,Wu J,Zhao S,Wang C,Wang Y,Ji K,Leng P. 2010. Cloning and expression analysis of cDNAs for ABA 8-hydroxylase during
sweet cherry fruit maturation and under stress conditions. Journal of Plant Physiology,67:1486–1493.
Riov J,Dagan E,Goren R,Yang S F. 1990. Characterization of abscisic acid-induced ethylene production in citrus leaf and tomato fruit tissues. Plant
Physiology,92:48–53.
Romero P,Rodrigo M J,Alfrez F,Ballester A R,Gonzlez-Candelas L,Zacaras L,Lafuente M T. 2012. Unravelling molecular responses to moderate
dehydration in harvested fruit of sweet orange(Citrus sinensis L. Osbeck)using a fruit-specific ABA-deficient mutant. Journal of Experimental
Botany,63:2753–2767.
Santiago J,Dupeux F,Round A,Antoni R,Park S Y,Jamin M,Cutler S R,Rodriguez P L,Márquez J A. 2009. The abscisic acid receptor PYR1
in complex with abscisic acid. Nature,462:665–668.
Scienza A,Mieavalle R,Visai C,Fregoni M. 1978. Relationships between seed number,gibberellin and abscisic acid levels and ripening in Cabernet
Sauvignon grape berries. Vitis,17:361–368.
Seymour G B,Østergaard L,Chapman N H,Knapp S,Martin C. 2013. Fruit development and ripening. Annual Review of Plant Biology,64:
219–241.
Shang Y,Yan L,Liu Z Q,Cao Z,Mei C,Xin Q,Wu F Q,Wang X F,Du S Y. Jiang T,Zhang X F,Zhao R,Sun H L,Liu R,Yu Y T,
Zhang D P. 2010. The Mg-Chelatase H Subunit of Arabidopsis antagonizes a group of transcription repressors to relieve ABA-responsive genes
Zhu Jun,Chai Lu,Hou Bing-zhu,Shen Yuan-yue,Guo Jia-xuan.
Research advances and prospects of ABA in fleshy fruit.
1672 Acta Horticulturae Sinica,2015,42 (9):1664–1672.
of inhibition. Plant Cell,22:1909–1935.
Shen X,Zhao K,Liu L,Zhang K,Yuan H,Liao X,Wang Q,Guo X,Li F,Li T. 2014. A role for PacMYBA in ABA-regulated anthocyanin
biosynthesis in red-colored sweet cherry cv. Hong Deng(Prunus avium L.). Plant and Cell Physiologyogy,55 (5):862–880.
Shen Y Y,Duan C Q,Liang X E,Zhang D P. 2004. Membrane-associated protein kinase activities in the developing mesocarp of grape berry.
Journal of Plant Physiology,161:15–23.
Shen Y Y,Wang X F,Wu F Q,Du S Y,Cao Z,Shang Y,Zhang D P. 2006. The Mg-chelatase H subunit is an abscisic acid receptor. Nature,
443:823–826.
Sun J H,Dong Y H,Li C L,Shen Y Y. 2015. Transcription and enzymatic analysis of beta-glucosidase VvBG1 in grape berry ripening. Plant Growth
regulation,75:67–73.
Sun L,Sun Y,Zhang M,Wang L,Ren J,Cui M,Wang Y,Ji K,Li P,Li Q,Chen P,Dai S,Duan C,Wu Y,Leng P. 2012b. Suppression
of 9-cis-epoxycarotenoid dioxygenase,which encodes a key enzyme in abscisic acid biosynthesis,alters fruit texture in transgenic tomato. Plant
Physiology,158:283–298.
Sun L,Wang Y P,Chen P,Ren J,Ji K,Li Q,Li P,Dai S J,Leng P. 2011. Transcriptional regulation of SlPYL,SlPP2C,and SlSnRK2 gene
families encoding ABA signal core components during tomato fruit development and drought stress. Journal of Experimental Botany,62:
5659–5669.
Sun L,Yuan B,Zhang M,Wang L,Cui M,Wang Q,Leng P. 2012a. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene
and carotene contents in tomato fruit. Journal of Experimental Botany,63:3097–3108.
Terry L A,Chope G A,Bordonaba J G. 2007. Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry(Fragaria ×
ananassa)fruit quality. Journal of Agricultural and Food Chemistry,55:10812–10819.
Wang X J,Zhu S Y,Lu Y F,Zhao R,Xin Q,Wang X F,Zhang D P. 2010. Two coupled components of the mitogen-activated protein kinase cascade
MdMPK1 and MdMKK1 from apple function in ABA signal transduction. Plant and Cell Physiology,51:754–766.
Wheeler S,Loveys B,Ford C,Davies C. 2009. The relationship between the expression of abscisic acid biosynthesis genes,accumulation of abscisic
acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Australian Journal of Grape and Wine Research,15:195–204.
Wu F Q,Xin Q,Cao Z,Liu Z Q,Du S Y,Mei C,Zhao C X,Wang X F,Shang Y,Jiang T,Zhang X F,Yan L,Zhao R,Cui Z N,Liu R,
Sun H L,Yang X L,Su Z,Zhang D P. 2009. The Mg-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling:New
evidence in Arabidopsis. Plant Physiology,150:1940–1954.
Xu Z J,Nakajima M,Suzuk Y,Yamaguchi I. 2002. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki
bean seedlings. Plant Physiology,129:1285–1295.
Yu X C,Li M J,Gao G F,Feng H Z,Geng X Q,Peng C C,Zhu S Y,Wang X J,Shen Y Y,Zhang D P. 2006. Abscisic acid stimulates a
calcium-dependent protein kinase in grape berry. Plant Physiology,140:558–579.
Zeevaart J A D Hooykaas P J J,Hall M A,Libbenga K R. 1999. Abscisic acid metabolism and its regulation in biochemistry and molecular biology
of plant hormones. Amsterdam:Elsevier:189–207.
Zhang D P,Zhang Z L,Chen J,Jia W S. 1999. Specific abscisic acid-binding sites in mesocarp of grape berry:Properties & subcellular localization.
Journal of Plant Physiology,155:324–331.
Zhang D P,Chen S W,Peng Y,Shen Y Y. 2001. Abscisic acid-specific binding sites in the flesh of developing apple fruit. Journal of Experimental
Botany,52:2097–2103.
Zhang L,Ma G,Kato M,Yamawaki K,Takagi T,Kiriiwa Y,Ikoma Y,Matsumoto H,Yoshioka T,Nesumi H. 2012. Regulation of carotenoid
accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro. Journal of Experimental Botany,63:871–886.
Zhang M,Yuan B,Leng P. 2009. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany,
60:1579–1588.