免费文献传递   相关文献

Effects of Aphid Infestation on Leaf Cell Differentiation , Internode Elongation and Flower Bud Formation of Apricot

蚜虫取食对杏叶片细胞分化、果枝节间伸长和花芽形成量的影响



全 文 :园 艺 学 报 2012,39(4):749–756 http: // www. ahs. ac. cn
Acta Horticulturae Sinica E-mail: yuanyixuebao@126.com
收稿日期:2011–11–13;修回日期:2012–02–27
基金项目:山东省自然科学基金项目(ZR2011CL002)
* E-mail:liulinlyu163@163.com
蚜虫取食对杏叶片细胞分化、果枝节间伸长和花
芽形成量的影响
刘 林*
(临沂大学生命科学学院,山东临沂 276005)
摘 要:为揭示蚜虫取食对杏叶片细胞分化、果枝节间伸长和花芽形成量的影响,对‘金太阳’杏
被桃蚜取食与未被取食同龄幼叶超微结构、果枝节间长度和每节花芽数进行比较,结果表明:(1)被取
食幼叶叶肉细胞比未被取食同龄幼叶叶肉细胞明显小,显示其生长较慢。(2)被取食与未被取食同龄幼
叶叶肉细胞的质体差异显著,未被取食幼叶中质体凸透镜形,含丰富类囊体和发达基粒,表现叶绿体形
态结构;被取食幼叶中质体球形或椭球形,含少量类囊体,不具叶绿体形态结构。(3)被取食果枝节间
长度显著短于未被取食果枝,相反,被取食果枝每节花芽数显著多于未被取食果枝。因此认为,蚜虫取
食阻碍杏叶细胞生长和分化,抑制果枝节间伸长,每节花芽数增加。
关键词:杏;蚜虫取食;超微结构;花芽形成量;节间伸长
中图分类号:S 662.2 文献标识码:A 文章编号:0513-353X(2012)04-0749-08

Effects of Aphid Infestation on Leaf Cell Differentiation, Internode
Elongation and Flower Bud Formation of Apricot
LIU Lin*
(College of Life Sciences,Linyi University,Linyi,Shandong 276005,China)
Abstract:Aphids establish compatible interaction with host plants through overcoming plant
defenses and manipulating plant metabolism for successful feeding and reproduction. This usually causes
changes to cellular structures and plant growth and development. With the aim to understand the effect of
green peach aphid infestation on apricot leaf cell differentiation,internode elongation,and flower bud
formation,ultrastructures of infested and uninfested young leaves as well as internode length and flower
bud number per node of infested and uninfested shoots were compared. Main findings are as follows:(1)
The mesophyll cell in the infested young leaf is apparently smaller and shorter than that in the uninfested
leaf of the same age. This implies that the mesophyll cell grows much slower in the infested young leaf
than in the uninfested young leaf.(2)Plastids in the mesophyll of the infested and uninfested young leaves
of the same age reveal remarkably different morphological and structural features. Plastids in the
mesophyll cells of the infested young leaf are small,take a spherical or elliptical shape,contain few
thylakoids,lack typical grana,and rarely contain starch grains. In contrast,plastids in the mesophyll cells

750 园 艺 学 报 39 卷
of the uninfested young leaf of the same age are larger,take a lens-like shape,contain rich thylakoids as
well as a lot of typical grana,and accumulate a large amount of starch. The differences in shape and
structure indicate that the conversion of proplastids into chloroplasts is rapid in the mesophyll of the
uninfested leaf,whereas the process takes a much longer time in the infested leaf.(3)The internode of the
infested shoot is dramatically shorter than that of the uninfested shoot,while the node of the infested shoot
bears significantly more flower buds than that of the uninfested shoot. Therefore,it is suggested that aphid
infestation retard cell enlargement and chloroplast development,inhibit internode elongation,but promote
flower bud formation.
Key words:apricot;aphid infestation;ultrastructure;flower bud formation;internode elongation

蚜虫在取食植物过程中不断向寄主韧皮部筛管内分泌唾液,引起植物体内蛋白质磷酸化、膜去
极化、钙离子内流以及活性氧释放等快速反应,激活激素依赖性信号途径,从而启动防御系统(Moran
& Thompson,2001;Garcia-Brugger et al.,2006)。蚜虫则通过分泌唾液克服植物防御反应,并通过
调节植物代谢途径改变韧皮部汁液营养组分,以满足对养分的需求(Girousse et al.,2005;Qubbaj et
al.,2005;Thompson & Goggin,2006)。蚜虫—植物间相互作用,引起植物生理、生化和细胞结构
变化,进而影响植物生长发育(Goggin,2007)。例如,蚜虫取食引起大麦叶片部分细胞解体,解体
的细胞内积累多酚类物质(Belefant-Miller et al.,1994);抑制苜蓿细胞生长,导致茎缩短变细(Girousse
et al.,2005),引起韧皮部汁液中多酚类物质增多(Jiang & Miles,1993)。
杏树易受桃蚜为害。春季杏树开始发芽,桃蚜在新梢上快速繁殖,后代群集在新梢上取食,被
取食的叶片严重卷曲变形。在被取食的幼叶中,少数细胞过度液泡化,细胞质被液泡吞噬并降解(刘
林,2011)。本研究中用透射电子显微技术比较被取食和未被取食同龄幼叶叶肉细胞的超微结构,用
统计方法比较被取食和未被取食果枝节间长度以及每节花芽数,从而揭示蚜虫取食对杏叶片细胞分
化、果枝节间伸长和花芽形成量的影响。
1 材料与方法
试验材料为生长于临沂大学教学科研基地上的成年杏树‘金太阳’(Prunus armeniaca L.
‘Jintaiyang’),引起杏树叶片皱缩卷曲的蚜虫为桃蚜[Myzus persicae(Sulzer)]。
2008 年 5 月和 2010 年 5 月各取样 1 次。从 3 株杏树上采集被蚜虫群集寄生和未被寄生的同龄
幼叶,每株各 3 片。将叶片切成小块(< 1 mm × 1 mm),用 2%戊二醛溶液(0.05 mol · L-1 磷酸缓冲
液配制,pH 6.8)在室温下固定 4 h,再用 1%锇酸溶液(0.05 mol · L-1 磷酸缓冲液配制,pH 6.8)在
4 ℃条件下固定 4 h。在梯度 10%的上行系列酒精中脱水,用 Embed-812 树脂包埋,用超薄切片机
(Leica)切厚度为 60 nm 的切片。切片用醋酸双氧铀和柠檬酸铅双重染色,Tecnai 12 透射电子显微
镜下观察并照相。
田间调查于 2010—2011 年进行。在临沂大学教学科研基地选 3 个杏园,每园选 3 株树。4 月下
旬至 6 月下旬观察蚜虫活动及其引起的枝条和叶片形态变化。9 月上旬至 10 月中旬,调查被蚜虫取
食和未被取食果枝的节间长度及每节花芽数。以叶片卷曲或皱缩作为被蚜虫寄生取食过的依据。
调查长度为 5 ~ 30 cm 的果枝。对每一果枝,统计枝长、花芽总数和节数,求节间长度和每节
花芽数的平均值。每树各选 6 枝,均位于树冠外层,光照、温度、空气流通等小气候条件基本相同。
4 期 刘 林等:蚜虫取食对杏叶片细胞分化、果枝节间伸长和花芽形成量的影响 751

2 结果与分析
2.1 被蚜虫取食与未被取食杏叶片形态学比较
未被蚜虫取食的叶片平展(图 1,A、D),被蚜虫取食的叶片严重皱缩、变形(图 1,B、C)。
叶片变形后不能再恢复正常,在蚜虫撤离后仍保持皱缩状(图 1,E)。未被取食的幼叶较早呈现绿
色,叶柄随着叶片扩展而迅速伸长(图 1,A);被取食幼叶常显橘红色,绿色出现较晚,叶柄几乎
不伸长(图 1,B)。叶片卷曲越严重,叶柄就越短(图 1,E、F)。显然,蚜虫取食不仅引起杏叶变
形,还影响叶色变化和叶柄伸长。

图 1 蚜虫取食对杏叶片形态、节间长度和花芽形成的影响
A:未被蚜虫取食的健康幼枝;B:被蚜虫取食的幼枝,叶片皱缩卷曲,幼叶橘红色,叶柄短;C:皱缩卷曲叶和蚜虫;
D:未被蚜虫取食过的果枝;E:被蚜虫取食过的果枝;F:被蚜虫取食过的果枝(左)和未被取食过的果枝(右);
G:未被取食果枝的一个节(上),有 2 个花芽,位于营养芽两侧;被取食果枝的一个节(下),丛生多个花芽。
Fig. 1 Effects of aphid infestation on leaf morphology,internode length,and flower bud formation
A:Uninfested shoot tip;B:Infested shoot with curled leaves,salmon pink young leaves;C:On a curled leaf are there many aphids;D:An uninfested
shoot has normal leaves;E:An infested shoot has curled leaves;F:An uninfested shoot(right)and an infested shoot with distorted leaves(left);
G:On a node of an uninfested shoot are there 2 flower buds on either side of a vegetative bud(upper);
a node of an infested shoot bears densely clustered flower buds(down).

2.2 被蚜虫取食与未被取食同龄幼叶超微结构比较
对被蚜虫取食和未被取食的同龄幼叶用透射电子显微镜观察比较,发现明显区别:(1)未被取
食幼叶叶肉细胞大,5 ~ 8 µm × 16 ~ 18 µm,长宽比约 3︰1(图 2,A),相比之下,被取食幼叶叶肉
细胞小,4 ~ 5 µm × 6 ~ 8 µm,长宽比也小,约 3︰2(图 2,E、F),表明蚜虫取食造成叶肉细胞生
长慢,尤其细胞伸长慢。两种幼叶的细胞核都位于细胞中央,表明细胞核的迁移受影响小。(2)未
被取食与被取食同龄幼叶叶肉细胞的质体形态、结构和淀粉含量差别明显。未被取食幼叶叶肉细胞
中质体显示出叶绿体的形态结构和功能特征:凸透镜形,大小 1.5 ~ 2 µm × 4 ~ 5 µm,含大量类囊体
和发达基粒,积累大量淀粉,淀粉粒 0.5 ~ 0.7 µm × 1 ~ 1.5 µm(图 2,B、C)。被取食幼叶叶肉细胞
752 园 艺 学 报 39 卷
的质体尚不具叶绿体的形态结构和功能特征:球形或椭球形,大小 1 ~ 1.5 µm × 1.5 ~ 2 µm,含少量
类囊体,不含典型基粒,多数不含淀粉(图 2,F、G),个别质体含淀粉但含量极少。(3)未被取
食幼叶不仅细胞质内有大量核糖体(图 2,B、C),而且叶绿体内也有丰富的核糖体(图 2,D);
被取食幼叶中,胞质核糖体非常丰富(图 2,H、I),但叶绿体核糖体很少(图 2,G)。(4)被取食
幼叶叶肉细胞中线粒体球形,结构简单,而未被取食幼叶叶肉细胞中线粒体形态多样,具发达内峭
(图 2,C);与健康幼叶相比,被取食幼叶的多数细胞内糙面内质网较丰富(图 2,H、I)。

图 2 未被蚜虫取食与被取食幼叶叶肉细胞超微结构比较
A ~ D:未被取食幼叶不同部位。A:栅栏组织细胞;B:叶绿体含淀粉粒和基粒(箭头);C:海绵组织细胞含叶绿体、线粒体及液泡等
细胞器,叶绿体含发达基粒(箭头);D:叶绿体一部分,示大量核糖体(箭头);E ~ I:被取食幼叶不同部位。E:栅栏组织;
F:栅栏组织细胞含球形或椭球形质体;G:质体含少量类囊体,无典型基粒,与胞质内核糖体相比质体内核糖体不明显;
H:内质网和核糖体;I:内质网和核糖体(箭头)。er. 内质网;m. 线粒体;p. 质体;s. 淀粉粒;v. 液泡。
Fig. 2 Ultrastructural comparison of infested and uninfested young leaves
A–D:From uninfested young leaves;E–I:From infested young leaves. A:Palisade cells;B:A chloroplast,containing starch grains and rich
grana(arrow);C:A sponge cell,containing mitochondria,vacuoles and chloroplasts with rich grana(arrow);D:Chloroplast containing rich
ribosomes(arrow);E:Palisade cells;F:Palisade cells,containing elliptical plastids;G:A plastid with thylakoids rather than grana;H:ERs
and ribosomes;I:Highlighting ERs and ribosomes(arrow). er. Endoplasmic reticulum;m. Mitochondria;P. Plastid;s. Starch grain;v. Vacuole.
4 期 刘 林等:蚜虫取食对杏叶片细胞分化、果枝节间伸长和花芽形成量的影响 753

被取食幼叶多数细胞核形状规则,含典型核仁,染色浅的核质与染色深的染色质构成大理石面
图案(图 3,A),少数细胞核极度缩小并变形,核仁模糊、收缩、消失,核质染色加深,分辨不出
染色质(图 3,B、C);伴随细胞核变化,细胞质降解,液泡所占空间比例猛增。细胞质降解过程
与电子致密物质产生相互偶联(图 3,C、D),解体过程中的质体也含有电子致密物质(图 3,B)。
细胞质内电子致密物质积累与液泡化相关,细胞质内产生小液泡,小液泡轮廓参差不齐,含大量电
子致密物质(图 3,C),有时电子致密物质形成的块状物部分在小液泡内,部分伸入到细胞质中(图
3,D)。这些电子致密物质由膜堆叠形成(图 3,E、F),膜或膜附近积累电子密度极高的物质。大
液泡内有染色较弱的沉积物(图 3,B、D)。

图 3 被蚜虫取食幼叶细胞结构变化
A:正常细胞,细胞核规则,核仁明显,核质与染色质构成大理石面图案;B:细胞核收缩变形,质体解体部位有电子致密物质(白色箭头),
液泡内有沉积物(黑色箭头);C:细胞核极度收缩,细胞质内产生无定形小液泡,充满电子致密物质(白色箭头),液泡内有沉积物
(黑色箭头);D:细胞质内产生不规则小液泡,含电子致密物质(白色箭头),大液泡中有沉积物(黑色箭头);
E、F:堆叠的膜(箭头)。n. 细胞核;nu. 核仁;p. 质体;v. 液泡。
Fig. 3 Structural changes to cells in young leaves caused by aphid infestation
A:A normal nucleus with a typical nucleolus,and weakly stained nucleoplasm and strongly stained chromatin forming a marble appearance;
B:The nucleus is reducing,plastid is degenerating(white arrow),and vacuoles contain amorphous inclusions(black arrow);C:There are small
vesicles in association with black amorphous deposits(white arrows),the nucleus is dramatically reduced,and vacuoles contain amorphous
inclusions(black arrow);D:There occur many small vesicles in association with black amorphous deposits(white arrows),and there are
amorphous inclusions in the large vacuoles(black arrow);E,F:Tightly stacked membranes(arrow)in
association with small vacuoles. n. Nucleus;nu. Nucleolus;p. Plastid;v. Vacuole.

2.3 被蚜虫取食与未被取食果枝节间长度和每节花芽数比较
对被蚜虫取食与未被取食的果枝节间长度和每节花芽数统计结果:(1)未被取食健康果枝节间
平均长度(12.4 ± 1.07)mm,被取食果枝节间显著缩短,很多部位没有明显的节间(图 1,E、F),
754 园 艺 学 报 39 卷
平均长度只有(2.06 ± 0.15)mm,被取食与未被取食果枝节间长度差异显著。(2)未被取食的果枝
大部分节上有两个花芽,花芽位于营养芽的两侧(图 1,G),少数节上只有 1 个,平均每节(1.93 ±
0.48)个;而被取食的果枝很多节上有 3 个或更多个花芽(图 1,E ~ G),平均每节花芽数量增加到
(2.87 ± 1.14)个,被取食与未被取食果枝每节花芽数差异显著。
3 讨论
被蚜虫取食和未被取食杏幼叶叶肉细胞大小与形状差别明显,表明蚜虫取食抑制叶肉细胞生
长,尤其对细胞伸长的抑制更明显。被蚜虫取食与未被取食同龄幼叶叶肉细胞中质体形态结构差异
明显,表明蚜虫取食对叶绿体发育产生不良影响,即延缓质体向叶绿体的分化过程。
叶肉细胞的分化主要是原质体分化成叶绿体的过程(Kutík,1998),同时伴随细胞体积增大,
尤其细胞伸长,线粒体、过氧化物酶体和内质网等细胞器变化以适应生产光合同化物的需要。因此,
蚜虫取食抑制叶肉细胞膨大和伸长,延缓质体向叶绿体的分化过程,亦即阻碍叶肉细胞分化。考虑
到新梢是同化物的“库”,韧皮部汁液中的养分来自杏树贮藏部位,蚜虫抑制寄主细胞分化,显然能
一定程度地延长取食部位“库”的状态。
与未被取食果枝相比,被取食果枝节间显著缩短,但每节花芽数显著增多,表明蚜虫取食抑制
节间伸长,促进花芽形成数量。蚜虫阻止生长的现象也发现于其它植物,蚜虫取食后,苜蓿茎缩短
变细(Girousse et al.,2005)。关于蚜虫取食促进花芽形成量的情况,是只发生在杏树还是也存在于
其它植物,目前还缺少资料。同一杏树上,被蚜虫取食的果枝节间缩短,每节花芽数增多;未被取
食的果枝节间不缩短,每节花芽数不增多,表明蚜虫产生的抑制节间伸长和促进花芽形成效应是局
部的,只局限在蚜虫群集取食的枝条上,不向未被蚜虫取食的枝条转移。
对多数杏树品种而言,花芽形成量远远多于实际生产需要的坐果量,因而蚜虫取食引起花芽形
成量增加对提高这些品种的产量似乎没有意义。不过,对于花芽形成量少于生产需要的品种,花芽
形成量增加对提高产量具有积极意义。不论什么样的品种,花芽形成量增加都具有明显的生态学意
义。杏花具有发达的蜜腺(刘林和赵小梅,2011),分泌大量花蜜,花蜜是蜜蜂生产蜂蜜的原料。花
粉是多种昆虫的食物。
关于蚜虫取食抑制节间伸长、促进花芽形成的机制,可从大量相关文献中得到启示。在确认寄
主、定位韧皮部和吸食筛管汁液的过程中,蚜虫向植物体内分泌唾液,唾液成分复杂,含有多种蛋
白质(Harmel et al.,2008;Carolan et al.,2009;Will et al.,2009;马蕊 等,2010),复杂的唾液
成分诱导植物产生防御反应(Smith & Boyko,2007;Will & van Bel,2008;de Vos & Jander,2009),
防御反应涉及内源激素如乙烯(Argandoña et al.,2001)、茉莉酸(Martinez et al.,2003;Zhu-Salzman
et al.,2004;Gao et al.,2007)和水杨酸(Chaman et al.,2003;de Vos et al.,2005)等代谢途径的
变化。寄主植物通过调节激素平衡实现对蚜虫的防御(de Vos et al.,2005;Pieterse & Dicke,2007),
而植物激素平衡的变化又是植物生长和发育的重要调控因素,包括对花芽分化的调控(梁立峰,1982;
崔澂 等,1986;Noodén et al.,1990;李天红 等,1996;李宗霆和周燮,1996;石兰蓉 等,2005;
苏华 等,2007)。因此认为,蚜虫胁迫很可能通过影响杏树果枝内激素平衡而抑制节间伸长并增加
花芽形成数量。干旱胁迫抑制温州蜜橘节间伸长和花芽分化,就是通过影响内源激素 GA、IAA 和
ABA 的代谢而实现的(Koshita & Takahara,2004)。
被蚜虫取食的杏幼叶部分细胞发生细胞质减少现象,细胞质减少与过度液泡化相偶联,显示细
胞内发生与液泡密切相关的细胞质降解过程,这与早期的观察结果一致(刘林,2011)。本研究中还
发现细胞质减少伴随大量电子致密物质产生,电子致密物沉积于堆叠的膜上或膜附近,所以在低倍
4 期 刘 林等:蚜虫取食对杏叶片细胞分化、果枝节间伸长和花芽形成量的影响 755

下观察,这些堆叠的膜就形成了电子致密块状物。这些膜是特化的内质网,与普通内质网差别明显
(图 2,H;图 3,E)。Belefant-Miller 等(1994)利用荧光显微技术观察蚜虫取食的大麦叶片,发
现蚜虫引起的细胞解体过程伴随多酚类物质积累。蚜虫取食也会引起苜蓿韧皮部汁液中多酚类物质
增多(Jiang & Miles,1993)。多酚类物质由细胞感受外部刺激而产生,具有与四氧化锇作用形成稳
定螯合物的特性(Nielson & Griffith,1978)。经四氧化锇固定后,细胞内多酚类物质与四氧锇反应
形成的螯合物在透射电子显微镜下呈现高电子密度(Mueller & Beckman,1976)。那么,杏叶退化
细胞中的电子致密物质是不是多酚类物质?这将是下一步要回答的问题。

References
Argandoña V H,Chaman M,Cardemil L,Muñoz O,Zúñiga G E,Corcuera L J. 2001. Ethylene production and peroxidase activity in aphid-infested
barley. Journal of Chemical Ecology,27 (1):53–68.
Belefant-Miller H,Porter D R,Pierce M L,Mort A J. 1994. An early indicator of resistance in barley to Russian wheat aphid. Plant Physiology,
105:1289–1294.
Carolan J C,Fitzroy C I J,Ashton P D,Douglas A E,Wilkinson T L. 2009. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum
characterised by mass spectrometry. Proteomics,9 (9):2457–2467.
Chaman M E,Copaja S V,Argandona V H. 2003. Relationships between salicylic acid content,phenylalanine ammonia-lyase(PAL)activity,
and resistance of barley to aphid infestation. Journal of Agricultural and Food Chemistry,51 (8):2227–2231.
Cui Cheng,Lü Zhong-shu,Lu Jia-ling. 1986. 12th International conference of plant growth material profiles. Plant Physiology Communications,(2):
66–72. (in Chinese)
崔 澂,吕忠恕,陆嘉陵. 1986. 第十二届国际植物生长物质会议简况. 植物生理学通讯,(2):66–72.
de Vos M,Jander G. 2009. Myzus persicae(green peach aphid)salivary components induce defence responses in Arabidopsis thaliana. Plant,Cell
& Environment,32 (11):1548–1560.
de Vos M,Van Oosten V R,Van Poecke R M,Van Pelt J A,Pozp M J,Mueller M J,Buchala A J,Métraux J P,Van Loon L C,Dicke M,
Pieterse C M. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe
Interactions,18 (9):923–937.
Gao L L,Anderson J P,Klingler J P,Nair R M,Edwards O R,Singh K B. 2007. Involvement of the octadecanoid pathway in bluegreen aphid
resistance in Medicago truncatula. Molecular Plant-Microbe Interactions,20 (1):82–93.
Garcia-Brugger A,Lamotte O,Vandelle E,Bourque S,Lecourieux D,Poinssot B,Wendehenne D,Pugin A. 2006. Early signaling events induced
by elicitors of plant defenses. Molecular Plant Microbe-Interactions,19 (7):711–724.
Girousse C,Moulia B,Silk W,Bonnemain J. 2005. Aphid infestation causes different changes in carbon and nitrogen allocation in alfalfa stems as
well as different inhibitions of longitudinal and radial expansion. Plant Physiology,137:1474–1484.
Goggin F L. 2007. Plant-aphid interactions:Molecular and ecological perspectives. Current Opinion in Plant Biology,10 (4):399–408.
Harmel N,Létocart E,Cherqui A,Giordanengo P,Mazzucchelli G,Guillonneau F,Pauw E D,Haubruge E,Francis F. 2008. Identification of
aphid salivary proteins:A proteomic investigation of Myzus persicae. Insect Molecular Biology,17 (2):165–174.
Jiang Y,Miles P W. 1993. Responses of a compatible lucerne variety to attack by spotted alfalfa aphid:Changes in the redox balance in affected
tissues. Entomologia Experimentalis et Applicata,67 (3):263–274.
Koshita Y,Takahara T. 2004. Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin(Citrus unshiu Marc.).
Scientia Horticulturae,99 (3–4):301–307.
Kutík J. 1998. The development of chloroplast structure during leaf ontogeny. Photosynthetica,35 (4):481–505.
Li Tian-hong,Huang Wei-dong,Meng Zhao-qing. 1996. Study on the mechanisms of flower bud induction in apple tree. Acta Phytophysiologica
Sinica,22 (3):251–257. (in Chinese)
李天红,黄卫东,孟昭清. 1996. 苹果花芽孕育机理的探讨. 植物生理学报,22 (3):251–257.
Li Zong-ting,Zhou Xie. 1996. Phytohormone and immunity technology. Nanjing:Jiangsu Science and Technology Press:52–102. (in Chinese)
李宗霆,周 燮. 1996. 植物激素及免疫检测技术. 南京:江苏科学技术出版社:52–102.
756 园 艺 学 报 39 卷
Liang Li-feng. 1982. Phytohormone and fruit flower bud differentiation. Plant Physiology Communications,(4):1–6. (in Chinese)
梁立峰. 1982. 植物激素与果树的花芽分化. 植物生理学通讯,(4):1–6.
Liu Lin. 2011. Green peach aphid induces ultrastructural degeneration to a limited number of cells in young leaves of apricot. Journal of Fruit
Science,28 (6):1050–1053. (in Chinese)
刘 林. 2011. 桃蚜诱导杏幼叶局部细胞超微结构退化. 果树学报,28 (6):1050–1053.
Liu Lin,Zhao Xiao-mei. 2011. Ultrastructural study on apricot floral nectary. Journal of Fruit Science,28 (5):792–796. (in Chinese)
刘 林,赵小梅. 2011. 杏花蜜腺的超微结构研究. 果树学报,28 (5):792–796.
Ma Rui,Chen Ju-lian,Cheng Deng-fa,Sun Jing-rui. 2010. The main components of aphid saliva and their roles in interaction between aphid and host
plant. Plant Protection,36 (1):15–21. (in Chinese)
马 蕊,陈巨莲,程登发,孙京瑞. 2010. 蚜虫唾液主要成分及其在寄主和害虫互作中的作用. 植物保护,36 (1):15–21.
Martinez de Ilarduya O,Xie Q,Kaloshian I. 2003. Aphid-induced defence responses in Mi-1-mediated compatible and incompatible tomato
interactions. Molecular Plant-Microbe Interactions,16 (8):699–708.
Moran P J,Thompson G A. 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defence pathways. Plant Physiology,125
(2):1074–1085.
Mueller W C,Beckman C H. 1976. Ultrastructure and development of phenolic-storing cells in cotton roots. Can J Bot,54 (12):2074–2082.
Nielson A J,Griffith W P. 1978. Tissue fixation and staining with osmium tetroxide:the role of phenolic compounds. J Histochem Cytochem,26 (2):
138–140.
Noodén L D,Guiamét J,Singh S,Letham D S,Tsuji J,Schneider M J. 1990. Hormonal control of senescence. Pharis R,Rood S,Plant Growth
Substances 1988. Berlin:Springer-Verlag:537–546.
Pieterse C M J,Dicke M. 2007. Plant interactions with microbes and insects:From molecular mechanisms to ecology. Trends in Plant Science,12
(12):564–569.
Qubbaj T,Reineke A,Zebitz C P W. 2005. Molecular interactions between rosy apple aphids,Dysaphis plantaginea,and resistant and susceptible
cultivars of its primary host Malus domestica. Entomologia Experimentalis et Applicata,115 (1):145–152.
Shi Lan-rong,Wu Lan-fang,Xu Li,Huang Mian-jia. 2005. A preliminary exploration into mechanism of ethrel promoted flower bud differentiation
in Aechmea fasciate cv. Vanriegata. Chinese Journal of Tropical Agriculture,25 (1):10–14. (in Chinese)
石兰蓉,吴岚芳,徐 立,黄绵佳. 2005. 乙烯利促进观赏凤梨花芽分化的生理机制初探. 热带农业科学,25 (1):10–14.
Smith C M,Boyko E. 2007. The molecular bases of plant resistance and defence responses to aphid feeding:Current status. Entomologia
Experimentalis et Applicata,122 (1):1–16.
Su Hua,Xu Kun,Liu Wei. 2007. Changes of endogenous hormones during the process of flower bud differentiation of welsh onion. Acta
Horticulturae Sinica,34 (3):671–676. (in Chinese)
苏 华,徐 坤,刘 伟. 2007. 大葱花芽分化过程中内源激素的变化. 园艺学报,34 (3):671–676.
Thompson G A,Goggin F L. 2006. Transcriptomics and functional genomics of plant defense induction by phloem-feeding insects. Journal of
Experimental Botany,57 (4):755–766.
Will T,Kornemann S R,Furch A C U,Tjallingii W F,van Bel A J E. 2009. Aphid watery saliva counteracts sieve-tube occlusion:A universal
phenomenon? The Journal of Experimental Biology,212 (21):3305–3312.
Will T,van Bel A J E. 2008. Induction as well as suppression:How aphids may exert opposite effects on plant defense. Plant Signaling Behavior,3
(6):427–430.
Zhu-Salzman K,Salzman R A,Ahn J E,Koiwa H. 2004. Transcriptional regulation of sorghum defence determinants against a phloem-feeding aphid.
Plant Physiology,134 (1):420–431.