全 文 :中华青荚叶的一个新环烯醚萜甙?
来国防1 ,2 , 王易芬1 , 王 梅2 , 罗士德1
( 1 中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室 , 云南 昆明 650204;
2 云南省药物研究所 , 云南 昆明 650011)
摘要 : 从山茱萸科中华青荚叶 ( Helwingia chinensis) 的乙酸乙酯部份分离得到一个新环烯醚萜和三个已知
环烯醚萜化合物 , 通过现代波谱技术 , 确定其结构为 10- O-trans-cinnamoyl oleoside ( 1) , 10-hydroxyoleoside11-
methyl ester (2) , jasminoside (3 ) and 10-hydroxyoleuropein (4)。
关键词 : 中华青荚叶 ; 山茱萸科 ; 环烯醚萜甙
中图分类号 : Q 946 文献标识码 : A 文章编号 : 0253 - 2700(2006)06 - 676 - 03
A New Secoiridoid Glycoside from Helwingia
chinensis ( Cornaceae)
LAI Guo-Fang
1 , 2
, WANG Yi-Fen
1
, WANG Mei
2
, LUO Shi-De
1
(1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Instituteof Botany, Chinese Academy
of Sciences, Kunming 650204 , China; 2 Yunnan Institute for Food and Drug Control , Kunming 650011 , China)
Abstract: A new secoiridoid glycoside, together with tree secoiridoid glycosides were isolated from the AcOEt fraction of
the aerial part of Helwingia chinensis . Their structures were elucidated to be 10- O-trans-cinnamoyl oleoside ( 1 ) , 10-
hydroxyoleoside11-methyl ester (2) , jasminoside (3 ) and 10-hydroxyoleuropein (4) by detailed spectroscopic analysis .
Key words: Helwingia chinensis; Cornaceae; Iridoid glycoside; Oleoside
Helwingia chinensis Batal ( Cornaceae) is distrib-
uted in thewestern and southern regionsof China . The
aerial part of this plant has longbeen used to treat dys-
entery, hematochezia, swelling, etc ( Wu et al ,
1990) . Our previous investigationof theplant reported
the isolation and characterization of three new triterpe-
noids (Lai et al , 2003) . In continuation of our work
on this genus, a new secoiridoid glycoside ( 10- O-
trans-cinnamoyl oleoside, 1 ) and three know secoiri-
doid glycosides ( 10-hydroxyoleoside 11-methyl ester,
jasminoside and 10-hydroxyoleuropein, 2 - 4 ) (Shen
et al , 1990; Kenichiro et al , 1982 ) were obtained
from H. chinensis . In this paper, we describe the
structures elucidation by various NMR spectra analysis .
Results and Discussion
Compound 1 , white powder, [α]20D - 246 ( c
0 .50 , CHCl3 ) , showed a molecular ion peak at m?z
535 [M-H] + in the negative FAB mass spectrum . In
combination with 1 H and 13 C NMR spectra ( see Table
1) , its molecular formula was deduced to be C25 H28
O13 , which was consistent with the data of negative
high-resolution TOFMS at m?z 535 .1452 [ M-H ] +
云 南 植 物 研 究 2006 , 28 (6) : 676~678
Acta Botanica Yunnanica
? ?Foundation item: This work was supported by Key Scientificand Technological Project of Yunnan Province ( 2001XY13 and 2004GP03 ) and thehi-
tech research and development program of China ( abbreviation“ 863 Program”) from the Ministry of Science and Technology of China
(2004AA2Z3321)
Received date: 2006 - 06 - 28 , Accepted date: 2006 - 08 - 03
作者简介 : 来国防 (1972 - ) 男 , 博士 , 主管药师 , 主要从事植物化学及药品质量标准的研究。
( calcd . for 535 .1451 ) . The UV absorption maxima
(270 nm) and IR bands ( 1700 and 1635 cm- 1 ) sug-
gested the presence of a ferulic chromophore (Shen et
al , 1997) . The 1 H NMR spectrum indicated the pr-
esenceof a trans-double bond atδ6 .31 ( 1H, d, J
= 16 .0 Hz ) , 7 . 56 ( 1H, d, J = 16.0 Hz ) , a
mono-substituted benzene ring atδ7 .40 (2H, dd, J
= 3 .6 , 6 .6 Hz ) , 7 . 25 ( 2H, m) , 7 . 41 ( 1H,
m) , two olefinic protons atδ7 .40 (1H, s) and 6 .08
(1H, t, J = 6 .4 Hz) , a anomeric proton signal atδ
4 .71 (1H, d, J = 7 .7 Hz) . The 13 C NMR spectrum
exhibited signals for 25 carbons, whiletheDEPT NMR
spectrumshowed the presenceof 3 methylene carbons,
16 methine carbons, 6 quaternary carbons ( including
three carbonyl groups) . Onbased abovedata1 showed
typical signals froma 10-hydroxyoleoside except for the
signals of a trans-cinnamoyl moiety and a glucoside
(Shen et al , 1996 ) . Careful investigation of the 1 H
and
13
C NMR spectroscopic dataof 1 revealed its struc-
ture to be very similar to that reported for jasminoside
(Shen et al , 1990 ) , except that1 was the absenceof
methoxyl group . The HMBC spectrumdisplayed corre-
lations of the signals atδ 2 .80 ( 1H, dd, J = 3 .9 ,
14 .7 Hz, H - 6α) , 2 . 32 ( 1H, dd, J = 10 .2 ,
14 .7 Hz, H - 6β) in the 1 H NMR spectrum with that
atδ173 .5 (COOH) , so the additional carboxyl group
should be located at C - 6 . Meantime the ROESY
spectrum showed the correlations of the signals atδ
3 .91 ( 1H, dd, 3 . 8 , 9 . 8 Hz, H - 5 ) with those at
5 .76 ( 1H, s, H - 1 ) , 2 . 32 ( 1H, dd, J = 10 .2 ,
14 .7 Hz, H - 6β) , 4 . 82 (1H, dd, J = 5 .5 , 13 .4
Hz, H - 10α) , 4 . 75 ( 1H, dd, J = 1 .2 , 13.4 Hz,
H - 10β) , which indicated theα-CH2 COOH substitu-
tion inC - 5 . On basis of abovediscussion, the struc-
ture of 1 was determined to be 10- O-trans-cinnamoyl
oleoside ( named Chinenicside A) .
Fig . 1 The key HMBC ( left) and ROESY ( right) correlations of compound 1
Experimental
General experimental procedures Optical rotation was tak-
en on a SEPA-300 polarimeter . The IR (KBr) spectra were ob-
tained onaBio-Rad FTS-135 spectrometer, νincm- 1 . UV spectra
were obtained on a Shimadzu double-beam210A spectrophotometer,
λmax in nm . FABMS data were obtained on a VG AutoSpec-3000
spectrometers . 1 H- , 13C- , and2D-NMR spectra were recorded on
aBruker AM 400 NMR and a DRX-500 spectrometer with TMS as
internal standard . Silica gel (200 - 300 mesh, or silica gel H, 10
- 40μm) for column chromatography and silicagel plate (GF254 ) for
thin-layer chromatography (TLC) were obained from the Qingdao
MarineChemical Factory, Qingdao, Shandong Province China .
Plant material The aerial parts of Helwingia chinensis
were collected in xishuangbanna, Yunnan, P . R . China in
July 2002 (Lai et al, 2003) .
Extraction and Isolation The air-dried aerial parts ( 40
kg) wereextracted twicewith95% EtOH?H2 O at r. t . . The sol-
vent was evaporated at 50℃ to give a deep-brown waxy residue,
which was suspended in H2 O and extracted with AcOEt ( 3×
2000 ml ) . The AcOEt extract ( 374 g) was fractionated by CC
(silica gel (200 - 300 mesh, CHCl3?MeOH 100∶1 , 50∶1 , 20∶
1 , 10∶1) to afford several fractions (A-G) . The fraction C was
rechromatographed (silica gel (200 - 300 mesh) , CHCl3?MeOH
50∶1 to 10∶1) to afford three sub-fractions . The second fraction
(2. 1 g) was purified by repeated CC (silica gel ; CHCl3?MeOH
50∶1 , 30∶1) and then Sephadex LH-20 eluted by MeOH togive
7766 期 LAI Guo-Fang et al : A New Secoiridoid Glycosidefrom Helwingia chinensis ( Cornaceae)
pure 1 (1 .1 g) and 2 (24 mg) . The third fraction (1 . 5 g) was
purified by CC (silica gel ; CHCl3?MeOH 20∶1) and then Seph-
adex LH-20 (MeOH) to give pure 3 (900 mg) and 4 ( 33 mg) .
Chinenicside A ( 1 ) : white powder, molecular formula:
C25 H28 O13 , [α]20D = - 246°( c 0 .5 , CHCl3 ) , IR (KBr) νmax :
3432 , 2926 , 2651 , 2021 , 1700 , 1635 , 1496 , 1450 , 1399 ,
1333 , 1312 , 1282 , 1204 , 1176 , 1075 , 1042 , 990 , 770 ,
685 , 576 , 484 cm- 1 ; negative FABMS: 535 [M-H] + (100) ,
473 (13) , 312 (8) ; 1 H NMR and 13C NMR (table 1) .
Table 1 1 H and 13 C NMR spectral data of compound 1 ( in Pyridine,
500 MHz and 125 MHz, respectively, J in Hz)
NO . δH δC NO . δH δC
1 ?5 .76s 93 3. 3d 2 !″, 6″ 7 #. 40dd (3 /.6 , 6. 6) 127 .9d
3 ?7 .40s 153 E. 8d 3 !″, 5″ 7 . 25m 128 .7d
4 ?107 J. 8s 4 V″ 7 . 41m 130 .3d
5 ?3 ~. 91dd (3. 8 , 9 ?. 8) 32 3. 3d 7 V″ 7 . 56d (16 Y. 0) 145 .3d
6 ?2 {.80dd (3 v.9, 14 ?.7) 39 ;. 9t 8 V″ 6 . 31d (16 K. 0) 117 .2d
2 y.32dd (10 ?.2, 14 ?.7) 9 V″ 168 .3s
7 ?173 J. 5s 1 V′ 4 . 71d (7 &. 7 ) 99 .6d
8 ?6 .08t ( 6 q. 4 ) 123 E. 1d 2 V′ 3 . 30m 72 .9d
9 ?132 J. 2s 3 V′ 3 #. 40 (1H , t, 8 .8) 76 .3d
10 ?4 {.82dd (5 v.5, 13 ?.4) 60 ;. 7t 4 V′ 3 #. 33 (1H , t, 7 .9) 69 .6d
4 {.75dd (1 v.2, 13 ?.4) 5 V′ 3 . 22m 76 .1d
11 ?167 J. 0s 6 V′ 3 .77dd (2 ?.0, 12.4) 61 .4t
1 ?″ 134 J. 0s 3 .60dd (5 ?.3, 12.4)
10-Hydroxyoleoside 11-methyl ester ( 2 ) : white powder,
molecular formula: C17 H24 O12 , negative FAB MS m?z ( % ) :
419 [M-H] + (100) ; 1 H NMR ( 400 MHz, CD3 OD) δ: 5 . 90
(1H , br s, H - 1 ) , 7 . 62 ( 1H, br s, H - 3 ) , 3 . 65 ( 1H,
dd, J = 9 .0 , 5.8 Hz, H - 5 ) , 2 . 16 ( 1H , dd, J = 13 .8 ,
9 .0 Hz, H - 6a) , 2 . 62 ( 1H, dd, J = 13 .8 , 5 .8 Hz, H -
6b) , 6 . 04 ( 1H , br t, J = 6 .5 Hz, H - 8 ) , 3 . 65 ( 3H,
OMe) , 4 . 86 (1H, d, J = 7 .5 Hz, H - 1′) ; 13 C NMR ( 100
MHz, CD3 OD) δ: 95 .0 ( d, C - 1 ) , 154 .9 ( d, C - 3 ) ,
110 .2 (s, C - 4) , 32 .9 ( d, C - 5) , 43 .6 (t, C - 6) , 178 .2
(s, C - 7) , 128 .8 ( d, C - 8) , 131 .9 ( s, C - 9 ) , 60.0 ( t,
C - 10) , 168 .9 (s, C - 11) , 52 .8 (q, OMe) , 101 .2 ( d, C
- 1′) , 74 .5 ( d, C - 2′) , 78 .2 ( d, C - 3′) , 71.4 ( d, C -
4′) , 77 .8 ( d, C - 5′) , 62 .7 ( t, C - 6′) .
Jasminoside ( 3 ) : white powder, molecular formula: C26
H30 O13 , negative FAB MS m?z ( % ) : 549 (95) , 402 (26) ,
222 (16) , 147 (100) ; 1 H NMR (400 MHz, C5 D5 N) δ: 2 .70
(1H , dd, J = 5.9 , 15 .5 Hz, H - 6) , 3 .18 ( 1H, dd, J =
3 .2 , 15.5 Hz, H - 6) , 3. 49 (3H, s, COO - 颓Me) , 4. 04 (1H ,
dd, J = 3.2 , 5.9 Hz, H - 5) , 6. 49 (1H, br s, H - 1) , 6 .58
(1H, t, J = 6 .5 Hz, H - 8 ) , 6 .65 (1H, d, J = 16 .0 Hz, -
CH= - 蟼CH-Φ) , 7 .83 (1H, d, J = 16 .0 Hz, -CH = 蟼CH-Φ) ,
7 .94 (1H, s, H - 3) , 5 .55 ( 1H , d, J = 7 .8 Hz, H - 1′) ,
7 .59 (2H , m, H - 4′, 8″) , 7 .36 (2H , m, H - 5′, 7″) ; 13 C
NMR (100 MHz, C5 D5 N)δ: 93 .9 (d, C- 1) , 153.6 (d, C -
3) , 109.8 (s, C - 4 ) , 32.2 ( d, C - 5 ) , 40.5 (t, C - 6) ,
172 .2 (s, C - 7) , 123 .7 ( d, C - 8) , 134.4 (s, C - 9) , 61.5
(t, C - 10) , 168 .9 (s, C - 11) , 101.6 (d, C - 1′) , 74 .9 ( d,
C- 2′) , 79 .1 ( d, C - 3′) , 71 .5 ( d, C - 4′) , 78 .5 (d, C -
5′) , 62.6 ( t, C - 6′) , 51 .7 ( q, OMe) , 166.7 ( s, CO) ,
145 .3 ( d, C - 1″) , 118 .7 ( d, C - 2″) , 135.0 (s, C - 3″) ,
128 .7 (d, C - 4″) , 129 .5 ( d, C - 5″) , 130 .9 ( d, C - 6″) ,
128 .7 (d, C - 7″) , 129 .5 (d, C - 8″) .
10-Hydroxyoleuropein ( 4 ) : white powder , molecular for-
mula: C25 H32 O14 , negative FAB MS m?z ( % ) : 555 [M-H] +
(100) ; 1 H NMR (100 MHz, CD3 OD) δ: 5. 95 (1H, br s, H
- 1) , 7. 54 ( 1H, br s, H - 3 ) , 2 .51 ( 1H, dd, J = 9 .4 ,
14.6 Hz, H - 6a) , 2 . 74 (1H , dd, J = 4.2 , 14.6 Hz, H -
6b) , 6 . 16 ( 1H , br t, J = 6 .4 Hz, H - 8 ) , 3 .60 ( 3H ,
OMe) , 4 . 85 ( 1H, d, J = 7.6 Hz, H - 1″) ; 13 C NMR ( 100
MHz, CD3 OD) δ: 94.7 ( d, C - 1) , 155 .8 ( d, C - 3) , 110.0
(s, C - 4) , 32 .2 ( d, C - 5 ) , 41.2 (t, C - 6) , 173 .2 (s, C
- 7) , 129 .4 ( d, C - 8) , 130.9 (s, C - 9) , 59.5 (t, C - 10) ,
168 .5 (s, C - 11) , 66 .8 (t, C - 1′) , 35 .4 (t, C - 2′) , 130.9
(s, C - 3′) , 116 .3 ( d, C - 4′) , 146.3 (s, C - 5′) , 144.8
(s, C- 6′) , 117.0 ( d, C - 7′) , 124 .4 ( d, C - 8′) , 52.5 ( q,
OMe) , 101.2 (d, C - 1″) , 74 .4 ( d, C - 2″) , 78.2 ( d, C -
3″) , 71.5 ( d, C - 4″) , 77 .8 (d, C - 5″) , 62 .7 (t, C - 6″) .
Acknowledgements: The authors are grateful to the analytical
group of State Key Laboratory of Phytochemistry and Plant Re-
sources in West China, Kunming Institute of Botany, Chinese
Academy of Sciences for measuring NMR , MS and IR data .
References:
Keni ?chiro I , Takao T , Hiroyuki I , et al , 1982 . A secoiridoid glu-
coside of Jasminumhumilevar. revolutum [ J ] . Phytochemistry, 21
(2 ) : 359—361
Lai ?GF , Wang Y F , Lu CH , et al , 2003 . Three novel triterpenoids
from the aerial part of Helwingia chinensis [ J ] . Helv Chim Acta,
86 : 2136—2141
Shen ?YC , Lin CY , Chen CH , 1990 . Secoiridoid glycosides from J as-
minummultiflorum [ J ] . Phytochemistry, 29 (9) : 2905—2912
Shen ?YC , Lin SL , 1996 . New secoiridoid glucosides from J asminum
lanceolarium [ J ] . Planta Med, 62 , 515
Shen ?YC, Lin SL , Chein CC, 1997 . Three secoiridoid glucosides from
J asminumlanceolarium [ J ] . Phytochemistry, 44 (5) : 891—895
Wu Z ?Y , Zhou TY , Xiao PG, 1990 . Xinhua Compendium of Materia
Medica [M ] . Shanghai : Shanghai Science and Technology Press,
vol . 5 , 285
876 云 南 植 物 研 究 28 卷