全 文 :园 艺 学 报 2011,38(1):171–184 http: // www. ahs. ac. cn
Acta Horticulturae Sinica E-mail: yuanyixuebao@126.com
收稿日期:2010–09–17;修回日期:2011–01–11
基金项目:国家自然科学基金项目(30800744);中国科学院知识创新工程方向性项目(KSCX2-YW-Z-0944);科技部农业科技成果转
化项目(2009GB24910536)
* 通信作者 Author for correspondence(E-mail:fanpg@ibcas.ac.cn)
本文承蒙中国农业大学罗国光教授修改,谨致谢忱!
葡萄白藜芦醇研究进展
李晓东 1,何 卿 2,郑先波 1,3,董建国 4,范培格 1,*
(1 中国科学院植物研究所,北京 100093;2国家知识产权局专利审查协作中心,北京 100190;3河南农业大学园艺
学院,郑州 450002;4 河北省廊坊市林业局,河北廊坊 065000)
摘 要:对葡萄(Vitis L.)白藜芦醇(Resveratrol,Res)进行文献综述,涉及 Res 对人类疾病的防
治作用、对植物病害的抗病作用、葡萄 Res 提取和测定方法、葡萄 Res 含量及葡萄 Res 生物合成与修饰
等方面。指出今后研究方向应集中在葡萄 Res 抗病作用机制,高 Res 含量基因型葡萄遗传分析与遗传规
律,以及葡萄果实发育关键时期 Res 合成决定的酶学和分子机制研究。
关键词:葡萄;白藜芦醇;抗病作用;生物合成与修饰;酶学和分子机制
中图分类号:S 663.1 文献标识码:A 文章编号:0513-353X(2011)01-0171-14
Advances in Resveratrol Research of Grape
LI Xiao-dong1,HE Qing2,ZHENG Xian-bo1,3,DONG Jian-guo4,and FAN Pei-ge1,*
(1Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China;2Patent Examination Collaborating Center,
State Intellectual Property Office,Beijing 100190,China;3Horticulture College,Henan Agricultural University,Zhengzhou
450002,China;4Forestry Bureau of Langfang City of Hebei Province,Langfang,Hebei 065000,China)
Abstract:According to the related literatures the advances in resveratrol(Res)research of grape(Vitis
L.)were reviewed involving the prevention and treatment effects on human disease and the roles in plant
disease resistance of Res,the extraction and determination methods,the contents,the biosynthesis and
modifications of Res in grapes,etc. And the future studies should focus on the disease resistance
mechanisms of Res in grapes,genetic analysis and hereditary researchs of the high-Res content grape
genotypes,and the enzymatic and molecular mechanisms of Res synthesis in critical period of grape berry
developments.
Key words:grape;resveratrol;disease resistance;biosynthesis and biomodifications;enzymatic and
molecular mechanisms
白藜芦醇(Resveratrol,Res),化学名称为 3,4’,5–三羟基–1,2–二苯乙烯(3,4’,
5-trihydroxystilbene),分子式 C14H12O3,相对分子质量 228.25,被认为是茋类物质单体中最重要的
生物活性物质,结构式存在反式和顺式(trans-,cis-)两种类型(Trela & Waterhouse,1996)。两种
异构体的最大光吸收波长分别为 306 nm 和 286 nm(Pezet et al.,1994)。Res 茋结构苯环上的羟基
172 园 艺 学 报 38 卷
(hydroxyl groups),被糖基、甲基、甲氧基或其它取代基取代,形成不同的茋单体(如紫檀茋
pterostilbene、白藜芦醇苷 piceid 等);Res 还可以通过氧化聚合形成低聚物(二聚体、三聚体、四聚
体、更高的寡聚体等)(Pryce & Langcake,1977;Langcake et al.,1979;Langcake,1981;Morales
et al.,1997;李娜 等,2001;Waffo-Teguo et al.,2008)。
植物中 Res 研究可追溯到 20 世纪中叶(Ingham,1972)。1940 年首次从毛叶藜芦(Veratrum
grandiflorum)的根部得到 Res(Takaoka,1940)。1976 年在葡萄属植物中也发现到该物质,并首先
定性为一种葡萄属植物对真菌侵染、机械伤害、紫外线照射后的反应产物——植物抗毒素(phytoalexin)
(Langcake & Pryce,1976)。目前 Res 至少存在于 12 科 31 属 72 种植物中(Counet et al.,2006),
并且许多属于人类食物,比如葡萄(Langcake & Pryce,1976;Dercks & Creassy,1989;陈雷和韩
雅珊,1999;Li et al.,2006)、花生(Lee et al.,2004)、可可(Counet et al.,2006)等。其中葡萄
和葡萄产品被认为是人类食品中 Res 的最重要来源(Jeandet et al.,1991;Ector et al.,1996;Careri
et al.,2003;Waffo-Teguo et al.,2008)。
1 白藜芦醇对人类疾病的防治作用
对葡萄 Res 的兴趣起源于流行病学调查,人们发现长期适量饮用红葡萄酒能够降低出现心血管
疾病的危险(Renaud & Logeril,1992),研究发现这种生物学作用归功于 Res(Pace-Asciak et al.,
1996)。越来越多的证据表明 Res 具有多种生物学作用,Res 可抑制血小板聚集和低密度脂蛋白氧化,
调节脂蛋白代谢从而降低人体血脂,防止血栓形成,具有良好的防治心血管疾病的功效(Pace-Asciak
et al.,1995;Kopp,1998)。Res 在人体生理代谢过程中具有强抗氧化和抗自由基功能(Casper &
Quesne,1999),并具有抗突变的作用,能抑制环加氧酶和过氧化氢酶的活性,它在癌细胞的起始、
增殖、发展 3 个主要阶段均有抑制乃至逆转作用(Corder et al.,2001)。Res 可使老鼠皮肤癌细胞最
多可减少 98%(Jang et al.,1997),可诱导人类 HL60 白血病细胞程序性死亡(Clément et al.,1998),
被誉为继紫杉醇后的又一新的绿色抗癌药物(Soleas et al.,1997)。Cichocki 等(2008)的研究结果
表明,Res 衍生物 Pterostilbene 具有和 Res 相同的抗癌活性。Waffo-Teguo 等(2008)对葡萄 Res 及
其衍生物的心血管保护和癌症的化学预防作用进行了总结。Yang 等(2009)和 Katalinić 等(2010)
再次证实了来源于葡萄的 Res 及其衍生物具有抗氧化、抗微生物(细菌)和抗癌细胞增殖的活性。
此外,Res 及其衍生物在肝脏保护、抗炎、防治神经性疾病、激活长寿基因等方面也起着重要作用
(Kawada & Seri,1998;Martinez & Moreno,2000;唐传核和杨晓泉,2003;Waffo-Teguo et al.,
2008;Lekli et al.,2009;Nassiri-Asl & Hosseinzadeh,2009;Dani et al.,2010;Leiro et al.,2010),
可广泛地应用于医药、保健品、化妆品和食品添加剂等领域。
2 葡萄 Res 对植物病害的抗病作用
葡萄 Res 作为植物抗毒素具有作为植物抵抗病原物侵染标记(marker)的功能(Pool et al.,1981;
Stein & Blaich,1985)而引起科学家的高度重视。Langcake 和 Pryce(1976)首次报道葡萄组织中
存在 Res,以及 Res 受葡萄灰霉病(Botrytis cinerea)侵染诱导。Stein 和 Hoos(1984)研究发现葡
萄叶片和果实 Res 含量与对葡萄灰霉病的敏感程度呈显著负相关。Krpes(1993)取得了与 Stein 和
Hoos(1984)相似的结果。Kretschmer 等(2007)通过研究葡萄果皮感染葡萄灰霉病后 PAL 和 STS
基因表达变化再次证实了葡萄果实 Res 合成能力与感染葡萄灰霉病的相关关系。Dercks 和 Creassy
(1989)发现了 17 个葡萄品种对霜霉病(Plasmopara viticola)的抗性与紫外线诱导产生 Res 的能
1 期 李晓东等:葡萄白藜芦醇研究进展 173
力正相关。抗性品种能够产生 5 倍于敏感品种的 Res。Jeandet 等(1995)研究表明,在同一果穗中,
受损伤的果粒 Res 含量显著高于健康果粒,邻近坏死损伤区域尚未感染葡萄灰霉病的果实中 Res 含
量最高,这种限制定位作用可以帮助控制病原菌的扩散。Pezet 等(2004a,2004b)比较研究了不同
葡萄品种对霜霉菌(Plasmopara viticola)的抗性,发现敏感品种感染病菌后产生的大量 Res 迅速糖
基化为较小毒性的白藜芦醇苷(piceid,PD),而抗性品种感染病菌后产生的大量 Res 则迅速氧化为
更高毒性的白藜芦醇聚合体(viniferins)。Schnee 等(2008)以白粉菌(Erysiphe necator)为侵染真
菌,获得了与 Pezet 等(2004a,2004b)相似的结果。白粉菌(Erysiphe necator)诱导对其敏感的葡
萄 Vitis vinifera 基因表达转向防御导向(即 STS 和其它相关防御基因的表达),而对抗该菌的葡萄 Vitis
aestivalis 则无此作用(Fung et al.,2008)。
体外试验结果表明,Res 能够抑制葡萄灰霉菌(Botrytis cinerea)和霜霉菌(Plasmopara viticola)
分生孢子的萌发(Adrian et al.,1997;Pezet et al.,2004a,2004b)。蝶茋(Pterostilbene,Res 二甲
基化产物)抑制真菌生长的活性是Res的 5倍;ε-Viniferin(Res二聚体)抗葡萄灰霉菌(Botrytis cinerea)
分生孢子萌发的活性与蝶茋相似(Pezet et al.,2004a,2004b)。Res 及其衍生物抑制真菌细胞的机
制尚未完全清楚。Pont 和 Pezet(1990)合成 9 种羟基化、甲氧基化和卤化茋,通过研究它们对灰
霉病分生孢子萌发、转化和呼吸的影响,发现这些行为与茋的电子特性、亲脂性及亲脂物质的分子
体积有关。蝶茋能够诱导葡萄灰霉菌分生孢子超微结构的迅速改变,破坏分生孢子的核糖体、内质
网、线粒体和核膜,并对孢子的电子传递体系蛋白产生干扰作用。病原菌被植物识别后,Res 立即
产生上述作用,这种作用涉及到多种来自真菌和植物的内源代谢信号(Pezet & Pont,1990,1995)。
与蝶茋相比,Res 具有较低的真菌毒性,可能与其较高的亲水特性限制其扩散穿越疏水生物膜有关
(Pezet & Pont,1995)。
Hoos 和 Blaich(1988)首次阐明了葡萄灰霉病产生的一种酶能够氧化降解 Res。Pezet(1998)
定义这种酶为茋氧化酶(stilbene oxidase),属于漆酶(laccase)家族。事实上,葡萄灰霉菌致病性
与其代谢 Res 及其衍生物的能力显著相关(Sbaghi et al.,1996)。从灰霉菌克隆的 ATP 结合盒转运
子(ATP-binding cassette transporters)基因 BcatrA 和 BcatrB 功能分析可以看出,BcatrB 突变体对
Res 的敏感性提高,对葡萄叶片的致病性降低,暗示 ATP 结合盒转运子与葡萄灰霉菌抗 Res 及其衍
生物能力相关(Schoonbeek et al.,2001)。
Res 生物合成的基因工程是证明其在植物抗病中作用的重要方法。Hain 等(1993)首次将 2 个
葡萄 STS 基因,VST1 和 VST2 转到烟草中表达,提高了烟草对灰霉病(Botrytis cinerea)的抗性。
自此以后,STS 基因已经被转到许多作物,如番茄、番木瓜、大麦、水稻、小麦等(Stark-Lorenzen
et al.,1997;Thomzik et al.,1997;Leckband & Lörz,1998;Zhu et al.,2004;Serazetdinova et al.,
2005;Delaunois et al.,2009;D’Introno et al.,2009),并使转基因植物获得了抗病性。但是通过基
因工程的手段,将抗性强的葡萄品种 Res 合成酶基因转化到抗性弱的品种中,以提高它们抗性的研
究尚鲜见报道(Chong et al.,2009)。
3 葡萄 Res 提取和测定方法研究
3.1 提取方法
溶剂提取是最早也是目前应用最广泛的方法。陈雷和韩雅珊(1999)以乙酸乙酯为提取溶剂对
葡萄不同组织(果肉、叶梗、葡萄种子、叶片、果皮、果穗轴)的 Res 进行了提取。Careri 等(2003)
则以甲醇/乙醇(8︰2,体积比)为提取剂,从葡萄果实、皮渣中提取 Res 和栎精。李景明(2003)
174 园 艺 学 报 38 卷
利用甲醇从葡萄果皮中提取 Res 和 Piceid(白藜芦醇苷)。Handzlíková 等(2004)用 80%乙醇做提
取剂,从葡萄果实、穗轴和叶片中提取顺式和反式 Res 取得良好效果。Sun 等(2006)以 6 种不同
浸提溶剂,包括组合溶剂(甲醇—80%甲醇—50%甲醇—双蒸水—75%丙酮)、乙酸乙酯、甲醇、(0.1%
HCl)酸化甲醇、75%丙酮、模式葡萄酒溶液(model wine solution,12% 乙醇,5 g · L-1 L–酒石酸,
用 1 mol · L-1NaOH 调 pH 至 3.2),对葡萄果皮 Res 及其衍生物的提取方法进行了研究,发现甲醇和
酸化甲醇是葡萄果皮 Res 及其衍生物良好的浸提溶剂。李晓东等(2006)以‘北醇’葡萄的果皮和
种子为试材进行包括溶剂种类、浸提方式、温度条件及浸提时间对 Res 提取效果的比较研究,结果
表明,果皮采用乙酸乙酯做浸提溶剂,研磨后 25 ℃条件下浸提 24 h,Res 提取量最高,达 3.51 µg · g-1
FW;种子采用甲醇做浸提溶剂,研磨后,在 25 ℃条件下浸提 48 h,Res 提取量最高,达 8.81 µg · g-1
FW,在所选提取条件下,果皮和种子 Res 浸出量高,重复性好,能够满足进一步研究需要。
3.2 含量测定方法
高效液相色谱法(HPLC)是 Res 定量分析中应用最为广泛和成熟的方法。根据 Res 的光谱、
电化学等不同方面的性质,可以配备不同的检测器。文献报道紫外检测器(Siemann & Creasy,1992;
余兴 等,2007)、荧光检测器(Pezet et al.,1994)、电化学检测器(McMurtrey et al.,1994)、二极
管阵列检测器(PDA)(李景明,2003;李晓东,2006; Guerrero et al.,2010;王铭 等,2010)均
能够有效检测白藜芦醇,其中 PDA 可以实时监测色谱流出物的光谱特征,辅助定性,近年来应用广
泛。
气质联机法(GC–MS)能准确地对 Res 进行定性和定量分析(Goldberg et al.,1995)。李攻科
等(2000)采用固相萃取(SPE)结合 GC–MS 对顺式和反式 Res 进行定性和定量分析,用 SEP C18
小柱进行样品前处理,以 2–三甲基硅烷基三氟乙酰胺(BSTFA)试剂衍生化分离出的 Res。GC–
MS 法简便,快速,损失小,样品用量少,适合大批量样品的测定,但是需要对样品进行硅烷化衍
生处理,增加了处理环节,且仪器昂贵操作复杂,因而其广泛应用受到限制。
此外,高效液相色谱—核磁共振联用法(LC–NMR)(王映红 等,2001),高效液相色谱/电喷
电离—质谱联用法(LC/ESI–MS)(Hollecker et al.,2009),薄层层析结合紫外荧光法(Stein & Hoos,
1984;刘新荣 等,2008),活体荧光法(Poutaraud et al.,2007),流动注射化学发光法(李晓霞 等,
2004),毛细管电泳—电化学检测法(刘芳华 等,2005),二次微分简易示波伏安法(张宏芳 等,
2001)等,在 Res 及其糖苷测试中亦取得良好效果。
4 葡萄 Res 含量研究
葡萄不同器官间 Res 含量存在着显著差异。田间自然状态下葡萄植株能够合成 Res 及其衍生物。
Jeandet 等(1991)和 Ector 等(1996)研究表明葡萄果实中 Res 主要存在于果皮和种子,果肉中很
少或没有。葡萄木质化的器官,如茎和根,也含有 Res 的单体和低聚物(Korhammer et al.,1995;
Jeandet et al.,2002)。陈雷和韩雅珊(1999)对葡萄果肉、叶柄、种子、叶片、果皮及穗轴的检测
发现,果穗轴和果皮中的 Res 含量较高,叶片和种子中的含量相对较低,果肉部分最低,有些品种
果肉根本就不含 Res,李婷等(2009)则报道:Res 含量为果梗、叶片 > 果皮 > 种子 > 叶柄。Pool
等(1981)测试了 15 个品种葡萄成熟节间的木质部,发现其 Res 含量不同。芽和花合成 Res 的能力
较低(Krpes,1993)。邓建平等(2009)研究了成熟度对 Res 含量的影响,结果表明 Res 含量,成
熟果皮 > 成熟叶 > 茎段;成熟叶 > 老叶 > 嫩叶;成熟果皮 > 嫩果皮。Wang 等(2010)再次证
实了葡萄 Res 分布的器官特异性。葡萄不同器官间 Res 含量存在着一定的相关性,Lamuela-Raventos
1 期 李晓东等:葡萄白藜芦醇研究进展 175
等(1995)报道浆果中 Res 的含量与叶片中 Res 的含量呈正相关。上述研究结果表明,葡萄植株体
内各器官均或多或少含有 Res,但含量存在明显差异。哪些器官是合成中心(源),哪些器官是储藏
和代谢中心(库),以及各器官间 Res 是否存在一定的联系,值得进一步研究。
葡萄不同品种间 Res 含量也存在着显著差异。不同研究者(Ector et al.,1996;Okuda & Yokotsuka,
1996;陈雷和韩雅珊,1999;Gatto et al.,2008;Park et al.,2009;Yang et al.,2009;王铭 等,2010)
对葡萄果实 Res 含量进行研究,结果表明各品种间 Res 含量存在着显著差异。Li 等(2006)首次从
种质资源水平上评价葡萄 Res 含量,发现种间杂交的砧木品种果皮和种子含有比其它栽培品种高得
多的 Res;其中甜山葡萄和河岸葡萄杂交后代(V. monticule × V. riparia)砧木品种 Res 含量非常高;
河岸葡萄(V. riparia Michx.)后代砧木品种可能具有高 Res 含量的合成基因;欧亚种(V. vinifera L.)
和欧美杂种(V. labrusca × V. vinifera)栽培品种的 Res 含量,除少数品种含量较高外,大部分品种
的果皮和种子中 Res 含量小于 2 µg · g-1 FW。此外,Li 等(2006)还发现葡萄果皮和种子 Res 含量
与果实性状、用途关系密切,有核品种 Res 含量显著高于无核品种,酿酒品种高于鲜食品种,红色
品种高于绿色品种。
5 葡萄 Res 生物合成与修饰研究
5.1 葡萄 Res 生物合成与合成酶
Res 的生物合成途径同苯丙氨酸代谢途径密切相关(Dixon & Paiva,1995),苯丙氨酸经苯丙氨
酸解氨酶(Phenylalanine ammonia-lyase,PAL)、肉桂酸–4–羟化酶(Cinnamate-4-hydroxylase,C4H)、
4–香豆酰辅酶 A 连接酶(4-coumarate:coenzyme A ligase,4CL)的催化,生成 4–香豆酰辅酶 A;
4–香豆酰辅酶 A 和丙二酰辅酶 A 反应,在白藜芦醇合成酶(resveratrol synthase,RS)的催化下,
生成 Res。RS 属于二苯乙烯合成酶(Stilbene synthase,STS)的一种,分子为二聚体,分子量约为
90 000,等电点 4.8 ~ 5.4,对香豆酰辅酶 A 具有高度选择性(Schoppner & Kindl,1984;Liswidowati
et al.,1991;Chong et al.,2009)。目前葡萄 STS 基因和 cDNAs 已成功克隆(Melchior & Kindl,1991;
Goodwin et al.,2000;金晓丽 等,2004),并发现葡萄基因组至少包含 20 个不同的 STS 基因(Sparvoli
et al.,1994;Richter et al.,2005)。葡萄果实 STS 亚细胞定位结果显示,STS 主要存在于质膜的小
泡和细胞壁中(Fornara et al.,2008;Pan et al.,2009;Wang et al.,2010)。
5.2 葡萄 Res 生物合成诱导因子
生产上大量栽培的无论是欧亚种品种、还是欧美杂交种品种,自然条件下 Res 含量较低(Li et al.,
2006),仅仅以目前大面积栽培的天然葡萄果实为 Res 的来源远远满足不了人们的需求,需要对葡萄
Res 生物合成进行诱导。
生物胁迫是诱导葡萄 Res 合成的一个重要方式。不同的病原菌体,包括白粉菌(Erysiphe necator)
(Fung et al.,2008;Schnee et al.,2008)、霜霉菌(Plasmopara viticola)(Langcake & Pryce,1976;
Adrian et al.,1997)、灰霉菌(Botrytis cinerea)(Langcake & McCarthy,1979;Bézier et al.,2002),
均能够诱导葡萄 Res 合成酶基因的表达以及 Res 及其衍生物的合成。Li 等(2009)研究发现葡萄贮
藏过程中,由于灰霉菌的侵染致使 Res 含量显著提高。但通过病原菌诱导 Res 合成方式严重影响葡
萄品质,不适于在生产上采用。
非生物刺激(abiotic stimuli),例如 UV 照射(Langcake & Pryce,1976;Fritzemeier & Kindl,
1981;Jeandet et al.,1995;Douillet-Breuil et al.,1999;Adrian et al.,2000;李晓东 等,2007;Li et
176 园 艺 学 报 38 卷
al.,2009;郑先波 等,2009 a,2009 b;2010;Guerrero et al.,2010;Wang et al.,2010)、铝离子
(Adrian et al.,1996;亓桂梅和 Creasy,2005)、茉莉酸甲酯(Tassoni et al.,2005;Belhadj et al.,
2006)、乙烯(Belhadj et al.,2008)和壳聚糖(Ferri et al.,2009,2010a),能够诱导葡萄产生 Res,
其中 UV 诱导研究比较深入。UV 根据波长分为:UV-A(320 ~ 390 nm)、UV-B(280 ~ 320 nm)、
UV-C(< 280 nm)。李晓东等(2007)和 Li 等(2009)比较了 UV-B 和 UV-C 诱导葡萄 Res 合成的
差异,发现 UV-C 诱导积累效果极显著地优于 UV-B。郑先波等(2009b)以 1 年生北丰(Vitis
thunbergii × V. vinifera)葡萄盆栽结果树为试材,在果实始熟期采用 UV-C 辐射结合韧皮部环剥的
方法,研究了 UV-C 辐射对葡萄叶片和邻近果穗果实 Res 含量的影响,发现 UV-C 辐射叶片可以提
高果实果皮中 Res 及其糖苷含量,Res 及其糖苷存在韧皮部运输途径。Liu 等(2010)研究发现,
UV-C 诱导葡萄愈伤组织 Res 及其糖苷积累与所选材料的遗传背景和材料类型显著相关。此外,水
杨酸(李晓东 等,2007)、肉桂酸(刘媛 等,2010)和蔗糖(Ferri et al.,2010b)等对于提高葡萄
果皮和愈伤组织 Res 含量也具有一定作用。开发无公害高效葡萄 Res 合成的调控手段是未来研究的
一个重要方向。
环境条件对葡萄 Res 生物合成的诱导具有重要作用。Li 等(2006)发现葡萄果实发育期间降雨
量大能够导致果皮 Res 大量合成与积累,但对种子 Res 含量无显著影响。Cavaliere 等(2010)研究
结果也表明灌水、施肥频率、延迟采收等农事操作对葡萄果实 Res 及其衍生物含量均具有显著影响。
温度在 UV-C 辐射诱导葡萄果皮 Res 合成上扮演重要角色,低温抑制 Res 合成(Cantos et al.,2000)。
在室温避光条件下,UV-C 诱导葡萄合成 Res 在 24 ~ 48 h 时可达最高值,之后 Res 含量开始迅速下
降,且下降的速率与诱导合成的速率相当(Bais et al.,2000)。郑先波等(2009a)和 Li 等(2009)
研究发现贮藏温度在葡萄贮藏过程中果实 Res 及其糖苷含量变化上也起着举足轻重的作用。此外,
不同光质对离体培养葡萄试管苗 Res 生物合成具有显著影响,蓝光有利于 Res 的积累(刘媛 等,
2009)。
5.3 葡萄 Res 生物合成诱导的酶学和分子机制
Fritzemeier 和 Kindl(1981)研究发现,UV-C 处理葡萄叶片后 15 h,STS 活性提高 100 倍,并
且与 Res 合成相关的另外两种酶(PAL、C4H)同时被诱导,表明 UV-C 通过某种途径提高了 Res
合成途径中相关酶活性,从而合成更多的 Res。随后的研究结果表明,UV-C 诱导 Res 积累受到 STS
mRNA 转录水平调节(Bais et al.,2000),UV-C 处理花后 1 ~ 5 周的葡萄果实,处理后 4 ~ 8 h,STS
mRNA 积累,处理后 24 h,果皮的 Res 迅速积累且达到最大含量。UV-C 处理花后 10 ~ 16 周已经成
熟果实,处理后 24 ~ 48 h,STS mRNA 积累,处理后 72 h 果实中 Res 达到最高含量。Jeandet 等(1995)
的研究结果表明,UV 诱导葡萄果实不同发育时期 Res 合成能力下降,伴随花青素合成能力的上升,
缘于 CHS 与 STS 的竞争。Pan 等(2009)研究结果进一步证实了 UV 诱导葡萄果实 STS 含量的提
高程度与果实发育时期和处理后持续时间的相关性。
来源于葡萄细胞培养物的两个 STS 基因,尽管编码区非常相似,但启动子区域具有本质的不同;
培养物受到激发后,这两个基因表现出两种显著不同的激发动力学表达模式,可能是造成对激发处
理快速和延时反应的原因(Wiese et al.,1994)。Adrian 等(1997)和 Douillet-Breuil 等(1999)进
一步验证了这个结论,他们发现 UV 诱导葡萄叶片 STS 转录和 Res 积累表现出两个连续的峰值。Res
生物合成的信号转导调控目前尚不十分清楚。研究发现不同的激发子处理葡萄细胞能够迅速地引发
Ca2+流入、细胞外介质碱化、氧化作用的爆发和 MAP 激酶活化,接下来是包括 PAL 和 STS 在内的
防御基因表达诱导,最终导致 Res 和 ε-viniferins 的产生(Aziz et al.,2003;Poinssot et al.,2003;
Vandelle et al.,2006;Faurie et al.,2009)。Dubrovina 等(2009)进一步研究结果表明,钙依赖蛋白
1 期 李晓东等:葡萄白藜芦醇研究进展 177
激酶基因(Calcium-dependent proteinkinase gene,CDPK gene)表达的异常变化与葡萄转 rolB 基因
愈伤组织培养物 Res 含量提高显著相关,Res 生物合成是 Ca2+依赖的。此外还发现,外源 MeJA、
乙烯和壳聚糖(chitosan)诱导葡萄悬浮细胞 Res 及其衍生物的积累与 PAL 和 STS 基因在转录和翻
译水平的表达诱导相关(Tassoni et al.,2005;Belhadj et al.,2008;Ferri et al.,2009)。
5.4 葡萄 Res 生物修饰与相关酶
葡萄 Res 生物修饰(bio-modifications)主要包括糖基化(Glycosylation)、甲基化(Methoxylation)、
生物氧化(bio-oxidation)。植物产生的 Res 很大一部分以糖基化产物存在。研究表明葡萄健康果实
(Gatto et al.,2008)、UV 处理果实(Adrian et al.,2000)和葡萄生单轴霉(Plasmopara viticola)
侵染果实(Romero-Perez et al.,2001)均含有大量的 cis-和 trans-piceid(resveratrol 3-O-β-glucoside)。
目前已经从‘康可’葡萄(Vitis labrusca‘Concord’)中提取到葡萄糖基转移酶(glucosyltransferase)
(Hall & Luca,2007),从葡萄生单轴霉(Plasmopara viticola)诱导的葡萄叶片中发现紫檀茋
(pterostilbene,Res 甲基化产物)(Pezet et al.,2004a),并克隆了白藜芦醇–O–甲基转移酶
(resveratrol O-methyltransferase,ROMT)基因(Schmidlin et al.,2008)。葡萄中大量的 Res 以聚合
体形式存在,包括 ε-Viniferin(二聚体)、α-Viniferin(三聚体)、β-Viniferin(四聚体)、γ-Viniferin
(更高的寡聚体)(Pryce & Langcake,1977;Langcake & Pryce,1979;Langcake,1981;Morales et
al.,1997;李娜 等,2001;Pezet et al.,2003)。葡萄 Res 的氧化耦合(Oxidative coupling)被认为
是定位于葡萄细胞液泡、细胞壁、非原生质体上的过氧化物酶同工酶(Peroxidase isoenzymes)所催
化(Ros Barcelo et al.,2003)。此外,葡萄灰霉病菌(Botrytis cinerea)诱导产生的类似于漆酶(laccase)
茋氧化酶(stilbene oxidases)能够使葡萄 Res 氧化为聚合体(Jeandet et al.,2007)。上述 Res 的糖
基化产物和低聚体,对人体也具有类似于 Res 的生物活性(Sotheeswaran & Pasupathy,1993;李小
妹 等,2002)。
6 今后研究方向
6.1 葡萄 Res 抗病作用机制研究
Res 及其衍生物在植物抗病中所扮演的角色目前仍不十分清楚(Chong et al.,2009)。Res 缺乏
突变体(Res-deficient mutants)是阐明这类物质作用的重要工具,然而由于 Res 及其衍生物主要存
在于葡萄等遗传上很难操作的植物中,缺乏易于操作的突变体。此外,由于目前尚缺乏足够的工具
来确定 Res 及其衍生物在植物组织和细胞中的定位和转运/运输机制,因此很难评估 Res 及其衍生物
在植物抗病中所起的作用。葡萄 STS 免疫定位结果揭示 Res 及其衍生物生物合成主要发生在细胞壁
中(Fornara et al.,2008;Pan et al.,2009;Wang et al.,2010),而已有研究结果表明 Res 及其衍生
物以共价键结合在细胞壁成分——木质素或多聚糖上(Morales et al.,1997)。因此,Res 除了作为
植物抗毒素外,其寡聚体和多聚体或许参与病源菌感染诱导的细胞壁加固过程。当然是否存在这样
的过程及其机制尚需进一步研究。
6.2 高 Res 含量基因型葡萄遗传分析与遗传规律研究
葡萄属包括两个亚属,圆叶葡萄亚属(Muscadinia Planch.)和真葡萄亚属(Euvitis Planch.)。已
有研究表明圆叶葡萄(V. rotundifolia,属于圆叶葡萄亚属)具有较高的 Res 及其衍生物含量(Ector et
al.,1996;Wang et al.,2010)。Li 等(2006)通过对 120 个葡萄种质(所用材料属于真葡萄亚属)
果皮和种子 Res 含量连续两年研究表明,不同基因型葡萄 Res 含量存在较大差异,表明葡萄遗传背
178 园 艺 学 报 38 卷
景对葡萄 Res 合成具有重要作用;同时也发现了许多富含 Res 的基因型,如来源于河岸葡萄(V.
riparia)的后代都具有很高的 Res 含量,表明河岸葡萄可能具有高 Res 含量的合成基因,因此有必
要对河岸葡萄进行遗传分析与遗传规律研究。此外,真葡萄亚属有 70 余种,绝大部分为野生状态,
目前研究仅是其中的极小部分(Jeandet et al.,1991;Careri et al.,2003),因此研究葡萄种质,特别
是野生种质的 Res 含量特点,以及对其进行遗传分析与遗传规律研究,对于人类获取纯天然的 Res
以及通过育种工作获得高含量 Res 葡萄新品种具有极为重要的意义。
6.3 葡萄果实发育关键时期 Res 合成决定的酶学和分子机制研究
目前关于葡萄 Res 生物合成诱导的酶学和分子机制已有研究(Fritzemeier & Kindl,1981;Jeandet
et al.,1995;Bais et al.,2000;李景明,2003;Pan et al.,2009),认为葡萄 Res 生物合成诱导因子
在 sts 基因转录和翻译水平上(提高了 STS 酶的数量)诱导葡萄 Res 合成。而更多的研究结果(包
括 Res 生物合成的信号转导调控)来源于葡萄细胞培养物(Wiese et al.,1994;Adrian et al.,1997;
Douillet-Breuil et al.,1999;Aziz et al.,2003;Poinssot et al.,2003;Tassoni et al.,2005;Vandelle et
al.,2006;Belhadj et al.,2008;Dubrovina et al.,2009;Faurie et al.,2009;Ferri et al.,2009)。但
是葡萄果实发育关键时期 Res 合成决定的酶学和分子机制尚未见研究。李晓东(2006)研究发现始
熟期前后是葡萄果实内 Res 合成积累转变的关键时期,成熟果实内 Res 含量的多少取决于始熟后一
段时期 Res 合成能力。应进一步研究葡萄果实发育过程中,尤其是始熟期前后,Res 代谢相关酶动
态,以及其基因表达调控的分子机制,对于揭示 Res 含量不同的葡萄种质 Res 代谢规律,以及人工
调控葡萄 Res 生物合成具有重要意义。
References
Adrian M,Daire X,Jeandet P,Breuil A C,Weston L A,Bessis R,Boudon E. 1997. Comparisons of stilbene synthase activity(resveratrol amounts
and stilbene synthase mRNAs levels)in grapevines treated with biotic and abiotic phytoalexin inducers. American Journal of Enology and
Viticulture,48:394–395.
Adrian M,Jeandet P,Bessis R,Joubert J M. 1996. Induction of phytoalexin(resveratrol)synthesis in grapevine leaves treated with aluminium
chloride(AlCl3). Journal of Agricultural and Food Chemistry,44:1979–1981.
Adrian M,Jeandet P,Douillet-Breuil A C,Tesson L,Bessis R. 2000. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation.
Journal of Agricultural and Food Chemistry,48:6103–6105.
Adrian M,Jeandet P,Veneau J,Weston L A,Bessis R. 1997. Biological activity of resveratrol,a stilbenic compound from grapevines,against
Botrytis cinerea,the causal agent for gray mold. Journal of Chemical Ecology,23:1689–1702.
Aziz A,Poinssot B,Daire X,Adrian M,Bezier A,Lambert B,Joubert J M,Pugin A. 2003. Laminarin elicits defense responses in grapevine and
induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions,16:1118–1128.
Bais A J,Murphy P J,Dry I B. 2000. The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development.
Australian Journal of Plant Physiology,27:425–433.
Belhadj A,Saigne C,Telef N,Cluzet S,Bouscaut J,Corio-Costet M F,Merillon J M. 2006. Methyl jasmonate induces defense responses in grapevine
and triggers protection against Erysiphe necator. Journal of Agricultural and Food Chemistry,54:9119–9125.
Belhadj A,Telef N,Cluzet S,Bouscaut J,Corio-Costet M F,Merillon J M. 2008. Ethephon elicits protection against Erysiphe necator in grapevine.
Journal of Agricultural and Food Chemistry,56:5781–5787.
Belhadj A,Telef N,Saigne C,Cluzet S,Barrieu F,Hamdi S,Merillon J M. 2008. Effect of methyl jasmonate in combination with carbohydrates
on gene expression of PR proteins,stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiology and Biochemistry,46:
493–499.
Bézier A,Lambert B,Baillieul F. 2002. Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea.
European Journal of Plant Pathology,108:111–120.
Cantos E,García-Viguera C,Pascual-Teresa S,Tomás-Barberán F A. 2000. Effect of postharvest ultraviolet irradiation on resveratrol and other
phenolics of cv. Napoleon table grapes. Journal of Agricultural and Food Chemistry,48:4606–4612.
1 期 李晓东等:葡萄白藜芦醇研究进展 179
Careri M,Corradini C,Elviri L. 2003. Direct HPLC analysis of quercetin and trans-resveratrol in red wine,grape,and winemaking byproducts.
Journal of Agricultural and Food Chemistry,51:5226–5231.
Casper F R,Quesne M. 1999. Resveratrol has antagonist activity on the art hydrocarbon receptor:Implications for prevention of dioxin toxicity.
Molecular Pharmacology,56:784–790.
Cavaliere C,Foglia P,Marini F,Samperi R,Antonacci D,Laganà A. 2010. The interactive effects of irrigation,nitrogen fertilisation rate,delayed harvest
and storage on the polyphenol content in red grape(Vitis vinifera)berries:A factorial experimental design. Food Chemistry,122:1176–1184.
Chen Lei,Han Ya-shan. 1999. Studies on the content of resveratrol in different cultivars and organs of grape. Acta Horticulturae Sinica,26 (2):
118–119. (in Chinese)
陈 雷,韩雅珊. 1999. 葡萄不同品种和组织白藜芦醇含量的差异. 园艺学报,26 (2):118–119.
Chong J,Poutaraud A,Hugueney P. 2009. Metabolism and roles of stilbenes in plants. Plant Science,177:143–155.
Cichocki M,Paluszczak J,Szaefer H,Piechowiak A,Rimando A M,Baer-Dubowska W. 2008. Pterostilbene is equally potent as resveratrol in
inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFκB,AP-1,COX-2,and iNOS in mouse epidermis. Molacular Nutration & Food
Research,52:62–70.
Clément M V,Hirpara J L,Chawdhury S H,Pervaiz S. 1998. Chemopreventive agent resveratrol,a nature product derived from grapes,triggers
CD95 signaling-dependent apoptosis in human tumer cells. Blood,92:996–1002.
Corder R,Douthwaite J A,Lees D M,Khan N Q,Santos A,Wood E,Carrier M. 2001. Health:Endothelin-1 synthesis reduced by red wine. Nature,
414:863–864.
Counet C,Callemien D,Collin S. 2006. Chocolate and cocoa:New sources of trans-resveratrol and trans-piceid. Food Chemistry,98:649–657.
Dani C,Oliboni L S,Agostini F,Funchal C,Serafini L,Henriques J A,Salvador M. 2010. Phenolic content of grapevine leaves(Vitis labrusca
var. Bordo)and its neuroprotective effect against peroxide damage. Toxicology in Vitro,24:148–153.
Delaunois B,Cordelier S,Conreux A,Clement C,Jeandet P. 2009. Molecular engineering of resveratrol in plants. Plant Biotechnology Journal,
7:2–12.
Deng Jian-ping,Jiang Feng,Yang Guo-shun. 2009. The study in resveratrol contents of thirteen grape cultivars. China Fruit & Vegetable,3:45–
46. (in Chinese)
邓建平,姜 丰,杨国顺. 2009. 13 个葡萄品种白藜芦醇含量的研究. 中国果菜,3:45–46.
Dercks W,Creassy L L. 1989. The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiological and
Molecular Plant Pathology,34:189–202.
DIntrono A,Paradiso A,Scoditti E,DAmico L,Paolis A D,Carluccio M A,Nicoletti I,DeGara L,Santino A,Giovinazzo G. 2009. Antioxidant
and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotechnology Journal,7:422–429.
Dixon R A,Paiva N L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell,7:1085–1097.
Douillet-Breuil A C,Jeandet P,Adrian M,Bessis R. 1999. Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C
elicitation. Journal of Agricultural and Food Chemistry,47:4456–4461.
Dubrovina A S,Kiselev K V,Veselova M V,Isaeva G A,Fedoreyev S A,Zhuravlev Y N. 2009. Enhanced resveratrol accumulation in rolB transgenic
cultures of Vitis amurensis correlates with unusual changes in CDPK gene expression. Journal of Plant Physiology,166:1194–1206.
Ector B J,Magee J B,Hegwood C P. 1996. Resveratrol concentration in muscadine berry,juice,pomace,purees,seeds,and wines. American Journal
of Enology and Viticulture,47:57–62.
Faurie B,Cluze S,Mérillon J M. 2009. Implication of signaling pathways involving calcium,phosphorylation and active oxygen species in methyl
jasmonate-induced defense responses in grapevine cell cultures. Journal of Plant Physiology,166:1863–1877.
Ferri M,Dipalo S C F,Bagni N,Tassoni A. 2010a. Chitosan elicits mono–glucosylated stilbene production and release in fed-batch bioreactor
cultures of grape cells. Food Chemistry,doi:10.1016/j.foodchem.2010.07.114.
Ferri M,Righetti L,Tasson A. 2010b. Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures. Journal of
Plant Physiology,doi:10.1016/j.jplph.2010.06.027.
Ferri M,Tassoni A,Franceschetti M,Righetti L,Naldrett M J,Bagni N. 2009. Chitosan treatment induces changes of protein expression profile and
stilbene distribution in Vitis vinifera cell suspensions. Proteomics,9:610–624.
Fornara V,Onelli E,Sparvoli F,Rossoni M,Aina R,Marino G,Citterio S. 2008. Localization of stilbene synthase in Vitis vinifera L. during berry
development. Protoplasma,233:83–93.
Fritzemeier K H,Kindl H. 1981. Coordinate induction by UV light of stilbene synthase phenylalanine ammonia-lyase and cinnamate 4-hydroxylase
in leaves Viaceae. Planta,151:48–52.
Fung R W,Gonzalo M,Fekete C,Kovacs L G,He Y,Marsh E,McIntyre L M,Schachtman D P,Qiu W. 2008. Powdery mildew induces
180 园 艺 学 报 38 卷
defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiology,146:236–249.
Gatto P,Vrhovsek U,Muth J,Segala C,Romualdi C,Fontana P,Pruefer D,Stefanini M,Moser C,Mattivi F,Velasco R. 2008. Ripening and
genotype control stilbene accumulation in healthy grapes. Journal of Agricultural and Food Chemistry,56:11773–11785.
Goldberg D M,Karumanchiri A,Ng E,Yan J,Diamandis E P,Soleas G J. 1995. Direct gas chromatographic-mass spectrometric method to assay
cis-resveratrol in wines:Preliminary survey of its concentration in commercial wines. Journal of Agricultural and Food Chemistry,43:1245–1250.
Goodwin P H,Hsiang T,Erickson L. 2000. A comparison of stilbene and chalcone synthases including a new stilbene synthase gene from Vitis
riparia cv. Gloire de Montpellier. Plant Science,151:1–8.
Guerrero R F,Puertas B,Fernández M I,Palma M,Cantos-Villar E. 2010. Induction of stilbenes in grapes by UV-C:Comparison of different
subspecies of Vitis. Innovative Food Science and Emerging Technologies,11:231–238.
Hain G,Reif H J,Krause E,Langebartels R,Kindl H,Vornam B,Wiese W,Schmelzer E,Schreier P H,StÖcker R H,Stenzel K. 1993. Disease
resistance results from foreign phytoalexin expression in a novel plant. Nature,361:153–156.
Hall D,Luca V D. 2007. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape(Vitis
labrusca). Plant Journal,49:579–591.
Hanzlíková I,Melzoch K,Filip V,Šmidrkal J. 2004. Rapid method for resveratrol determination by HPLC with electro chemical and UV detections
in wines. Food Chemistry,87:151–158.
Hollecker L,Pinna M,Filippino G,Scrugli S,Pinna B,Argiolas F,Murru M. 2009. Simultaneous determination of polyphenolic compounds in
red and white grapes grown in Sardinia by high performance liquid chromatography–electron spray ionisation-mass spectrometry. Journal of
Chromatography A,1216:3402–3408.
Hoos G,Blaich R. 1988. Metabolism of stilbene phytoalexins in grapevines:Oxidation of resveratrol in single cell cultures. Vitis,27:1–12.
Ingham J L. 1972. Plant disease resistance. Botanical Review,38:343–424.
Jang M,Cai L,Udeani G O,Slowing K V,Thomas C F,Beecher C W,Fong H H F,Farnsworth N R,Kinghorn D A,Mehta R G,Moon R
C,Pezzuto J M. 1997. Cancer chemopreventive activity of resveratrol,a nature product derived from grapes. Science,275:218–220.
Jeandet P,Bessis R,Gautheron B. 1991. The production of resveratrol(3,5,40-trihydroxystilbene)by grape berries in different developmental stages.
American Journal of Enology and Viticulture,42:41–46.
Jeandet P,Bessis R,Sbaghi M,Meunier P. 1995. Production of the phytoalexin resveratrol by grape as response to Botrytis attack under natural
conditions. Journal of Phytopathology-phytopathologische Zeitschrift,143:135–139.
Jeandet P,Douillet-Breuil A C,Bessis R,Debord S,Sbaghi M,Adrian M. 2002. Phytoalexins from the Vitaceae:Biosynthesis,phytoalexin gene
expression in transgenic plants,antifungal activity,and metabolism. Journal of Agricultural and Food Chemistry,50: 2731–2741.
Jeandet P,Jacquot C,Conreux A,Adrian M,Waffo-Téguo P. 2007. Role of stilbene oligomers(ε- and δ-viniferins)in the Botrytis cinerea grapevine
interaction // Jeandet P,Clément C,Conreux A. Macromolecules and secondary metabolites of grapevine and wine. Paris:Tech & Doc
Lavoisier:105–110.
Jeandet P,Sbaghi M,Bessis R,Meunier P. 1995. The potential relationship of stilbene(resveratrol)synthesis to anthocyanin content in grape berry
skins. Vitis,34:91–94.
Jin Xiao-li,Wei Ya-hui,Wei Yan-fei,Zhu Jian-guang,Guo Zhi-guang. 2004. Cloning of resveratrol synthase gene from Peanu. Acta Botanica
Boreali-Occidentalia Sinica,24:1007–1011. (in Chinese)
金晓丽,尉亚辉,魏彦飞,朱剑光,郭芝光. 2004. 葡萄白藜芦醇合成酶基因的克隆. 西北植物学报,24:1007–1011.
Katalinić V,Možina S S,Skroza D,Generalić I,Abramovič H,Miloš M,Ljubenkov I,Piskernik S,Pezo I,Terpinc P,Boban M. 2010. Polyphenolic
profile,antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia(Croatia). Food
Chemistry,119:715–723.
Kawada N,Seri S. 1998. Effects of antioxidants,resveratrol,quercetin,and N- acetyl cysteine,on the functions of cultured rat hepatic stellate cells
and kupffer cells. Hepathology,27:1265–1274.
Kopp P. 1998. Resveratrol,a phytoestrogen found in red wine. A possible explanation for the conundrum of the‘French paradox’? European Journal
of Endocrinology,138:619–620.
Korhammer S,Reniero F,Mattivi F. 1995. An oligostilbene from Vitis roots. Phytochemistry,38:1501–1504.
Kretschmer M,Kassemeyer H H,Hahn M. 2007. Age-dependent grey mould susceptibility and tissue-specific defence gene activation of grapevine
berry skins after infection by Botrytis cinerea. Journal of Phytopathology,155:258–263.
Krpes C S. 1993. Important constituents of grapevine and their effect on resistance to grey mould. Vinohrady Bratislava,31:21–22.
Lamuela-Raventos R M,Romero-Perez A I,Waterhouse A L,Torre-Boronat C. 1995. Direct HPLC analysis of cis- and trans- resveratrol and piceid
isomers in Spanish Vitis vinifera wines. Journal of Agricultural and Food Chemistry,43:281–283.
1 期 李晓东等:葡萄白藜芦醇研究进展 181
Langcake P,Cornford C A,Pryce R J. 1979. Identification of pterostilbene as a phytoalexin from vitis vinifera leaves. Phytochemistry,18:1025–1027.
Langcake P,McCarthy W V. 1979. The relationship of resveratrol production to infection of grapevine leaves by Botrytis cinerea. Vitis,18:244–253.
Langcake P,Pryce R J. 1976. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury.
Physiological and Plant Pathology,9:77–86.
Langcake P,Pryce R J. 1977. A new class of phytoalexins from grapevines. Experientia,33:151–152.
Langcake P. 1981. Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol,ε-Viniferin,α-Viniferin and pterostilbene.
Physiological Plant Pathology,18:213–226.
Leckband G,Lörz H. 1998. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal
resistance. Theoretical and Applied Genetics,96:1004–1012.
Lee S S,Lee S M,Kim M,Chun J,Cheong Y K,Lee J. 2004. Analysis of trans-resveratrol in peanuts and peanut butters consumed in Korea. Food
Research International,37:247–251.
Leiro J M,Varela M,Piazzon M C,Arranz J A,Noya M,Lamas J. 2010. The anti-inflammatory activity of the polyphenol resveratrol may be
partially related to inhibition of tumour necrosis factor-α(TNF-α)pre-mRNA splicing. Molecular Immunology,47:1114–1120.
Lekli I,Ray D,Das D K. 2009. Longevity nutrients resveratrol,wines and grapes. Genes & Nutrition,doi:10.1007/s12263-009-0145-2.
Li Gong-ke,Li Xiao-dong,Ma Ting,Bao Lun-jun,Zhang Zhan-xia. 2000. Determination of cis-resveratrol and trans-resveratrol in wine by GC-MS
using solid-phase-extraction sample pretreatment. Acta Scientiarum Naturalium Universitatis Sunyatseni,39:63–67. (in Chinese)
李攻科,李晓东,马 亭,鲍伦军,张展霞. 2000. SPE-GC-MS 法测定葡萄酒中顺反式白藜芦醇. 中山大学学报,39:63–67.
Li Jing-ming. 2003. The study of resveratrol inducement in postharvest grape and regulation in wine [Ph.D. Dissertation]. Beijing:China Agricultural
University. (in Chinese)
李景明. 2003. 葡萄采后白藜芦醇的诱导与葡萄酒中白藜芦醇的调控研究[博士论文]. 北京:中国农业大学.
Li Na,Li Xiao-mei,Huang Kai-sheng,Lin Mao. 2001. Structure and distribution of oligostilbenes. Acta Pharmaceutica Sinica,36:944–950. (in
Chinese)
李 娜,李小妹,黄开胜,林 茂. 2001. 白藜芦醇低聚体类似物的结构与分布. 药学学报,36:944–950.
Li Ting,Li Sheng,Zhang Qing-song,Zhang Zhen,Liu Yuan,Wu Yuan-yuan. 2009. Comparison of the resveratrol contents in different grape tissue.
Journal of Gansu Agricultural University,44:64–67. (in Chinese)
李 婷,李 胜,张青松,张 真,刘 媛,吴媛媛. 2009. 葡萄不同组织部位白藜芦醇含量的比较. 甘肃农业大学学报,44:64–67.
Li X D,Wu B H,Wang L J,Li S H. 2006. Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level.
Journal of Agricultural and Food Chemistry,54:8804–8811.
Li X D,Wu B H,Wang L J,Zheng X B,Yan S T,Li S H. 2009. Changes in trans-resveratrol and other phenolic compounds in grape skin and seeds
under low temperature storage after post-harvest UV-irradiation. Journal of Horticultural Science & Biotechnology,84:113–118.
Li Xiao-dong. 2006. The study of resveratrol inducement in postharvest grape and regulation in wine[Ph.D. Dissertation]. Beijing:China
Agricultural University. (in Chinese)
李晓东. 2006. 葡萄果实白藜芦醇含量及其与多酚代谢的关系和 UV 诱导的作用[博士论文]. 北京:中国农业大学.
Li Xiao-dong,Li Shao-hua,Yan Shu-tang. 2006. Optimization for extraction and determination of resveratrol in grapes by HPLC. Acta Horticulturae
Sinica,33 (4):836–838. (in Chinese)
李晓东,李绍华,闫树堂. 2006. 葡萄白藜芦醇提取和 HPLC 定量测定适宜条件的研究. 园艺学报,33 (4):836–838.
Li Xiao-dong,Zheng Xian-bo,Yan Shu-tang,Li Shao-hua. 2007. Effects of salicylic acid(SA),ultraviolet(UV-B and UV-C)on resveratrol
inducement in the skin of harvested grape berries. Journal of Fruit Science,24 (1):30–33. (in Chinese)
李晓东,郑先波,闫树堂,李绍华. 2007. 水杨酸和紫外线对诱导采后葡萄果皮内白藜芦醇合成作用研究. 果树学报,24 (1):30–33.
Li Xiao-mei,Li Na,Huang Kai-sheng,Lin Mao. 2002. Spectral characteristics,biogenesis and biological activities of oligostilbenes. Acta
Pharmaceutica Sinica,37 (1):69–74. (in Chinese)
李小妹,李 娜,黄开胜,林 茂. 2002. 白藜芦醇低聚体类似物的光谱特征、生源与生物活性. 药学学报,37 (1):69–74.
Li Xiao-xia,Qi Hong-lan,Zhang Cheng-xiao. 2004. Flow-injection chemiluminescence determination of resveratrol glucoside. Chinese Journal of
Analysis Laboratory,23 (4):31–33. (in Chinese)
李晓霞,漆红兰,张成孝. 2004. 流动注射化学发光法测定白藜芦醇苷. 分析试验室,23 (4):31–33.
Liswidowati M F,Hohmann F,Schwer B,Kindl H. 1991. Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta,
183:307–314.
Liu Fang-hua,Peng You-yuan,Ye Jian-nong. 2005. Determination of resveratrol in grape and grape wine by capillary electrophoresis with
electrochemical detection. Journal of Instrumental Analysis,24 (3):125–127. (in Chinese)
182 园 艺 学 报 38 卷
刘芳华,彭友元,叶建农. 2005. 毛细管电泳——电化学检测法测定葡萄和葡萄酒中的白藜芦醇. 分析测试学报,24 (3):125–127.
Liu W,Liu C,Yang C,Wang L,Li S. 2010. Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids
after UV-C irradiation. Food Chemistry,122:475–481.
Liu Xin-rong,Gao Li-ping,Xia Tao,Zou Wei-wei,Chen En-hao. 2008. Determination of resveratrol and piceid in grape peel by TCL-UV
spectrophotometry. Journal of Biology,25:63–65. (in Chinese)
刘新荣,高丽萍,夏 涛,邹伟伟,陈恩昊. 2008. 薄层层析—紫外分光光度法测定葡萄果皮中白藜芦醇及白藜芦醇苷. 生物学杂志,
25:63–65.
Liu Yuan,Li Sheng,Ma Shao-ying,Zhang Zhen,Xue Chong,Luo Li-yuan,Zhang Qing-song. 2010. Effects of cinnamic acid and different light
quality on callus multiplication and resveratrol accumulation in callus from Vitis vinifera. Journal of Gansu Agricultural University,45:41–46.
(in Chinese)
刘 媛,李 胜,马绍英,张 真,薛 冲,罗丽媛,张青松. 2010. 肉桂酸和不同光质对葡萄愈伤组织增殖及白藜芦醇累积的效应. 甘
肃农业大学学报,45:41–46.
Liu Yuan,Li Sheng,Ma Shao-ying,Zhang Zhen,Zhang Qing-song,Luo Li-yuan,Xue Chong,Pei Xiao-li. 2009. Effects of light quality on the
growth and development of in vitro cultured grape plantlets. Acta Horticulturae Sinica,36 (8):1105–1112. (in Chinese)
刘 媛,李 胜,马绍英,张 真,张青松,罗丽媛,薛 冲,裴晓利. 2009. 不同光质对葡萄试管苗离体培养生长发育的影响. 园艺
学报,36 (8):1105–1112.
Martinez J,Moreno J J. 2000. Effect of resveratrol,a natural polyphenolic compound,on reactive oxygen species and prostaglandin production.
Biochemical Pharmacology,59:865–870.
McMurtrey K D,Minn J,Pobanz K,Schultz T P. 1994. Analysis of wines for resveratrol using direct injection High- pressure liquid chromatography
with electrochemical detection. Journal of Agricultural and Food Chemistry,42:2077–2080.
Melchior F,Kindl H. 1991. Coordinate- and elicitor-dependent expression of stilbene synthase and phenylalanine ammonia-lyase genes in Vitis cv.
Optima. Archives Biochemistry and Biophysics,288:552–557.
Morales M,Alcantara J,Barcel A R. 1997. Oxidation of trans-resveratrol by a hypodermal peroxidase isoenzyme from Gamay rouge grape(Vitis
vinifera)berries. American Journal of Enology and Viticulture,48:33–38.
Nassiri-Asl M,Hosseinzadeh H. 2009. Review of the pharmacological effects of Vitis vinifera(grape)and its bioactive compounds. Phytotherapy
Research,23:1197–1204.
Okuda T,Yokotsuka K. 1996. Trans-resveratrol concentration in berry skins and wines from grapes grown in Japan. American Journal of Enology
and Viticulture,47:93–99.
Pace-Asciak C R,Hahn S,Diamandis E P,Soleas G,Goldberg D M. 1995. The red wine phenolics trans-resveratrol and quercetin block human
platelet aggregation and eicosanoid synthesis:Implications for protection against coronary heart disease. Clinica Chimica Acta,235:207–219.
Pace-Asciak C R,Rounova O,Hahn S E,Diamandis E P,Goldberg D M. 1996. Wines and grape juices as modulators of platelet aggregation in
healthy human subjects. Clinica Chimica Acta,246:163–182
Pan Q H,Wang L,Li J M. 2009. Amounts and subcellular localization of stilbene synthase in response of grape berries to UV irradiation. Plant
Science,176:360–366.
Park H J,Ko J M,An N,Kim Y S,Cha H C. 2009. Contents of trans-resveratrol in Korean grape cultivars,including‘Kyoho’. Journal of Plant
Biology,52:319–324.
Pezet R,Gindro K,Viret O,Richter H. 2004a. Effect of resveratrol,viniferins and pterostilbene on Plasmopara viticola zoospore mobility and
disease development. Vitis,43:145–148.
Pezet R,Gindro K,Viret O,Spring J L. 2004b. Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and
resistance of grapevine cultivars to downy mildew. Physiological and Molecular Plant Pathology,65:297–303.
Pezet R,Perret C,Jean-Denis J B,Tabacchi R,Gindro K,Viret O. 2003. Delta-viniferin a resveratrol dehydrodimer:One of the major stilbenes
synthesized by stressed grapevine leaves. Journal of Agricultural and Food Chemistry,51:5488–5492.
Pezet R,Pont V,Cuenat P. 1994. Method to determine resveratrol and pterostilbene in grape berries and wines using high-performance liquid
chromatography and highly sensitive fluorimetric detection. Journal of Chromatography A,663:191–197.
Pezet R,Pont V. 1995. Mode of toxic action of Vitaceae stilbenes on fungal cells // Daniel M,Purkayashta R P. Handbook of phytoalexin metabolism
and action. New York:Marcel Dekker:317–331.
Pezet R. 1998. Purification and characterization of a 32-kDa laccase-like,stilbene oxidase produced by Botrytis cinerea Fers.:Fr. FEMS
Microbiology Letters,167:203–208.
Pezet R,Pont V. 1990. Ultrastructural observations of pterostilbene fungitoxicity in dormant conidia of Botrytis cinerea pers. Journal of
1 期 李晓东等:葡萄白藜芦醇研究进展 183
Phytopathology-phytopathologische Zeitschrift,129:19–30.
Poinssot B,Vandelle E,Bentejac M,Adrian M,Levis C,Brygoo Y,Garin J,Sicilia F,Coutos-Thevenot P,Pugin A. 2003. The
endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Molecular
Plant-Microbe Interactions,16:553–564.
Pont V,Pezet R. 1990. Relation between the chemical structure and the biological activity of hydroxystilbene against Botrytis cinerea. Journal of
Phytopathology-phytopathologische Zeitschrift,130:1–8.
Pool R M,Creese L L,Frackelton A S. 1981. Resveratrol and the viniferins,their application to screening for disease resistance in grape breeding
programs. Vitis,20:136–145.
Poutaraud A,Latouche G,Martins S,Meyer S,Merdinoglu D,Cerovic Z G. 2007. Fast and local assessment of stilbene content in grapevine leaf
by in vivo fluorometry. Journal of Agricultural and Food Chemistry,55:4913–4920.
Pryce R J,Langcake P. 1977. α-Viniferin:An antifungal resveratrol trimer from grapevines. Phytochemistry,16:1452–1454.
Qi Gui-mei,Creasy G L. 2005. Induction of stilbenic compounds by Fosetyl-Al and UV radiation in grapevine leaves. Sino-overseas Grapvine &
Wine,4:12–16. (in Chinese)
亓桂梅,Creasy G L. 2005. 乙磷铝和紫外线照射对葡萄叶片中茋类化合物的诱导作用. 中外葡萄与葡萄酒,4:12–16.
Renaud S,Logeril M D. 1992. Wine,alcohol,platelets,and french paradox for coronary heart disease. Lancet,339:1523–1526.
Richter H,Pezet R,Viret O,Gindro K. 2005. Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera
during the interaction with Plasmopara viticola. Physiological and Molecular Plant Pathology,67:248–260.
Romero-Perez A I,Lamuela-Raventos R M,Andres-Lacueva C,de La Torre-Boronat M C. 2001. Method for the quantitative extraction of resveratrol
and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. Journal of Agricultural and Food Chemistry,49:210–
215.
Ros Barcelo A,Pomar F,Lopez-Serrano M,Pedreno M A. 2003. Peroxidase:A multifunctional enzyme in grapevines. Functional Plant Biology,
30:577–591.
Sbaghi M,Jeandet P,Bessis R,Leroux P. 1996. Metabolism of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to
grapevines. Plant Pathology,45:139–145.
Schmidlin L,Poutaraud A,Claudel P,Mestre P,Prado E,Santos-Rosa M,Wiedemann-Merdinoglu S,Karst F,Merdinoglu D,Hugueney P. 2008.
A stress-inducible resveratrol o-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiology,148:1630–1639.
Schnee S,Viret O,Gindro K. 2008. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiological and Molecular Plant
Pathology,72:128–133.
Schoonbeek H,Sorbo G D,Waard M A D. 2001. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol
and the fungicide fenpiclonil. Molecular Plant-Microbe Interactions,14:562–571.
Schoppner A,Kindl H. 1984. Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. Journal of Biological
Chemistry,259:6806–6811.
Serazetdinova L,Oldach K H,Lorz H. 2005. Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene
derivatives with antifungal activity. Journal of Plant Physiology,162:985–1002.
Siemann E H,Creasy L L. 1992. Concentration of the phytoalexin resveratrol in wine. American Journal of Enology and Viticulture,43:49–52.
Soleas G J,Diamandis E P,Goldberg D M. 1997. Resveratrol:A molecule whose time has come? And gone? Clinical Biochemistry,30:91–113.
Sotheeswaran S,Pasupathy V. 1993. Distribution of resveratrol oligomers in plants. Phytochemistry,32:1083–1092.
Sparvoli F,Martin C,Scienza A,Gavazzi G,Tonelli C. 1994. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene
biosynthesis in grape(Vitis vinifera L.). Plant Molecular Biology,24:743–755.
Stark-Lorenzen P,Nelke B,Hänbler G,Mühlbach H P,Thomzik J E. 1997. Transfer of a grapevine stilbene synthase gene to rice(Oryza sativa L.).
Plant Cell Reports,16:668–673.
Stein U,Blaich R. 1985. Studies on stilbene production and susceptibility to Botrytis in vitis species. Vitis,24:75–87.
Stein U,Hoos G. 1984. Methods for induction and determination of stilbene in the Vitaeae. Vitis,23:179–194.
Sun B,Ribes A M,Leandro M C,Belchior A P,Spranger M I. Stilbenes:2006. Quantitative extraction from grape skins,contribution of grape solids
to wine and variation during wine maturation. Analytica Chimica Acta,563:382–390.
Takaoka M. 1940. Phenolic substances of white hellebore(Veratrum grandiflorum Loes. fil.). II. Synthesis of resveratrol and its derivatives.
Proceedings of the Imperial Academy(Tokyo),Ser. III 3:1–16.
Tang Chuan-he,Yang Xiao-quan. 2003. Recent advances in bioactive components in grape and wine(III). China Food Additives,3:42–47(in
Chinese)
184 园 艺 学 报 38 卷
唐传核,杨晓泉. 2003. 葡萄及葡萄酒生理活性物质的研究概况(Ⅲ). 中国食品添加剂,3:42–47.
Tassoni A,Fornale S,Franceschetti M,Musiani F,Michael A J,Perry B,Bagni N. 2005. Jasmonates and Na-orthovanadate promote resveratrol
production in Vitis vinifera cv. Barbera cell cultures. New Phytologist,166:895–905.
Thomzik J E,Stenzel K,Stöcker R,Schreier P H,Hain R,Stahl D J. 1997. Synthesis of a grapevine phytoalexin in transgenic tomatoes(Lycopersicon
esculentum Mill.)conditions resistance against Phytophthora infestans. Physiological and Molecular Plant Pathology,51:265–278.
Trela B C,Waterhouse A L. 1996. Resveratrol:Isomeric molar absorptivities and stability. Journal of Agricultural and Food Chemistry,44:1253–1257.
Vandelle E,Poinssot B,Wendehenne D,Bentejac M,Alain P. 2006. Integrated signaling network involving calcium,nitric oxide,and active oxygen
species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Molecular Plant-Microbe Interactions,19:429–440.
Waffo-Teguo P,Krisa S,Richard T,Mérillon J M. 2008. Grapevine stilbenes and their biological effects // Ramawat K G,Mérillon J M. Bioactive
molecules and medicinal plants. Chapter doi:10.1007 / 978-3-540-74603-4_2,Springer:25–54.
Wang Ming,Qin Lei,Pan Su,He Yu-ping. 2010. Studies on resveratrol content in Vitis amurensis from different areas of Jilin province. Journal of
Jilin Agricultural University,32:268–270 (in Chinese)
王 铭,秦 磊,潘 肃,赫玉苹. 2010. 吉林省 4 个产地酿酒葡萄浆果中白藜芦醇含量测定. 吉林农业大学学报,32:268–270.
Wang W,Tang K,Yang H,Wen P F,Zhang P,Wang H L,Huang W D. 2010. Distribution of resveratrol and stilbene synthase in young grape plants
(Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiology and Biochemistry,
doi:10.1016/j.plaphy.2009.12.002
Wang X,Tong H,Chen F,Gangemi J D. 2010. Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. Food
Chemistry,123:1156–1162.
Wang Ying-hong,Li Na,He Wen-yi,Liu Xin,Li Bin,Lin Mao. 2001. Detecting composition of mixture of Ampelopsis sinica with LC-NMR
technology. Chinese Journal of Magnetic Resonance,18:229–234. (in Chinese)
王映红,李 娜,贺文义,刘 欣,李 斌,林 茂. 2001. 高效液相色谱—核磁共振联用技术在蛇葡萄根提取混合物中的应用研究. 波
谱学杂志,18:229–234.
Wiese W,Vornam B,Krause E,Kindl H. 1994. Structural organization and differential expression of three stilbene synthase genes located on a 13 kb
grapevine DNA fragment. Plant Molecular Biology,26:667–677.
Yang J,Martinson T E,Liu R H. 2009. Phytochemical profiles and antioxidant activities of wine grapes. Food Chemistry,116:332–339.
Yu Xing,Gao Li-ping,Xia Tao,Hu Ying-hui,Tan Hua-rong. 2007. HPLC Analysis of resveratrol and piceid during the development of grape berries.
Journal of Wuhan Botanical Research,25:84–88. (in Chinese)
余 兴,高丽萍,夏 涛,胡颍蕙,檀花蓉. 2007. 葡萄果实生长发育过程中白藜芦醇及其糖苷的 HPLC 测定. 武汉植物学研究,25:
84–88.
Zhang Hong-fang,Zhang Xiu-qi,Zheng Jian-bin,Gao Hong. 2001. Determination of resveratrol in grape wine by second order differential simple
Oscillographic Voltammetry. Journal of Instrumental Analysis,20:21–23. (in Chinese)
张宏芳,张秀琦,郑建斌,高 鸿. 2001. 葡萄酒中白藜芦醇的二次微分简易示波伏安法测定. 分析测试学报,20:21–23.
Zheng Xian-bo,Li Xiao-dong,Wu Ben-hong,Li Shao-hua. 2009a. Effects of storage temperature on resveratrol and its glycosides content in grape
berries skin following UV-C irradiation. Acta Horticulturae Sinica,36 (8):1099–1104. (in Chinese)
郑先波,李晓东,吴本宏,李绍华. 2009a. 贮藏温度对 UV-C 辐射葡萄果皮白藜芦醇及其糖苷含量的影响. 园艺学报,36 (8):1099–
1104.
Zheng Xian-bo,Li Xiao-dong,Wu Ben-hong,Wang Li-jun,Li Shao-hua. 2009b. Effects of UV-C irradiation on resveratrol and its glycosides content
in leaves and the berries of neighboring clusters of potted Beifeng grapevines(Vitis thunbergii × Vitis vinifera). Journal of Fruit Science,26:
461–465. (in Chinese)
郑先波,李晓东,吴本宏,王利军,李绍华. 2009b. UV-C 辐射对盆栽葡萄北丰叶片和邻近果穗果实白藜芦醇及其糖苷质量分数的影响.
果树学报,26:461–465.
Zheng Xian-bo,Li Xiao-dong,Wu Ben-hong,Wang Li-jun,Liu Chun-yan,Li Shao-hua. 2010. Synthesis of resveratrol and piceid in different grape
organs in response to UV-C irradiation. Acta Horticulturae Sinica,37 (8):1227–1234. (in Chinese)
郑先波,李晓东,吴本宏,王利军,刘春艳,李绍华. 2010. 葡萄离体叶片和果实白藜芦醇及其糖苷合成对 UV-C 辐射诱导的响应. 园
艺学报,37 (8):1227–1234.
Zhu Y J,Agbayani R,Jackson M C,Tang C S,Moore P H. 2004. Expression of the grapevine stilbene synthase gene VST1 in papaya provides
increased resistance against diseases caused by Phytophthora palmivora. Planta,220:241–250.