免费文献传递   相关文献

Relationship between Changes of Na+, K+, and Ca2+ Contents during Seed Germination and Salt Tolerance in Maize

玉米种子萌发过程中Na+、K+和Ca2+含量变化与耐盐性的关系


玉米耐盐品种登海9号和盐敏感品种浚单18在含0、50、100、150和200 mmol L-1 NaCl的营养液中萌发生长, 采用等离子质谱分别测定其萌动种子种皮、胚、胚乳和幼苗根、根颈、叶中Na+、K+、Ca2+的含量。结果表明, 随着培养液中NaCl浓度的增加, 玉米体内Na+含量逐渐升高, 在幼苗中表现地下部(根和根颈)显著高于地上部(叶); 在萌动种子中, 胚中Na+积累量显著高于种皮和胚乳。根系积累Na+能力较强, 胚拒Na+能力较弱, 种皮具有一定的Na+累积能力。随NaCl浓度的增加, K+和Ca2+含量逐渐降低, 尤其是Ca2+含量急剧减少, 达38.4%~55.9%(登海9号)和65.6%~78.2%(浚单18)。玉米根、根颈、种皮的Na+积累能力、叶的拒Na+能力和幼苗选择吸收Ca2+的能力可能与品种耐盐性有关。

Maize (Zea mays L.) seeds of a salt tolerant cultivar Denghai 9 and a salt sensitive cultivar Jundan 18 were germinated and grown in 1/4 and 1/2 Hoagland solutions with 0, 50, 100, 150, and 200 mmol L-1 NaCl, respectively. The contents of Na+, K+, and Ca2+ in testa, embryo, endosperm, roots, root crown, and leaf were measured by ICP Mass. The Na+ content increased accordantly with the NaCl concentration in culture solution. In young seedlings, Na+ content in root and root crown was higher than that in leaf; in germinating seeds, it was significantly higher in embryo than in testa and endosperm. The capacity of Na+ accumulation in roots was strong, while the capacity of Na+ rejection in embryo was weak. The testa could also accumulate some Na+. The K+ and Ca2+ contents in germinating seeds and young seedlings of maize decreased obviously under NaCl stress, and the Ca2+ content showed changes in a large scale, which was 38.4%–55.9% in Denghai 9 and 65.6%–78.2% in Jundan 18. The capacities of Na+ accumulation and rejection as well as the Ca2+ selective absorption might be related to salt-tolerance of maize cultivars


全 文 : ACTA AGRONOMICA SINICA 2008, 34(2): 333−336 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
 :  (973 ) (2006CB101700);   (2004BA520A08); 
(30471025); (NYHZX07-003);  (2006QAD02A09); !#$%&(2006790()
 : )*(1963–), +, !,-. /, 012345/6/7 8Tel: 13505346116; 9::!;<,=> 2 (;<
?/5@8E-mail: sddzsxf@163.comA
* BC4D(Corresponding author): EFG(1953–), H, IJ,  KL45/6/78Tel: 0538-8241591; E-mail: stdong@sdau. edu. cn
Received(MNOP): 2007-04-16; Accepted(QROPS: 2007-09-16.
DOI: 10.3724/SP.J.1006.2008.00333
 Na+K+ Ca2+ 
 1,2  1*  2 2
(1  ,  271018; 2,  253023)
 :  9   18 050100150 200 mmol L−1 NaCl
,  !#$%&( )**+ ,-../0 Na+K+Ca2+123456,
789 NaCl :;<=, >? Na+1@ABC, ,-5DEFG(. ./)HICJEKG(0);
( , * Na+LM1HICJ) *+2.NLM Na+OPQR, *S Na+OPQT, )UVW&
Na+MLOP27 NaCl:;<=, K+ Ca2+1@AXY, Z[ Ca2+1\]^_, ` 38.4%~55.9%( 9 )
65.6%~78.2%( 18)2../) Na+LMOP0S Na+OP ,-abcd Ca2+OPeOf
gVh2
: ; ij; Na+1; K+1; Ca2+1;  
Relationship between Changes of Na+, K+, and Ca2+ Contents during
Seed Germination and Salt Tolerance in Maize
SHANG Xue-Fang1,2, DONG Shu-Ting1,*, ZHENG Shi-Ying2, and WANG Li-Yan2
(1 Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, Shandong; 2 Dezhou College, Dezhou 253023, Shandong,
China)
Abstract: Maize (Zea mays L.) seeds of a salt tolerant cultivar Denghai 9 and a salt sensitive cultivar Jundan 18 were germinated
and grown in 1/4 and 1/2 Hoagland solutions with 0, 50, 100, 150, and 200 mmol L-1 NaCl, respectively. The contents of Na+, K+,
and Ca2+ in testa, embryo, endosperm, roots, root crown, and leaf were measured by ICP Mass. The Na+ content increased ac-
cordantly with the NaCl concentration in culture solution. In young seedlings, Na+ content in root and root crown was higher than
that in leaf; in germinating seeds, it was significantly higher in embryo than in testa and endosperm. The capacity of Na+ accumu-
lation in roots was strong, while the capacity of Na+ rejection in embryo was weak. The testa could also accumulate some Na+.
The K+ and Ca2+ contents in germinating seeds and young seedlings of maize decreased obviously under NaCl stress, and the Ca2+
content showed changes in a large scale, which was 38.4%–55.9% in Denghai 9 and 65.6%–78.2% in Jundan 18. The capacities of
Na+ accumulation and rejection as well as the Ca2+ selective absorption might be related to salt-tolerance of maize cultivars
Keywords: Maize; Salt stress; Na+ content; K+ content; Ca2+ content; Seed germination
 
,  !#$%&()*
+ C4 , ,-./!0 12345, 6-7
8 9 :[1-2]()*+#;<=,  >
? 1.7 dS m−1, @6>?ABCDEFGH?, -I
J 12%[3]()KLM NOP!QRS
-TU, HVOP9 WOPXYZ, [N Na+\]
; Na+^_`abWQRSbcdefg Ca2+, bcd
hijkl, bmC , QRan`YZjkl,
HV o pqrsNa+QR K+tuvwxy
334      34
z{|[1], }~€QRS Na+‚Yƒ„N…†
‡Lˆ‰Š
‹Œ!Ž()‘’“ ”
I Na+!•STU–—6˜™[4-13], š’›œP%
žŸ˜™ ¡¢£¤›œP’“¥¦S Na+tuW
TU¦¦§¨ , ©¦ªN«¬­
‡L®¯Š°±†’X²<=³()%žŸ, !X
² NaCl ];I, ˜™´ Na+K+W Ca2+!µ¶¶
·¥¸¹¹º#»¼, ½!%¾¿ÀoÁ
ÂÃ
1 
1.1 
ÄŝÆ3ÇŝÈÉ 9 ÊW<=
ŝËE 18
1.2 
PÄ 0.1% HgCl2Ì9 15 min, ÍOP‚ÎÏÐÑ
ÒÓÔ 12 hÕ:X²]; NaClÖ×(1/4 HoaglandÖ×
Ø|)ÙÚ, BÛ 1 dÎÏÜ, #ÝÞ:ÍOP‚ÙÚ,
+ßà(18~25)I 1NaCl áo];»% 0(CK)
50100150W 200 mmol L−1
â㻛œP: 50 mmol L−1 NaClÖ×ÎÏÐÑ
(’‚ÙÏ8§¨OPä-[14]), 坵¶¶·»O, _
105æç# 10 min, èA+ 80Iæ 48 héâ㻛
œP , NaCl Ö×ê: 1/2 Hoagland Ö×Ø| , ßà
(18~25 ) I 1 , ë1ìí¸î , 奦: 50 mmol
L-1 NaClÖ×ÎÏÐÑ, å¸í¹¹º»O, _ 105
æç# 10 min, Õ+ 80Iæ 48 h
åæОŸïð, 60Ðñ 6 hòóôâ 0.1 g
ïõ, +ö÷øùúûü#, D,-ÍOP‚ýÚ, D]
HNO3 3 mLÓÔ 12 h, ÕD HClO4 0.5 mLW HF 0.5 mL,
þ|„S, ”, _ 170æçD 6 h,
åÌ âþ! 80G ” Ð , ÕD
HClO4 0.5 mL Ð, : 0.3 mol L−1 HNO33
10mL, +Ÿ#
áoוÅ:OPa3 Na+K+W Ca2+
ä-
2 
2.1  NaCl  Na+
 1 x, ()•S Na+ä-­×# NaCl ];
CD©¿\, ìŝ² , š! NaCl ];#
200 mmol L−1î, ŝÈÉ 9Ê$ƒ%&(, ©
<=ŝËE 18 )Xƒ%&(!›œP#, ’¶
# Na+ä-*\, +,¶- Na+ƒ„./; !¥¦#, ¹
ºW¹ Na+ä-.\ , ©¸#ä-.!­×#
NaCl];# 150 mmol L−1î, ¹# Na+ä-N¸# Na+
ä- 3~40, 1w¹cTU Na+ƒ„.2
!›œP#, µ Na+ä-%ŝÈÉ 9
Ê¿\3;\+<=ŝËE 18, 1wµ42T
U Na+ƒ„ , 5!X²<=³ÅÝ26; ¶
Na+ä-, ! NaCl];áoîËE 18.\, ©\ NaCl
];áoîÈÉ 9 Ê.\!¥¦#, ¹W¹º# Na+
ä-, ÈÉ 9ÊC13;wx+ËE 18, ©¸# Na+ä
-C13;wx+¹W¹º#, ËE 18 7\3;w
x\+ÈÉ 9Ê, 1wŝƒ8åtu».9:
TU!¹ã, ;<0=”>?[10], @©A, Na+:”ã
M 
2.2  NaCl  K+ Ca2+
 1 W 2 x, ­×# NaCl ];CD, ì
ŝ# K+W Ca2+ä-BvIJ , šìŝÝ6X
xCDEF, 50100150 mol L−1 NaCláoA, K+
ä-»IJ 17.3%30.1%39.5% (ÈÉ 9Ê)W 20.1%
35.0%42.7% (ËE 18), Ca2+ä-»IJ 38.4%48.2%
55.9% (ÈÉ 9Ê)W 65.6%72.8%78.2%(ËE 18)^ ¢,
<=ŝËE 18 K+W Ca2+GHI+ŝÈÉ 9
Ê, $0N Ca2+!¶W¥¦X²ã»#, ¹¹ºW
¸# Ca2+ä-.\, 50~150 mol L−1 NaCl áoA,
 1  NaCl  Na+
Fig. 1 Na+ content in geminating seed and young seedling of maize under different NaCl concentrations
 2 :   Na+K+ Ca2+ 335
 1  NaCl  K+
Table 1 K+ content in germinating seeds and young seedlings of maize under different NaCl concentrations (mg g−1)
NaCl NaCl concentration

Cultivar

Part of seed or seedling 0 50 mol L−1 100 mol L−1 150 mol L−1 200 mol L−1
 Testa 4.41 0.60 2.58 0.99 2.18 0.78 2.03 0.42 1.20 0.95
 Embryo 37.47 0.69 32.57 2.34 29.90 0.78 24.85 1.13 18.51 1.17
 Root 44.27 3.66 34.24 2.80 30.59 3.58 25.91 2.00

 Root crown 36.00 1.84 25.23 1.91 25.00 2.23 21.57 1.65

 Leaf 40.00 1.20 39.53 1.56 25.71 1.55 23.68 1.65

 9
Denghai 9
 Mean 32.43 26.83 22.68 19.61

 Testa 3.46 0.65 1.39 0.79 1.28 0.44 1.09 0.41 0.90 0.24
 Embryo 37.23 1.54 31.43 1.37 22.06 1.29 20.00 1.35 16.91 0.96
 Root 34.95 1.87 33.25 1.37 27.97 1.09 21.18 1.77

 Root crown 35.96 1.55 28.00 1.19 22.67 2.34 19.39 1.25

 Leaf 50.00 1.16 35.01 1.75 31.00 1.12 30.89 1.77

 18
Jundan 18
 Mean 32.32 25.83 21.00 18.51

 2  NaCl  Ca2+
Table 2 Ca2+ content in germinating seeds and young seedlings of maize under different NaCl concentrations (mg g−1)
NaCl NaCl concentration

Cultivar

Part of seed or seedling 0 mol L−1 50 mol L−1 100 mol L−1 150 mol L−1 200 mol L−1
 Testa 1.78 0.99 0.91 0.21 0.76 0.18 0.62 0.12 0.57 0.22
 Embryo 1.11 0.40 0.84 0.18 0.72 0.16 0.59 0.18 0.57 0.12
 Root 14.19 1.29 8.47 1.39 7.92 0.90 7.05 1.91

 Root crown 4.00 1.38 3.59 1.67 2.99 0.79 2.97 1.06

 Leaf 6.67 0.77 4.52 0.53 2.70 0.40 1.99 0.81

 9
Denghai 9
 Mean 5.89 3.63 3.05 2.60

 Testa 1.38 0.60 0.64 0.21 0.58 0.18 0.53 0.29 0.43 0.20
 Embryo 0.85 0.13 0.75 0.11 0.64 0.15 0.55 0.11 0.51 0.20
 Root 18.57 1.30 12.12 1.23 11.41 1.70 5.25 0.53

 Root crown 5.91 1.10 4.00 0.95 2.71 1.29 2.32 0.85

 Leaf 6.88 0.88 2.37 1.43 1.87 0.96 1.16 0.39

 18
Jundan 18
 Mean 6.88 2.37 1.87 1.50

 Ca2+ 32.3%~70.2% ( 9 )
65.6%~83.1% ( 18),   40.3%~50.7%
( 9 ) 34.1%~69.1% ( 18)
3 
 ,  !#$%& ,
()*+,-./0123, Na+45, K+ Ca2+
67,  #$89:;<=>?, NaCl 12,
@ Na+ABCCDCECCDF;
GHIJKLMNO Na+PQ, GI Na+RST
U, VWXYZ[[15] \]^[[16]N_`La012,
bcde,fghi H-ATPase, jki H-ATPasel
H-PPase [h m)nohiljki Na+/H+pqrs
)n, tBS Na+Nuvnwx; yhIjzN Na+/q
Hrse{, |}yhI~€EI~,
-‚EIƒ„, …†r‡, LIˆ‰/Š‹, L
I‡ŒIdeIŽ‡, ‘’“”•[8]
DJKLMNO0PQ [17], W012–—R˜
NaCl –—T73, 0™š› 18  Na+Tœ0
› 9 ; ž NaCl –—Œ‡LMŸ—3, œ0›
NO Na+PQ ‡:¡, ¢@ Na+£, ¤¥e
0™š›, ¦?DNO Na+PQ§T¨EJK
©ª Na+NPQ, VK« N¬­®¯
/012, °±²³œ0n›NllE
Na+ª©PQlO Na+PQ´oµ¯ Ca2+z¶[·¸
¹/?º»¼, ½¾W›œ0nK˜, ¿-LÀ=Á
336      34
References
[1] Schroeder J I, Ward J M, Gassmann W. Perspectives on the
physiology and structure of inward-rectifying K+ channels in
higher plants: Biophysical implications for K+ uptake. Annu Rev
Biophys Biomol Struct, 1994, 23: 441−471
[2] Liu Z-W(), Huang G-H(). Effect of different NaCl
concentrations on plant growth and nitrogen uptake of summer
cornPlant Nutr Fer Sci( ), 2004, 10(2):
132−136(in Chinese with English abstract)
[3] Yu S-W(), Tang Z-C(). Plant Physiology and Mo-
lecular Biology(   ). Beijing: Science Press,
1998. p 754(in Chinese)
[4] Guo F-Q(), Tang Z-C(). Difference in Na+, K+ ac-
cumulation in the salt-tolerant mutant and the wild type of wheat
during exposure to NaCl stress. Acta Bot Sin( ), 1999,
41(5): 515−518 (in Chinese with English abstract)
[5] Jia H-T( !), Zhao K-F(#$). Effects of Na+, K+, Cl- on
the absorption of ions of Suaeda salsa and Zea mays seedlings
under salt stresses. Shandong Norm Univ(Nat Sci) (%&(
·)*+,), 1998, 13(4): 437−440(in Chinese with English
abstract)
[6] Wang B-S(-.%), Zhao K-F(#$). Changes in Na and Ca
concentrations in the apoplast and symplast of the etiolated corn
seedlings under NaCl stress. Acta Agron Sin(/ ), 1997,
23(1): 27−33(in Chinese with English abstract)
[7] Xia Y(01), Lin S(23), Zhang F-S(456), Hu H-J(789),
Tao H-B(: ;). Effect of NaCl stress on growth and mineral
nutrient contents of maize varietiesActa Prataculturae Sin (<=
), 2000, 9(3): 24−31(in Chinese with English abstract)
[8] Yu B-J(>?@ ), Luo Q-Y(AB ), Liu Y-L(CD ).
Re-transportation of ions in Glycine soja and Glycine max seed-
lings under NaCl stressJ Plant Physiol Mol Biol(  
 ), 2003, 29(1): 39−44(in Chinese with English ab-
stract)
[9] Niu X, Bressan R A, Hasegawa P M. Ion homeostasis in NaCl
stress environments. Plant Physiol, 1995, 109: 735−742
[10] Mac Robbie E A C. Signalling in guard cell and regulation of ion
channel activity. J Exp Bot, 1997, 48: 515−528
[11] Yang X-Y(EFG), Zhang W-H(H), Wang Q-Y(-I),
Liu Y-L(CD). Salt tolerence of wild soybeans in Jiangsu and
its relation with ions distribution and selective transporta-
tion Chin J Appl Ecol (JKL ), 2003, 14(12):
2237−2240(in Chinese with English abstract)
[12] Hasegawa P M, Bressan R A, Zhu J K, Bohnert. Plant cellular and
molecular responses to high salinity. Annu Rev Plant Physiol
Plant Mol Biol, 2000, 51: 463−499
[13] Wang L-Y(-MN), Zhao K-F(#$). Some physiological re-
sponse of Zea mays under salt-stress. Acta Agron Sin (/ ),
2005, 31(2): 264−266(in Chinese with English abstract)
[14] Xia Y(01), Lin S(23), Zhang F-S(456), Li J(OP), Hu
H-J(789). Studies of mechansm of maize salt-resistance af-
fected by foliar leaching. Acta Agron Sin(/ ), 2001, 27(3):
397−403(in Chinese with English abstract)
[15] Qu Y-G(QRS), Zhao K-F(#$). Comparative studies on
growth and physiological reaction of Zea mays under NaCl and
Na2CO3 stresses. Acta Agron Sin (/  ), 2004, 30(4):
334−341(in Chinese with English abstract)
[16] Wang L-Y(-MN), Zhao K-F(#$). Effect of NaCl stress on
ion compartmentation, photosynthesis and growth of Salicornia
bgelovii Torr. J Plant Physiol Mol Biol(   
), 2004, 30(1): 94−98 (in Chinese with English abstract)
[17] Wang B-S(-.%), Zou Q(TU). Effects of NaCl stress on the
tonoplast ATPase and PPase activity in roots, sheaths and blades
of sorghum seedlings. Acta Phyotophysiol Sin ( ),
2000, 26(3): 181−188(in Chinese with English abstract)