免费文献传递   相关文献

Chemical constituents in anti-inflammatory effective fraction from roots of Pulsatilla cernua

朝鲜白头翁抗炎有效部位化学成分研究



全 文 :中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 18 期 2013 年 9 月

·2508·
朝鲜白头翁抗炎有效部位化学成分研究
王长福 1,孙世芹 2,王有志 2,辛 萍 2*
1. 黑龙江中医药大学 教学实验中心,黑龙江 哈尔滨 150040
2. 哈尔滨医科大学,黑龙江 大庆 163319
摘 要:目的 筛选朝鲜白头翁 Pulsatilla cernua 的抗炎有效部位并研究其化学成分。方法 将朝鲜白头翁干燥根以 70%乙
醇回流提取,提取物经大孔吸附树脂柱色谱洗脱,依次得到水及 30%、50%、95%乙醇洗脱组分,通过二甲苯致小鼠耳廓肿
胀实验以确定其抗炎有效部位;采用各种柱色谱分离纯化抗炎有效部位中的化合物,根据理化特征并结合波谱学数据分析鉴
定化合物的结构。结果 朝鲜白头翁根经大孔吸附树脂柱色谱,50%乙醇洗脱组分具有较强的抗炎活性,对其进行系统的化
学成分研究,共分离得到 12 个化合物,分别鉴定为 (+)-8-羟基松脂素-8-O-β-D-吡喃葡萄糖苷(1)、3, 4:3′, 4′-bis (methylenedioxy)-
9′-hydroxyl-lignane-9-methyl-O-β-D-glucopyranoside(2)、prinsepiol-4-O-β-D-glucopyranoside(3)、(+)-环合橄榄树脂素-6-O-β-D-
葡萄吡喃糖苷(4)、6-O-(E)-feruloyl-β-glucopyranoside(5)、6-O-(E)-feruloyl-α-glucopyranoside(6)、齐墩果酸-3-O-β-D-吡喃
葡萄糖-(1→2)-β-D-吡喃葡萄糖-(1→3)-β-D-吡喃葡萄糖(7)、常春藤苷基-3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡喃葡萄糖-
(1→3)-β-D-吡喃葡萄糖-(1→3)-β-D-吡喃葡萄糖(8)和常春藤苷基-3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡喃葡萄糖-(1→3)-β-D-
吡喃葡萄糖(9)、齐墩果酸-3-O-β-D-吡喃葡萄糖-(1→2)-α-L-吡喃阿拉伯糖苷(10)、刺囊酸-3-O-β-D-吡喃葡萄糖-(1→2)-α-L-
吡喃阿拉伯糖苷(11)和羽扇豆醇(12)。结论 朝鲜白头翁 50%乙醇洗脱组分为其抗炎有效部位,该部位中得到的化合物
2~4、6、8 和 9 为首次从白头翁属植物中分离得到。
关键词:朝鲜白头翁;抗炎;(+)-环合橄榄树脂素-6-O-β-D-葡萄吡喃糖苷;常春藤苷基-3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡喃
葡萄糖-(1→3)-β-D-吡喃葡萄糖;羽扇豆醇
中图分类号:R284.1 文献标志码:A 文章编号:0253 - 2670(2013)18 - 2508 - 07
DOI: 10.7501/j.issn.0253-2670.2013.18.004
Chemical constituents in anti-inflammatory effective fraction from roots
of Pulsatilla cernua
WANG Chang-fu1, SUN Shi-qin2, WANG You-zhi2, XIN Ping2
1. Heilongjiang University of Chinese Medicine, Harbin 150040, China
2. Harbin Medical University, Daqing 163000, China
Abstract: Objective To screen the anti-inflammatory effective fraction from the roots of Pulsatilla cernua and to study the chemical
constituents. Methods The dried roots of P. cernua were extracted with 70% EtOH under reflux conditions, the extract was fractioned
by macroporous resin column with H2O, 30%, 50%, and 95% EtOH, and four fractions were obtained, respectively. The
anti-inflammatory effective fraction was determined by the experiment of xylene-induced mice ear swelling. Compounds were isolated
and purified from the anti-inflammatory effective fraction with various column chromatographic methods. Their structures were
elucidated on the basis of physicochemical characters and spectral analyses. Results The 50% EtOH fraction from macroporous resin
column was more effective to the mice with inflammation than the others and 12 compounds were isolated from this fraction:
(+)-8-hydroxypinoresinol-8-O-β-D-glucopyranoside (1), 3, 4:3′, 4′-bis(methylenedioxy)-9′-hydroxyl-lignane-9-methyl-O-β-D-glucopyranoside
(2), prinsepiol-4-O- β-D-glucopyranoside (3), (+)-cycloolivil-6-O-β-D-glucopyranoside (4), 6-O-(E)-feruloyl-β-glucopyranoside (5),
6-O-(E)-feruloyl-α-glucopyranoside (6), oleanolic acid-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl (7),
hederagenin-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosy (8), hederagenin-
3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl (9), oleanolic acid-3-O-β-D- glucopyranosyl-(1→2)-
α-L-arabinopyranoside (10), echinocystic acid-3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside (11), and lupeol (12). Conclusion

收稿日期:2013-04-21
作者简介:王长福(1983—),男,山东人,助理研究员,博士研究生,中药复方及其药效物质基础研究。Tel: (0451)82193425
E-mail: wangchangfu831124@163.com
*通信作者 辛 萍 Tel: (0459)8153268 E-mail: xinping841224@163.com
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 18 期 2013 年 9 月

·2509·
The 50% EtOH fraction, as the anti-inflammatory effective fraction, is from macroporous resin column of 70% EtOH extract from the
roots of P. cernua. Compounds 2—4, 6, 8, and 9 are discovered from the plants of genus Pulsatilla Adans. for the first time.
Key words: Pulsatilla cernua (Thunb.) Berchtold et Presl; anti-inflammation; (+)-cycloolivil-6-O-β-D-glucopyranoside; oleanolic
acid-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl; lupeol

朝 鲜 白 头 翁 Pulsatilla cernua (Thunb.)
Berchtold et Presl 为毛茛科(Ranunculaceae)多年生
草本植物,其干燥根可替代正品白头翁 Pulsatilla
chinensis (Bunge) Regel 用于临床,传统应用中可用
于治疗阿米巴痢及疟疾等疾病[1],现代药理研究表
明该植物还具有降血压[2]、抗真菌、抗病原微生物[3]
及抗肿瘤[4]等药理作用,其主要活性成分为毛茛苷、
白头翁素、原白头翁素[5-7]及羽扇豆烷型和齐墩果烷
型三萜皂苷[8],Cheon 等[9]于 2000 年报道了朝鲜白
头翁提取物具有潜在的抗炎镇痛作用,然而其药效
物质基础研究并不深入。本实验对朝鲜白头翁抗炎
有效部位进行了初步筛选,并对其有效部位进行了
系统的化学成分研究,分离得到了 12 个化合物,分
别鉴定为(+)-8-羟基松脂素-8-O-β-D-吡喃葡萄糖苷
(1)、3, 4:3′, 4′-bis (methylenedioxy)-9′-hydroxyl-
lignane-9-methyl-O-β-D-glucopyranoside ( 2 )、
prinsepiol-4-O-β-D-glucopyranoside(3)、(+)-环合橄
榄树脂素-6-O-β-D-葡萄吡喃糖苷 [(+)-cycloolivil-6-
O-β-D-glucopyranoside,4]、6-O-(E)-feruloyl-β-gluco-
pyranoside(5)、6-O-(E)-feruloyl-α-glucopyranoside
(6)、齐墩果酸-3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡
喃葡萄糖-(1→3)-β-D-吡喃葡萄糖 [oleanolic acid-
3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-
(1→3)-β-D-glucopyranosyl,7]、常春藤苷基-3-O-β-
D-吡喃葡萄糖-(1→2)-β-D-吡喃葡萄糖-(1→3)-β-D-
吡喃葡萄糖-(1→3)-β-D-吡喃葡萄糖 [hederagenin-
3-O-β-D-glucopyranosyl-(1→ 2)-β-D-glucopyranosyl-
(1→3)-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosy,
8]、常春藤苷基-3-O-β-D-吡喃葡萄糖-(1→2)-β-D-
吡喃葡萄糖-(1→3)-β-D-吡喃葡萄糖 [hederagenin-
3-O-β-D-glucopyranosyl-(1→ 2)-β-D-glucopyranosyl-
(1→3)-β-D-glucopyranosyl,9]、齐墩果酸-3-O-β-D-
吡喃葡萄糖-(1→2)-α-L-吡喃阿拉伯糖苷 [oleanolic
acid-3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyra-
noside,10]、刺囊酸-3-O-β-D-吡喃葡萄糖-(1→2)-α-
L- 吡 喃 阿 拉 伯 糖 苷 [echinocystic acid-3-O-β-D-
glucopyranosyl-(1→2)-α-L-arabinopyranoside,11] 和
羽扇豆醇(lupeol,12)。朝鲜白头翁 50%乙醇洗脱
组分为其抗炎有效部位,该部位中得到的化合物
2~4、6、8 和 9 为首次从白头翁属植物中分离得到。
1 仪器与材料
INOVA — 400 型超导核磁共振光谱仪;
Finnigan MAT LCQ 型质谱仪;采用 Waters 2695—
2996 型高效液相色谱仪;色谱柱 HYPersil ODS2
(259 mm×4.6 mm,5 μm);所用试剂均为分析纯;
地塞米松磷酸钠注射液,购自吉林敖东药业集团延
吉股份有限公司。
实验用药材于2011年8月采自黑龙江省鸡西市
东方红林业局,经黑龙江中医药大学生药学教研室
王振月教授鉴定为朝鲜白头翁 Pulsatilla cernua
(Thunb.) Bercht et Opiz 的干燥根。
昆明 ICR 小鼠(SCXK 2008-0001)72 只,随
机分为 6 组,雌雄各半,由哈尔滨医科大学(大庆)
实验动物中心提供。
2 方法
2.1 抗炎有效部位筛选
将 7 kg 朝鲜白头翁的干燥根粉碎,以 70%乙醇
回流提取 2 次,每次 3 h,滤过,合并滤液,减压回
收溶剂,得 70%乙醇总提取物(1 764.0 g)。用水混
悬后,经大孔吸附树脂柱色谱,依次用水及 30%、
50%、95%乙醇洗脱,回收溶剂,分别得到各洗脱
组分 604.5 g、310.1 g、460.2 g 和 212.7 g,对各个
组分进行二甲苯致小鼠耳廓肿胀实验。取 72 只小
鼠,随机分为 6 组,给药剂量见表 1。连续给药 3 d,
于末次给药 1 h 后,取二甲苯 35μL 均匀涂在各小鼠
右耳的内外两面致炎,左耳做对照,30 min 后将小
鼠脱颈椎处死,剪下小鼠的左右耳,用 6 mm 直径
打孔器分别在两耳同一部位打下圆形耳片,再用精
密电子天平称取左右耳片的质量并计算差值,以此
作为各小鼠的耳肿胀度,并计算炎症抑制率。以 t
检验进行显著性判断[10]。
抑制率= (对照组平均肿胀度-给药组平均肿胀度) /
对照组平均肿胀度
2.2 化合物的分离
将大孔吸附树脂柱色谱 50%乙醇洗脱组分(抗
炎有效部位)150.0g,经正相硅胶色谱柱用二氯甲
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 18 期 2013 年 9 月

·2510·
烷-甲醇系统梯度洗脱(15∶1、8∶1、4∶1、2∶1),
共得到 6 个组分即 Fr. 1~6,其中 Fr. 1(15.6 g)经
正相硅胶柱色谱,石油醚-醋酸乙酯(3∶1)洗脱,
并反复纯化,得到化合物 12(27mg);Fr. 3(19.19
g)经正相硅胶柱色谱,二氯甲烷-甲醇(10∶1、5∶
1)洗脱,共得到 4 个组分,各组分经反相 ODS 柱
色谱后,进一步经制备型 HPLC 分离纯化,得到化
合物 1(34 mg)、2(42 mg)、3(11 mg)、4(24 mg)、
5(14 mg)和 6(7 mg);Fr. 5(35.3 g)经正相硅
胶柱色谱,二氯甲烷-甲醇(8∶1、4∶1、2∶1)梯
度洗脱,共得到 5 个组分,各组分再经反相 ODS
柱色谱后,进一步经制备型 HPLC 分离纯化,得到
化合物 7(18 mg)、8(22 mg)、9(15 mg)、10(28
mg)、11(39 mg)。
3 结果与分析
3.1 朝鲜白头翁大孔树脂柱色谱各分离组分对小
鼠耳肿胀的影响
对朝鲜白头翁 70%乙醇提取物的大孔树脂柱色
谱的各洗脱组分进行二甲苯致小鼠耳肿胀实验,结
果表明,朝鲜白头翁 50%乙醇洗脱组分显著抑制二
甲苯诱导的小鼠耳肿胀,与模型对照组相比,差异
显著(P<0.01);与地塞米松阳性药物组对比无统
计学意义;与水及 30%、95%乙醇洗脱组分相比差
异显著(P<0.05),见表 1。因此,初步确定朝鲜
白头翁 70%乙醇提取物大孔树脂柱色谱 50%乙醇洗
脱组分为其抗炎有效部位。
表 1 朝鲜白头翁各洗脱组分对小鼠耳肿胀的影响 ( ±x s )
Table 1 Effects of elution fractions from roots of P. cernua on xylene-induced ear swelling of mice ( ±x s )
分组 剂量 / (g·kg−1) 动物 / 只 耳肿胀度 / mg 抑制率 / %
模型 — 11 5.53±2.31 —
水洗脱 2.5 12 4.87±2.11 11.93
30%乙醇洗脱 2.5 12 3.93±2.14 28.93
50%乙醇洗脱 2.5 12 2.71±2.02** 50.99
95%乙醇洗脱 2.5 11 4.43±3.02 19.89
地塞米松注射液 0.05 12 2.65±1.14 52.08
与模型对照组比较:**P<0.01
**P < 0.01 vs model group
3.2 朝鲜白头翁抗炎有效部位化合物结构鉴定
化合物 1:白色无定形粉末,可溶于甲醇、乙
醇等有机试剂,Molish 反应阳性。ESI-MS m/z: 559
[M+Na]+。1H-NMR (400 MHz, DMSO-d6) δ: 7.05
(1H, d, J = 2.0, H-2), 6.65 (1H, d, J = 8.0 Hz, H-5),
6.82 (1H, dd, J = 2.0, 8.0 Hz, H-6), 4.20 (1H, s, H-7),
3.94 (2H, brs, H-9), 6.88 (1H, d, J = 2.0, H-2′), 6.70
(1H, d, J = 8.0 Hz, H-5′), 6.74 (1H, dd, J = 2.0, 8.0
Hz, H-6′), 5.14 (1H, d, J = 6.4 Hz, H-7′), 3.45 (1H, m,
H-8′), 3.10 (1H, t, J = 8.4 Hz, H-9′a), 3.71 (1H, t, J =
8.4 Hz, H-9′b), 3.74 (3H, s, 3-OCH3), 3.77 (3H, s,
3′-OCH3), 4.55 (1H, d, J = 7.5 Hz, Glc-H-1″);
13C-NMR (100 MHz, DMSO-d6) δ: 127.5 (C-1), 114.3
(C-2), 147.2 (C-3), 146.6 (C-4), 114.5 (C-5), 121.9
(C-6), 90.3 (C-7), 96.1 (C-8), 71.8 (C-9), 129.8 (C-1′),
110.0 (C-2′), l47.8 (C-3′), 145.8 (C-4′), l15.8 (C-5′),
118.3 (C-6′), 81.7 (C-7′), 52.8 (C-8′), 68.2 (C-9′), 56.0
(3, 3′-OCH3), 98.9 (Glc-C-1′′), 74.2 (Glc-C-2′′), 77.4
(Glc-C-3′′), 70.6 (Glc-C-4′′), 77.6 (Glc-C-5′′), 62.5
(Glc-C-6′′)。以上数据与文献报道一致[11],故鉴定化
合物 1 为(+)-8-羟基松脂素-8-O-β-D-吡喃葡萄糖苷。
化合物 2:白色无定形粉末,可溶于甲醇、乙
醇等有机溶剂,Molish 反应阳性。ESI-MS m/z: 521
[M+H]+。1H-NMR (400 MHz, CD3OD) δ: 6.67 (1H,
d, J = 1.6 Hz, H-2), 6.75 (1H, d, J = 7.6 Hz, H-5), 6.60
(1H, dd, J = 1.6, 8.4 Hz, H-6), 6.69 (1H, d, J = 1.6 Hz,
H-2′), 6.77 (1H, d, J = 8.0 Hz, H-5′), 6.60 (1H, dd, J =
1.6, 8.0 Hz, H-6′), 5.95 (2H, brs, 3-O-CH2-O-4), 5.97
(2H, brs, 3′-O-CH2-O-4′), 4.05 (1H, d, J = 8.0 Hz,
Glc-H-1″);13C-NMR (100 MHz, CD3OD) δ: 135.6
(C-1), 109.7 (C-2), 145.5 (C-3), 147.5 (C-4), 108.2
(C-5), 122.3 (C-6), 33.9 (C-7), 42.6 (C-8), 60.8 (C-9),
135.7 (C-1′), 109.8 (C-2′), 145.5 (C-3′), 147.5 (C-4′),
108.3 (C-5′), 122.3 (C-6′), 34.1 (C-7′), 49.1 (C-8′),
69.0 (C-9′), 101.0 (2×-O-CH2-O-), 103.5 (Glc-C-1′′),
74.1 (Glc-C-2′′), 77.3 (Glc-C-3′′), 70.5 (Glc-C-4′′),
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 18 期 2013 年 9 月

·2511·
77.3 (Glc-C-5′′), 61.5 (Glc-C-6′′)。以上数据与文献报
道一致 [12],故鉴定化合物 2 为 3, 4: 3′, 4′-bis
(methylenedioxy)-9′-hydroxyl-lignane-9-methyl-O-β-
D-glucopyranoside。
化合物 3:白色无定形粉末,可溶于甲醇、乙
醇等有机溶剂,Molish 反应阳性。ESI-MS m/z: 553
[M+H]+。1H-NMR (400 MHz, CD3OD) δ: 6.99 (1H,
d, J = 1.6 Hz, H-2), 7.02 (1H, d, J = 8.0 Hz, H-5), 6.82
(1H, dd, J = 1.6, 8.0 Hz, H-6), 4.86 (1H, s, H-7), 6.91
(1H, d, J = 1.6, Hz, H-2′), 6.70 (1H, d, J = 8.0 Hz,
H-5′), 6.72 (1H, dd, J = 1.6, 8.0 Hz, H-6′), 4.81 (1H, s,
H-7′), 3.79 (3H, s, 3-OCH3), 3.79 (3H, s, 3′-OCH3),
3.87 (2H, d, J = 9.6 Hz, H-9a, 9′a), 3.96 (2H, d, J =
9.6 Hz, H-9b, 9′b), 4.79 (1H, d, J = 8.0 Hz, Glc-
H-1″);13C-NMR (100 MHz, CD3OD) δ: 133.0 (C-1),
113.4 (C-2), 150.2 (C-3), 147.5 (C-4), 117.2 (C-5),
121.5 (C-6), 88.9 (C-7), 89.4 (C-8), 76.8 (C-9), 129.6
(C-1′), 112.9 (C-2′), 148.7 (C-3′), 147.4 (C-4′), 115.9
(C-5′), 121.7 (C-6′), 88.7 (C-7′), 89.3 (C-8′), 76.8
(C-9′), 56.9 (3-OCH3), 56.6 (3′-OCH3), 102.6 (Glc-C-
1′′), 74.9 (Glc-C-2′′), 77.7 (Glc-C-3′′), 71.3 (Glc-C-4′′),
78.0 (Glc-C-5′′), 62.6 (Glc-C-6′′)。以上数据与文献报
道一致[13],故鉴定化合物 3 为 prinsepiol-4-O-β-D-
glucopyranoside。
化合物 4:白色无定形粉末,可溶于甲醇、乙醇
和水,Molish 反应阳性。ESI-MS m/z: 537 [M-H]−。
1H-NMR (400 MHz, CD3OD) δ: 3.25 (1H, d, J = 16.8
Hz, H-1a), 2.64 (1H, d, J = 16.8 Hz, H-1b), 3.79 (1H, d,
J = 11.2 Hz, H-2a), 3.58 (1H, d, J = 11.2 Hz, H-2a),
2.05 (1H, m, H-3), 3.80 (1H, dd, J = 6.4, 10.4 Hz,
H-3a), 3.56 (1H, dd, J = 4.0, 10.4 Hz, H-3a), 4.05 (1H,
d, J = 11.5 Hz, H-4), 6.50 (1H, s, H-5), 6.70 (1H, s,
H-8), 6.70 (1H, d, J = 2.0 Hz, H-2′), 6.76 (1H, d, J =
8.0, H-5′), 6.66 (1H, dd, J = 2.0, 8.0 Hz, H-6′), 3.81
(3H, s, 7-OCH3), 3.73 (3H, s, 3′-OCH3), 4.35 (1H, d,
J = 8.0 Hz, Glc-H-1″);13C-NMR (100 MHz, CD3OD)
δ: 39.9 (C-1), 74.9 (C-2), 69.3 (C-2a), 47.2 (C-3), 60.8
(C-3a), 45.0 (C-4), 119.0 (C-5), 146.2 (C-6), 149.1
(C-7), 113.9 (C-8), 129.8 (C-9), 138.1 (C-10), 134.0
(C-1′), 113.7 (C-2′), 148.8 (C-3′), 146.1 (C-4′), 116.1
(C-5′), 123.6 (C-6′), 56.7 (7-OCH3), 56.3 (3′-OCH3),
103.4 (Glc-C-1′′), 74.6 (Glc-C-2′′), 77.8 (Glc-C-3′′),
71.0 (Glc-C-4′′), 77.9 (Glc-C-5′′), 62.0 (Glc-C-6′′)。以
上数据与文献报道一致[14],故鉴定化合物 4 为 (+)-
环合橄榄树脂素-6-O-β-D-葡萄吡喃糖苷。
化合物 5:淡黄色结晶(甲醇),可溶于甲醇、
乙醇等有机溶剂,Molish 反应阳性。ESI-MS m/z: 355
[M-H]−。1H-NMR (400 MHz, CD3OD) δ: 7.33 (1H,
t, J = 3.6 Hz, H-2), 6.78 (1H, d, J = 8.0 Hz, H-5), 7.12
(1H, dd, J = 2.0, 8.0 Hz, H-6), 7.54 (1H, d, J = 16.0
Hz, H-7), 6.49 (1H, d, J = 16.0 Hz, H-8), 3.82 (3H, s,
3-OCH3), 4.06 (1H, d, J = 8.0 Hz, Glc-H-1′);
13C-NMR (100 MHz, CD3OD) δ: 126.0 (C-1), 111.6
(C-2), 149.9 (C-3), 148.4 (C-4), 116.0 (C-5), 123.8
(C-6), 145.7 (C-7), 114.9 (C-8), 167.2 (C-9), 56.2
(3-OCH3), 97.4 (Glc-C-1′), 75.2 (Glc-C-2′), 74.1
(Glc-C-3′), 69.7 (Glc-C-4′), 76.9 (Glc-C-5′), 64.4
(Glc-C-6′)。以上数据与文献报道一致[15],故鉴定化
合物 5 为 6-O-(E)-feruloyl-β-glucopyranoside。
化合物 6:淡黄色结晶(甲醇),可溶于甲醇、
乙醇等有机溶剂,Molish 反应阳性。ESI-MS m/z: 355
[M-H]−。1H-NMR (400 MHz, CD3OD) δ: 7.33 (1H,
t, J = 3.6 Hz, H-2), 6.78 (1H, d, J = 8.0 Hz, H-5), 7.12
(1H, dd, J = 2.0, 8.0 Hz, H-6), 7.54 (1H, d, J = 16.0
Hz, H-7), 6.49 (1H, d, J = 16.0 Hz, H-8), 3.82 (3H, s,
-OCH3), 4.39 (1H, d, J = 2.0 Hz, Glc-H-1′);13C-NMR
(100 MHz, CH3OD) δ: 126.0 (C-1), 111.6 (C-2), 149.8
(C-3), 148.4 (C-4), 116.0 (C-5), 123.7 (C-6), 145.6
(C-7), 114.8 (C-8), 167.2 (C-9), 56.2 (3-OCH3), 92.8
(Glc-C-1′), 72.7 (Glc-C-2′), 73.4 (Glc-C-3′), 70.7
(Glc-C-4′), 75.2 (Glc-C-5′), 64.4 (Glc-C-6′)。以上数据
与文献报道一致[15],故鉴定化合物 6 为 6-O-(E)-
feruloyl-α-glucopyranoside。
化合物 7:白色无定形粉末,Molish 反应阳性,
Liebermann-Burchard 反应呈红色。ESI-MS m/z: 941
[M-H]−。1H-NMR (400 MHz, DMSO-d6) δ: 1.09
(3H, s, H-23), 0.99 (3H, s, H-27), 0.87 (9H, s, H-24,
26, 30), 0.76 (3H, s, H-29), 0.71 (3H, s, H-25);4.78
(1H, d, J = 7.6 Hz), 4.45 (1H, d, J = 7.6 Hz) 和 4.32
(1H, d, J = 6.8 Hz) 处为 3 个葡萄糖的端基质子信
号;13C-NMR (100 MHz, DMSO-d6) δ: 38.3 (C-1),
25.8 (C-2), 89.1 (C-3), 39.0 (C-4), 55.3 (C-5), 18.0
(C-6), 32.6 (C-7), 39.1 (C-8), 47.3 (C-9), 36.5 (C-10),
23.1 (C-11), 121.7 (C-12), 144.0 (C-13), 41.5 (C-14),
27.4 (C-15), 22.8 (C-16), 45.7 (C-17), 41.0 (C-18),
45.9 (C-19), 30.6 (C-20), 33.5 (C-21), 32.3 (C-22),
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 18 期 2013 年 9 月

·2512·
27.6 (C-23), 16.2 (C-24), 15.3 (C-25), 17.0 (C-26),
25.8 (C-27), 178.8 (C-28), 33.1 (C-29), 23.6 (C-30);
葡萄糖碳信号见表 2。以上数据与文献报道一致[16],
故鉴定化合物 7 为齐墩果酸-3-O-β-D-吡喃葡萄糖-
(1→2)-β-D-吡喃葡萄糖-(1→3)-β-D-吡喃葡萄糖。
化合物 8:白色无定形粉末,Molish 反应阳性,
Liebermann-Burchard 反应呈红色。ESI-MS m/z: 1 119
[M-H]−;1H-NMR (400 MHz, DMSO-d6) δ: 1.10
(3H, s, H-27), 0.87 (9H, s, H-25, 29, 30), 0.71 (3H, s,
H-26), 0.58 (3H, s, H-24);4.32 (1H, d, J = 7.6 Hz),
4.38 (1H, d, J = 7.2 Hz), 4.59 (1H, d, J = 7.6 Hz) 和
4.74 (1H, d, J = 8.0 Hz) 处为 4 个葡萄糖的端基质子
信号;13C-NMR (100 MHz, DMSO-d6) δ: 38.3 (C-1),
25.4 (C-2), 80.7 (C-3), 42.6 (C-4), 46.3 (C-5), 17.4
(C-6), 32.3 (C-7), 39.0 (C-8), 47.3 (C-9), 36.2 (C-10),
23.1 (C-11), 121.8 (C-12), 144.1 (C-13), 41.6(C-14),
27.4 (C-15), 22.8 (C-16), 45.7 (C-17), 41.0 (C-18),
45.9 (C-19), 30.6 (C-20), 33.5 (C-21), 32.2 (C-22),
62.6 (C-23), 12.7 (C-24), 15.7 (C-25), 17.1 (C-26),
25.8 (C-27), 178.8 (C-28), 33.1 (C-29), 23.6 (C-30);
葡萄糖碳信号见表 2。以上数据与文献报道一致[17],
故鉴定化合物 8 为常春藤苷基-3-O-β-D-吡喃葡萄糖-
(1→2)-β-D-吡喃葡萄糖 -(1→3)-β-D-吡喃葡萄糖 -
(1→3)-β-D-吡喃葡萄糖。
化合物 9:白色无定形粉末,Molish 反应阳性,
Liebermann-Burchard 反应呈红色。ESI-MS m/z: 981
[M-H]−。1H-NMR (400 MHz, DMSO-d6) δ: 1.10
(3H, s, H-27), 0.87 (9H, s, H-25, 29, 30), 0.71 (3H, s,
H-26), 0.59 (3H, s, H-24);4.38 (1H, d, J = 6.4 Hz),
4.45 (1H, d, J = 7.2 Hz) 和 4.74 (1H, d, J = 7.6 Hz)
表 2 化合物 7~11 的 13C-NMR 数据
Table 2 13C-NMR data of compounds 7—11
连糖类型 碳位 7 8 9 连糖类型 碳位 10 11
Glc 1 104.0 103.1 103.1 Ara 1 104.9 104.8
2 77.4 77.7 77.7 2 81.0 80.9
3 87.2 87.9 87.0 3 73.5 73.4
4 68.7 68.8 68.7 4 68.3 68.3
5 76.8 76.4 76.5 5 65.0 64.9
6 61.1 61.3 61.1 Glc 1′ 106.0 105.9
Glc 1′ 101.8 101.8 101.9 2′ 76.4 76.4
2′ 74.8 74.9 74.8 3′ 78.2 78.2
3′ 77.2 77.1 77.2 4′ 71.5 71.5
4′ 71.1 70.8 70.9 5′ 78.2 78.2
5′ 76.4 76.2 76.6 6′ 62.6 62.5
6′ 61.8 61.0 61.1
Glc 1″ 103.2 104.0 103.1
2″ 73.9 72.6 73.9
3″ 76.8 86.5 77.1
4″ 70.2 70.8 70.3
5″ 76.8 76.6 76.8
6″ 61.6 61.6 61.7
Glc 1′′′ — 102.2 —
2′′′ — 74.0 —
3′′′ — 76.8 —
4′′′ — 70.4 —
5′′′ — 76.5 —
6′′′ — 61.2 —

中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 18 期 2013 年 9 月

·2513·
处为 3 个葡萄糖的端基质子信号;13C-NMR (100
MHz, DMSO-d6) δ: 38.3 (C-1), 25.4 (C-2), 80.9 (C-3),
42.6 (C-4), 46.3 (C-5), 17.4 (C-6), 32.3 (C-7), 39.0
(C-8), 47.3 (C-9), 36.1 (C-10), 23.1 (C-11), 121.7
(C-12), 144.1 (C-13), 41.6 (C-14), 27.4 (C-15), 22.8
(C-16), 45.7 (C-17), 41.0 (C-18), 45.9 (C-19), 30.6
(C-20), 33.5 (C-21), 32.2 (C-22), 62.6 (C-23), 12.7
(C-24), 15.7 (C-25), 17.1 (C-26), 25.8 (C-27), 178.9
(C-28), 33.1 (C-29), 23.6 (C-30);葡萄糖碳信号见表
2。以上数据与文献报道一致[17],故鉴定化合物 9
为常春藤苷基-3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡
喃葡萄糖-(1→3)-β-D-吡喃葡萄糖。
化合物 10:白色无定形粉末,Molish 反应阳性,
Liebermann-Burchard 反应呈红色。ESI-MS m/z: 773
[M+Na]+。1H-NMR (400 MHz, C5D5N) δ: 5.46 (1H,
brs, H-12), 3.20 (1H, dd, J = 10.8, 5.0 Hz, H-3), 0.82
(3H, s, H-25), 0.95 (3H, s, H-29), 0.98 (3H, s, H-30),
1.00 (3H, s, H-24), 1.03 (3H, s, H-26), 1.22 (3H, s,
H-27), 1.28 (3H, s, H-23);5.17 (1H, d, J = 7.6 Hz) 和
4.95 (1H, d, J = 5.6 Hz) 分别为葡萄糖和阿拉伯糖
的端基质子信号;13C-NMR (100 MHz, C5D5N) δ:
38.7 (C-1), 26.5 (C-2), 88.8 (C-3), 39.5 (C-4), 55.8
(C-5), 18.5 (C-6), 33.2 (C-7), 39.7 (C-8), 48.0 (C-9),
36.9 (C-10), 23.8 (C-11), 122.5 (C-12), 144.9 (C-13),
42.2 (C-14), 28.3 (C-15), 23.7 (C-16), 46.7 (C-17),
42.0 (C-18), 46.5 (C-19), 30.9 (C-20), 34.3 (C-21),
33.2 (C-22), 28.2 (C-23), 16.8 (C-24), 15.5 (C-25),
17.4 (C-26), 26.2 (C-27), 180.4 (C-28), 33.3 (C-29),
23.8 (C-30),葡萄糖及阿拉伯糖碳信号见表 2。以上
数据与文献报道一致[18],故鉴定化合物 10 为齐墩
果酸-3-O-β-D-吡喃葡萄糖-(1→2)-α-L-吡喃阿拉伯
糖苷。
化合物 11:白色无定形粉末,Molish 反应阳性,
Liebermann-Burchard 反应呈红色。ESI-MS m/z: 789
[M+Na]+。1H-NMR (400 MHz, C5D5N) δ: 5.63 (1H,
brs, H-12), 3.21 (1H, dd, J = 11.6, 4.4 Hz, H-3), 4.40
(1H, brs, H-16), 1.19 (3H, s, H-23), 1.02 (3H, s,
H-24), 0.86 (3H, s, H-25), 1.00 (3H, s, H-26),1.82
(3H, s, H-27), 1.05 (3H, s, H-29) 及 1.17 (3H, s,
H-30);5.16 (1H, d, J = 7.6 Hz) 和 4.94 (1H, d, J = 5.6
Hz) 分别为葡萄糖和阿拉伯糖的端基质子信号;
13C-NMR (100 MHz, C5D5N) δ: 38.7 (C-1), 26.5
(C-2), 88.9 (C-3), 39.5 (C-4), 55.9 (C-5), 18.5 (C-6),
33.5 (C-7), 39.9 (C-8), 47.2 (C-9), 37.0 (C-10), 23.8
(C-11), 122.3 (C-12), 145.2 (C-13), 42.1 (C-14), 36.2
(C-15), 74.8 (C-16), 48.9 (C-17), 41.5 (C-18), 47.3
(C-19), 31.1 (C-20), 36.1 (C-21), 32.8 (C-22), 28.2
(C-23), 16.8 (C-24), 15.6 (C-25), 17.5 (C-26), 27.2
(C-27), 180.3 (C-28), 33.4 (C-29), 24.8 (C-30),葡萄
糖及阿拉伯糖碳信号见表 2。以上数据与文献报道
一致[19],故鉴定化合物 11 为刺囊酸-3-O-β-D-吡喃
葡萄糖-(1→2)-α-L-吡喃阿拉伯糖苷。
化合物 12:无色结晶(氯仿),易溶于氯仿和
石油醚,难溶于甲醇和乙醇,Molish 反应阴性,
Liebermann-Burehard 反应呈红色。1H-NMR (400
MHz, CDCl3) δ: 1.68 (3H, s), 0.96 (3H, s), 0.82 (3H,
s), 0.78 (3H, s), 0.76 (3H, s), 0.94 (3H, s) 和1.03 (3H,
s) 为 7 个角甲基信号;4.67 (1H, brs, H-29a), 4.56
(1H, brs, H-29b);13C-NMR (100 MHz, CDCl3) δ: 28.7
(C-1), 28.1 (C-2), 79.0 (C-3), 39.9 (C-4), 55.2 (C-5),
18.3 (C-6), 34.2 (C-7), 40.8 (C-8), 50.4 (C-9), 37.1
(C-10), 20.9 (C-11), 25.1 (C-12), 38.0 (C-13), 43.0
(C-14), 27.4 (C-15), 35.6 (C-16), 43.0 (C-17), 48.3
(C-18), 48.0 (C-19), 151.0 (C-20), 29.8 (C-21), 40.0
(C-22), 28.4 (C-23), 15.4 (C-24), 16.1 (C-25), 15.9
(C-26), 14.5 (C-27), 18.3 (C-28), 109.3 (C-29), 20.9
(C-30)。以上数据与文献报道一致[20],故鉴定化合
物 12 为羽扇豆醇。
参考文献
[1] Bae K H. The Medicinal Plants of Korea [M]. Seoul:
Kyo-Hak Press, 1999.
[2] Kim H J, Kim H T, Bae C I, et al. Studies on the
hypoglycemic constituent of Pulsatillae Radix (I). [J] J
Pharm Soc Korea, 1997, 41: 709-713.
[3] Martín M L, San Román L, Domínguez A. In vitro
activity of protoanemonin, an antifungal agent [J]. Planta
Med, 1990, 56(1): 66-69.
[4] Mimaki, Y, Yokosuka A, Kuroda M, et al. New
bisdesmosidic triterpene saponins from the roots of
Pulsatilla chinensis [J]. J Nat Prod, 2001, 64(9):
1226-1229.
[5] 张秀琴, 刘爱茹, 徐礼燊. 白头翁中毛莨甙及合成毛茛
甙的高效液相色谱测定法 [J]. 药学学报, 1990, 25(12):
932-935.
[6] Ye W C, Ou B X, Ji N N, et al. Patensin, a saponin from
Pulsatilla patens var. multifida [J]. Phytochemistry, 1995,
39(4): 937-939.
[7] Ye W C, Ji N N, Zhao S X, et al. Triterpenoids from
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 18 期 2013 年 9 月

·2514·
Pulsatilla chinensis [J]. Phytochemistry, 1996, 42(3):
799-802.
[8] Bang S C, Kim Y, Lee J H, et al. Triterpenoid saponins
from the roots of Pulsatilla koreana [J]. J Nat Prod, 2005,
68(2): 268-272.
[9] Cheon S A, Choi B K, Jeong C S, et al. The
anti-inflammatory and analgesic actions of the fractions
from Pulsatilla koreana root extract [J]. Kor J
Pharmacogn, 2000, 31(2): 174-184.
[10] 张均田. 现代药理实验方法 [M]. 北京: 北京医科大学
中国协和医科大学联合出版社, 1998.
[11] 韩 华. 接骨木根皮促进骨折愈合有效部位化学成分
和药理作用研究 [D]. 哈尔滨: 黑龙江中医药大学 ,
2006.
[12] 周业明. 紫丁香叶的化学成分研究 [D]. 沈阳: 沈阳药
科大学, 2005.
[13] Anna L P, Swizly A, Armando C, et al. New lignans from
the roots of Valeriana prionophylla with antioxidative and
vasorelaxant activities [J]. J Nat Prod, 2004, 67(7):
1135-1140.
[14] Tripetch K, Pawadee N, Hideaki O. Lignan, phenolic and
iridoid glycosides from Stereospermum cylindricum [J].
Phytochemistry, 2006, 67(5): 516-520.
[15] Bokern, M, Heuer S, Wray V, et al. Ferulic acid
conjugates and betacyanins from cell cultures of Beta
vulgaris [J]. Phytochemistry, 1991, 30(10): 3261-3265.
[16] Park S H, Oh S R, Jung K Y, et al. Anticomplement
activities of oleanolic acid monodesmosides and
bisdesmosides isolated from Tiarella polyphylla [J]. Arch
Pharm Res, 1999, 22(4): 428-431.
[17] Kuang H X, Sun H, Zhang N, et al. Two new sanponins,
congmuyenosides A and B, from the leaves of Aralia
elata collected in Heilongjiang, China [J]. Chem Pharm
Bull, 1996, 44(11): 2183-2185.
[18] Sobolev E A, Grishkovets V I, Shashkov A S, et al.
Triterpenid Glycosides of Fatsia japonica (III) Isolation
and Structure of Glycosides from Fruit Pericarp [J]. Chem
Nat compd, 2000, 36(5): 538-539.
[19] Niranjan P S, Shashi B M. Anti-inflamatory Triterpene
saponins of Pithecellobium Dulce: Characterization of an
echinocystic acid bisdesmoside [J]. Phytochemistry, 1994,
44(3): 1425-1427.
[20] 宁永成. 有机化合物结构鉴定与有机波谱学 [M]. 北
京: 科学出版社, 2004.