免费文献传递   相关文献

芥子油苷在十字花科植物与昆虫相互关系中的作用



全 文 :书芥子油苷在十字花科植物与昆虫相互关系中的作用*
蔡晓明 胡秀卿 吴 珉 张春荣 何红梅 赵 华 李 振
**
(省部共建国家重点实验室培育基地浙江省植物有害生物防控重点实验室 /农业部农药残留检测重点实验室 /浙江省农业科
学院农产品质量标准研究所,杭州 310021)
摘 要 芥子油苷(glucosinolate,GS)是十字花科植物重要的次生代谢物,对调节十字花科植
物与昆虫间的关系起着重要作用.由于 GS及其代谢产物具有一定的毒性,因此它是十字花科
植物抵御广食性植食昆虫攻击的有力手段.而寡食十字花科植物的昆虫由于具备多种 GS 应
对机制,因此可通过 GS这一十字花科植物特有的次生代谢物进行寄主选择.被植食性昆虫摄
入的 GS不仅可以影响天敌的生长发育,而且还对天敌有一定的驱避作用.而虫害后十字花科
植物释放的 GS代谢产物又可作为天敌的寄主选择信息.本文结合该领域的一些最新研究成
果,从 GS对植食性昆虫的毒性、寡食性害虫的寄主选择、植食性昆虫对 GS 的适应机制、虫害
对 GS-黒芥子酶系统的诱导,以及 GS对天敌的影响等方面对 GS如何影响植物与昆虫间的相
互关系进行了综述,并就今后该领域的研究方向、研究方法提出建议.
关键词 芥子油苷 十字花科 昆虫 关系 调节
文章编号 1001-9332(2012)02-0573-08 中图分类号 Q143,Q968 文献标识码 A
Roles of glucosinolates in the interrelationships between Brassicaceae plants and insects:A
review. CAI Xiao-ming,HU Xiu-qing,WU Min,ZHANG Chun-rong,HE Hong-mei,ZHAO
Hua,LI Zhen (State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control,Ministry
of Agriculture Key Lab for Pesticide Residue Detection,Institute of Quality and Standard for Agro-
products,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China). -Chin. J. Appl.
Ecol.,2012,23(2) :573-580.
Abstract:Glucosinolates (GS)are the important secondary metabolites of Brassicaceae plants,
playing an important role in regulating the interrelationships between Brassicaceae plants and in-
sects. GS can protect Brassicaceae plants against euryphagous herbivorous pests because of the tox-
icity of GS and their breakdown products. However,oligophagous pests which have evolved mani-
fold metabolic pathways to cope with the defensive compounds depended fully on GS and their vola-
tile breakdown products for host-plant recognition and orientation. The GS ingested by herbivores
are also toxic to carnivores,and can directly deter predators. On the other hand,predators and par-
asitoids are attracted by the volatile breakdown products of GS from the Brassicaceae plants damaged
by herbivores. Based on the recent findings,this paper reviewed the defensive function of GS
against herbivores,host selection of oligophagous pests,GS metabolic pathways of herbivores,in-
duction of GS by herbivores,and effects of GS on the third tropic level. Future directions and tech-
niques in this research field were also suggested.
Key words:glucosinolates;Brassicaceae;insect;relationship;regulation.
* 浙江省农业科学院博士启动基金项目和浙江省农业科学院农产品
质量标准研究所所选项目资助.
**通讯作者. E-mail:Lz20010@ 163. com
2011-04-26 收稿,2011-12-05 接受.
芥子油苷(glucosinolate,GS)是十字花科植物
特有的一类含氮、硫的植物次生代谢产物. 由于 GS
是甘蓝(Brassica oleracea)、油菜(Brassica campestris)
等重要农作物的主要次生代谢物,同时 GS 及其降
解产物可调节十字花科植物与其他多种生物间的相
互作用,因而引起了人们极大的研究兴趣[1-2]. GS
通常由 β-D-硫葡萄糖基、硫肟基团以及来源于不同
氨基酸的侧链组成.根据侧链的氨基酸来源可将 GS
分为脂肪类 GS(来源于甲硫氨酸、丙氨酸、缬氨酸、
亮氨酸和异亮氨酸)、芳香类 GS(来源于苯丙氨酸
和酪氨酸)和吲哚类 GS(来源于色氨酸)3 个类群,
应 用 生 态 学 报 2012 年 2 月 第 23 卷 第 2 期
Chinese Journal of Applied Ecology,Feb. 2012,23(2) :573-580
DOI:10.13287/j.1001-9332.2012.0080
目前至少已确定了 120 种不同结构的 GS[3].不同十
字花科植物,甚至不同品种、不同生态型,都具有其
特定的、专一的 GS 指纹图谱[4-5]. 同一十字花科植
物的不同部位、不同生育期的 GS 组成和含量也有
很大差别[6-8]. 虽然 GS 与其水解酶———黑芥子酶
(myrosinase)在植物体中同时存在,但两者在空间上
是隔离的[9-10].只有当植物组织破损后,GS 才与黑
芥子酶接触,发生不可逆的水解反应,生成异硫代氰
酸盐(isothiocyanate,ITC)、腈类化合物(nitrile)、唑
烷硫酮(oxazolidinethione)等活性物质[11],其中大多
ITC、腈类化合物都具有挥发性. 由于 GS 是十字花
科植物特有的次生代谢物,同时 GS 及其代谢产物
又具有一定的毒性,因此 GS 在调节十字花科植物
与昆虫间的相互关系中起着重要作用. 本文结合该
领域的一些最新研究成果,从 GS 对植食性昆虫的
毒性、寡食性害虫的寄主选择、植食性昆虫对 GS 的
适应机制、虫害对 GS-黒芥子酶系统的诱导、GS 及
其代谢产物对天敌的影响等方面,就 GS 如何影响
十字花科植物与昆虫间的相互关系进行介绍,并就
今后该领域的研究方向、研究方法提出一些看法.
1 GS 是十字花科植物抵御植食性昆虫攻击的有
力手段
GS-黑芥子酶系统是十字花科植物抵御植食性
昆虫攻击的有效武器.但相对于寡食性害虫,广食性
害虫对 GS 显得更加敏感[12].例如,取食 GS 含量较
高的野生甘蓝后,寡食性的小菜蛾(Plutella xylostel-
la)和菜粉蝶(Pieris rapae)仅发育历期略长、成虫质
量略轻,而广食性的甘蓝夜蛾(Mamestra brassicae)
的成活率明显降低[13-15]. 通过对 GS 组成不同的拟
南芥(Arabiadopsis thaliana)品系进行研究发现,广
食性的甜菜夜蛾(Spodoptera exigua)的生长可受脂
肪类 GS 和吲哚类 GS 影响,而广食性粉纹夜蛾
(Trichoplusia ni)、烟草天蛾(Manduca sexta)的生长
仅受脂肪类 GS 影响[16]. 在 GS 总含量以及水溶性
糖、氨基酸含量相似,只是 GS 组成不同的两个欧洲
山芥(Barbarea vulgaris)基因型上,甘蓝夜蛾的存活
率、生长发育均有着巨大差别[17]. 可见十字花科植
物体内的 GS组成,而不是含量,对于抵御广食性昆
虫的攻击更为重要. 黑芥子酶可对寡食性害虫起到
一定的防御作用. 小菜蛾在黑芥子酶活性、GS 含量
均不相同的褐芥(Brassica juncea)纯合性品系上取
食时,黑芥子酶活性越高其取食时间和取食面积越
小,但两者均与 GS 含量无关[18]. GS 的黑芥子酶降
解产物———烯丙基 ITC 可显著降低菜粉蝶、小菜蛾
幼虫的存活率[19-20].但寡食性的黄翅菜叶蜂(Atha-
lia rosae)对黑芥子酶活性以及 GS 含量均不敏
感[21].这或许是因为黄翅菜叶蜂具备了特殊的 GS
应对机制.此外,某些寡食性害虫甚至可将 GS 作为
营养物质. 例如,寡食性大菜粉蝶(Pieris brassicae)
不但喜欢在 GS 含量较高的黑芥(Brassica nigra)花
上取食,而且此时其生长速率也较大[6].
2 GS对寡食十字花科植物昆虫寄主选择的影响
2. 1 寄主定向
目前,学者们普遍认为寡食十字花科植物的昆
虫是通过 GS的挥发性代谢物,如 ITC、腈类化合物
等进行远距离的寄主定向[3,22]. 室内或田间试验表
明,烯丙基 ITC 对黄翅菜叶蜂具引诱作用[23],烯丙
基 ITC、乙基 ITC、苄基 ITC 可引诱蔬菜黄条跳甲
(Phyllotreta cruciferae)、黄曲跳条跳甲(Phyllotreta st-
riolata)、甘蓝种蝇(Delia brassicae)等寡食性害
虫[24-25]. ITC或腈类化合物的混合物可增强对寡食
性昆虫的吸引. 3-丁烯基 ITC、4-戊烯基 ITC 与无引
诱能力的 2-苯乙基 ITC混合后,对甘蓝荚象甲(Ceu-
torhynchus assimilis)的引诱能力超过其中任何单一
物质[26].同样,当把苯乙腈加入到 ITC 的混合物中,
可增强后者对甘蓝荚象甲的吸引[27]. 这可能表明,
寡食性害虫可通过寄主植物释放的 ITC及腈类化合
物的组成来寻找适合的食物. 但由于未受损的十字
花科植物仅能释放微量的 ITC、腈类化合物[28],因
此至今有关这方面的研究大多通过植物提取液进
行.下面介绍两种较为特殊的寡食性害虫如何利用
GS的挥发性代谢物进行寄主定向.
小菜蛾成虫夜间活动主要依靠嗅觉进行寄主定
向,挥发性的 ITC 在小菜蛾产卵寄主选择过程中发
挥着重要作用[29-30]. 由于损伤后十字花科植物的
ITC释放量急剧提高,因此小菜蛾趋向于被同种幼
虫危害的植物上产卵. 这一习性有助于提高小菜蛾
后代的存活率. 因为其专一性寄生蜂———菜蛾绒茧
蜂(Cotesia plutellae)只将卵产在每株被害植株上的
一两只幼虫体内[31-32].与小菜蛾不同,菜粉蝶、大菜
粉蝶、暗脉菜粉蝶(Pieris napi)等寡食性的蝶类昆虫
多在白天活动,对明亮的绿色具有趋向性,因此其视
觉在寄主定向过程中发挥着重要作用[3]. 但最新研
究显示,菜粉蝶可仅凭嗅觉区分寄主和非寄主植
物[33].这一过程中挥发性的 GS 降解产物是否发挥
作用,还不得而知. 同样与小菜蛾不同,为降低后代
475 应 用 生 态 学 报 23 卷
的同种竞争压力,菜粉蝶避免在已被危害过或已有
同类卵的寄主植物上产卵[34].这是因为虫害后产生
的挥发性 GS降解产物———腈类物质对菜粉蝶具有
驱避作用.过量表达表皮特异硫蛋白(epithiospecifi-
er,将 GS代谢为腈类物质)的转基因拟南芥,以及被
外源施用吲哚-3-乙腈的拟南芥都不再吸引菜粉蝶
雌虫[35-36].
2. 2 寄主识别
存在于十字花科植物体表的 GS 在寡食十字花
科植物昆虫的寄主识别过程中起到关键作用[3,22].
大量研究表明,GS可刺激超过 25 种的鳞翅目、鞘翅
目、双翅目寡食性害虫的取食或产卵[3]. 当非寄主
植物,甚至非植物组织的材料经人工合成的 GS 处
理后即可被寡食性害虫取食或产卵,某些 GS 的刺
激能力可与寄主植物提取液乃至寄主植物本身相
似[37-38].小菜蛾可将卵产于经寄主植物浸提液处理
过的滤纸上,但当浸提液经黑芥子酶或硫酸酯酶
(sulfatase,可降解 GS)处理后,滤纸上的着卵量显著
减少[37].寡食性的甘蓝蚜(Brevicoryne brassicae)在
白芥(Sinapis alba)叶片上的刺探时间不超过 2 min,
深度不超过上表皮;而在白芥子苷(一种 GS)含量
较高的白芥花序梗上的刺探时间可超过 10 min,并
且还可进行韧皮部取食[39]. 不同寡食性害虫的产
卵、取食刺激剂不同,同时不同 GS 对某一寡食性害
虫的刺激能力也不同[22]. 萝卜种蝇(Delia floralis)、
甘蓝根蝇(Delia radicum)的电生理和行为反应水平
可随 GS侧链长短变化[40-41];暗脉菜粉蝶欧洲亚种
(Pieris napi napi)与美洲亚种(Pieris napi oleracea)
对脂肪类 GS 的电生理反应不同[42]. 但 GS 并非是
寡食性害虫唯一的寄主识别信号,它们还可通过 GS
的代谢产物,以及十字花科植物其他的次生代谢物
进行寄主识别[35,43-46]. 例如,甘蓝提取液中的一种
类黄酮化合物(thia-triaza-fluorene)对甘蓝根蝇的产
卵刺激能力是 GS的 100 多倍[45-46].
以往大多数研究是通过有机溶剂浸提来获取植
物体表蜡质层中的寄主识别信息. 但有机溶剂会通
过植物体表开放的气孔或者破坏蜡质层下的细胞将
植物内部组织中的 GS 浸提出来[3,22]. 光照、黑暗下
得到的甘蓝型油菜(Brassica napus)、豆瓣菜(Nastur-
tium officinale)浸取液,以及叶片上、下表面浸取液
中的 GS含量显著不同(光照时植物气孔开放,而黑
暗时关闭;植物叶片上、下表面的气孔密度不
同)[47].但机械性分离(未对植物组织造成破坏)得
到的体表蜡质层却不含 GS[47]. 其原因可能是由于
GS分子体积、极性均较大,因此存在于植物组织内
部的 GS很难穿透植物体表非极性的蜡质层. 有关
寡食十字花科植物的昆虫如何感知 GS,至今尚无定
论. 2009 年,Stdler 和 Reifenrath[22]就这一问题提出
3 个假设.假设一,植食性昆虫可利用足、腹部的刺、
脊等体壁衍生物,对植物体表蜡质层进行机械性的
穿刺、刮擦,从而使其触觉感受器接触到蜡质层下的
GS.例如,当甘蓝根蝇在寄主植物上行走时,其足部
末端长约 50 μm 的刺可深入植物体表蜡质层 20
μm,而某些十字花科植物的体表蜡质层厚度只有
10 μm左右;菜粉蝶雌虫进行寄主识别时,可利用腹
部的刺对植物体表进行刮擦,这些刺的周围分布着
丰富的触觉感受器[22]. 假设二,由于植食性昆虫触
觉感受器的大小与植物气孔相似,因此它们可通过
开放的气孔,感知十字花科植物体表下的 GS. 甘蓝
气孔宽 1 ~ 5 μm,深 10 ~ 12 μm,而甘蓝根蝇足部的
触觉感受器末端直径为 1. 25 ~ 2 μm[22].假设三,植
食性昆虫的触觉感受器上可能含有“Takeout-like”
蛋白.这种蛋白可穿透植物体表蜡质层将 GS 转运
出来.由于这 3 种机制并不相互排斥,因此它们可能
同时存在.但最新研究显示,通过机械分离得到的欧
洲山芥(可作为防治小菜蛾的诱杀植物,强烈吸引
小菜蛾产卵)蜡质层中含有能刺激小菜蛾产卵的
GS[48].这一矛盾或许是由于与昆虫触觉相比,目前
化学分析的灵敏度过低所致.此外,植物体表蜡质层
可对 GS起到一定的增效作用,这可能是石蜡表面
特殊的物理结构所致. 单独的石蜡不能刺激小菜蛾
产卵,当把黑芥子苷(一种 GS)滴加到石蜡上后,不
仅黑芥子苷对小菜蛾的产卵刺激能力明显增强,而
且其活性浓度范围也略有增加[49].甘蓝根蝇可将卵
产于寄主植物提取液处理过的石蜡上,但不会在同
样处理过的纸张上产卵[50].
3 植食性昆虫的 GS应对机制
经长期的协同进化,植食性昆虫形成了多种应
对 GS的策略[51].直翅目、鳞翅目昆虫可通过其自身
的解毒酶系降解 GS. 小菜蛾幼虫、沙漠蝗(Schisto-
cerca gregaria)的中肠内具有硫酸酯酶,这种酶可在
几分钟内将 GS脱硫,从而消除其毒性[52-53].而菜粉
蝶、大菜粉蝶、暗脉菜粉蝶美洲亚种等多种粉蝶幼虫
中肠的 NSP 蛋白(nitrile-specifier protein)可将黑芥
子酶催化 GS 形成的不稳定糖苷配基(aglycone)转
变为毒性较小的腈类物质,从而避免产生毒性较大
的 ITC[54-55].这些腈类物质在随粪便排出体外前,还
5752 期 蔡晓明等:芥子油苷在十字花科植物与昆虫相互关系中的作用
可发生进一步的反应以消除毒性[56-57].
与咀嚼式口器昆虫不同,同翅目、半翅目等刺吸
式口器昆虫的取食对植物造成的损伤较小,并且它
们可直接从植物韧皮部吸取汁液,从而避免摄入黑
芥子酶.这些昆虫或将摄入的 GS 直接排出体外,或
将其“扣押”在体内,即将 GS 转移到某一器官中储
存起来[58-60].例如,GS 可随广食性桃蚜(Myzus per-
sicae)的蜜露直接排出体外[58];取食甘蓝的斑色蝽
(Murgantia histrionica)的身体组织中 GS 浓度是中
肠的 20 ~ 30 倍[60];GS可在甘蓝蚜体内随血淋巴进
行循环[61];萝卜蚜(Lipaphis erysimi)体内的吲哚甲
基 GS 含量远比其食物———芫青高[62]. 由于 GS 很
难穿透昆虫肠道膜从而进入血淋巴,并且虫体与植
物体的 GS组成并不总是一致,因此这些可“扣押”
GS的昆虫中肠上应具有某些具选择性的 GS 转运
蛋白.令人吃惊的是,咀嚼式口器的黄翅菜叶蜂也可
将摄入的 GS“扣押”在血淋巴中[63]. 这可能是因为
黄翅菜叶蜂可快速将 GS 从中肠转移到血淋巴中,
因此避免了 GS 与同时摄入的黑芥子酶反应. 而当
黄翅菜叶蜂连续取食时,其体内的 GS 含量并没有
持续增加[64].这表明黄翅菜叶蜂的血淋巴中可能含
有 GS的降解酶.
4 GS-黑芥子酶系统的虫害诱导及其对植食性昆
虫的影响
植食性昆虫的攻击可诱导十字花科植物的 GS
组成发生改变,并且使其含量成倍增加. 到目前为
止,超过 90%的相关研究显示,虫害后吲哚类 GS 的
含量可增加 1. 2 ~ 20 倍,其中涉及的昆虫包括:鞘翅
目、双翅目、同翅目、膜翅目和鳞翅目[65]. 而脂肪类
GS和芳香类 GS的增加幅度较小,某些时候它们的
含量甚至会因虫害而降低[13,21,66]. 虫害诱导的 GS
改变具有系统性.例如,地下害虫的危害可导致植株
地上部分的 GS发生变化[66-67].尽管 GS可通过植物
韧皮部进行远距离运输[68],但受损部位增加的 GS
主要还是新合成的. 一系列试验表明,虫害后控制
GS 合成的基因转录明显增加[69-71]. 虫害还可诱导
GS转化.将吲哚-3-基甲基 GS 施加于拟南芥突变体
cyp79B2、cyp79B3(不能合成吲哚类 GS)的离体叶
片叶柄部,再经桃蚜取食后,其上 4-甲氧基-3-基甲
基 GS的含量显著增加[72].此外,植食性昆虫的危害
还可诱导黑芥子酶水平发生改变[72-74].这些诱导反
应都是由十字花科植物体内的信号传导途径调控
的,通过外源施用这些信号分子,可模拟虫害诱导的
GS-黑芥子酶系统变化[75-76]. 一般刺吸式口器昆虫
的危害可激活水杨酸信号途径,而咀嚼式口器昆虫
的取食则激活茉莉酸信号途径[77].
虫害诱导的 GS-黒芥子酶系统变化可对植食性
昆虫造成影响.与拟南芥本身所具有的吲哚-3-基甲
基 GS 相比,虫害后新产生的 4-甲氧基吲哚-3-基甲
基 GS对桃蚜的繁殖抑制效果更加明显[72]. 田间调
查发现,与广食性害虫相比,寡食性害虫更喜欢在菜
粉蝶危害过的甘蓝上定殖[78]. 但也有研究表明,虫
害诱导的 GS-黑芥子酶系统改变,对某些寡食性害
虫没有影响.黄翅菜叶蜂、草地夜蛾(Spodoptera fru-
giperda)的危害可诱导白芥体内的 GS-黑芥子酶系
统发生截然不同的变化,但它们均不会影响黄翅菜
叶蜂的取食和产卵[73].这可能与黄翅菜叶蜂具备特
殊的 GS应对机制有关.
5 GS及其代谢产物对天敌的影响
5. 1 天敌的寄主选择
GS及其代谢产物同样可影响第三营养级的生
物.田间、室内研究表明,十字花科植物经寡食性害
虫危害后,释放的 ITC 及腈类化合物对其寄生蜂具
有吸引作用[62,79-82].例如,3-丁烯基 ITC可吸引菜蚜
茧蜂(Diaeretiella rapae)[82];烯丙基 ITC、2-苯乙基
ITC对油菜荚叶瘿蚊(Dasineura brassicae)的寄生蜂
Platygaster subuliformis和 Omphale clypealis具引诱作
用[81].但虫害后十字花科植物释放的挥发物组成非
常复杂,除 GS 降解物外,还包括绿叶性气味物质、
萜类化合物、苯类化合物等.这些化合物通常也可作
为天敌的寄主定位信息,因此,GS 挥发性代谢产物
在天敌的寄主定位过程中到底发挥着多大作用,还
有待进一步研究. 植食性昆虫体内储存的 GS 可作
为寄生蜂的寄主识别信息. 萝卜蚜和桃蚜危害的芫
青对菜蚜茧蜂具有相似的吸引力,但菜蚜茧蜂更喜
欢攻击萝卜蚜.当把菜蚜茧蜂的蛹从萝卜蚜的僵蚜
上分离后,其后羽化的菜蚜茧蜂对桃蚜和萝卜蚜的
攻击率相似[83].由于萝卜蚜可将摄入的 GS“扣押”
于血淋巴中,而桃蚜则将其直接排出体外[62],因此,
存在于萝卜蚜僵蚜上的 GS 可能是导致菜蚜茧蜂更
喜欢攻击萝卜蚜的主要原因.
5. 2 对天敌的驱避与毒害
黄翅菜叶蜂幼虫体壁非常脆弱,轻微的触碰即
可使其破损.但这样的损伤并不会使其死亡,并且从
伤口溢出的富含 GS的血淋巴对于蜥蜴、蚂蚁、胡蜂
等捕食性天敌来说是味道欠佳的,因此可阻止它们
675 应 用 生 态 学 报 23 卷
对黄翅菜叶蜂的进一步捕食[84-85].萝卜蚜和甘蓝蚜
的头、胸部肌肉肌质中含有 GS 的降解酶,这些酶与
黑芥子酶功能相似,并且与被“扣押”的 GS 在空间
上是隔离的[59,86].当虫体破损后,被“扣押”的 GS便
与昆虫自身的 GS 降解酶相遇并反应,生成 ITC、腈
等挥发性的有毒物质[86].这些物质不仅可驱避捕食
性天敌,而且对蚜虫报警信息素(E)-β-法尼烯具有
增效作用[59].
被“扣押”或存在于植食性昆虫肠道的 GS 还会
影响捕食、寄生性天敌的生长发育,并且这一影响还
可进一步传递到第四营养级———重寄生蜂,但相对
于专一性天敌,广食性天敌受 GS的影响较大[87-88].
捕食甘蓝蚜(可将摄入的 GS储存于体内)的二星瓢
虫(Adalia bipunctata)、黑纹食蚜蝇(Episyrphus bal-
teatus)的存活率明显较捕食桃蚜的低[89-90];并且甘
蓝蚜食物中 GS 含量越高,这两种捕食性天敌的存
活率就越低[91-92].而寄主相对专一的菜蚜茧蜂对萝
卜蚜、桃蚜的寄生成功率却相似[83].当小菜蛾、菜粉
蝶在 GS含量较高的野生型甘蓝上取食时,几种广
寄生性寄生蜂的存活率明显降低;而其专一性寄生
蜂只是成虫质量减轻[13-14].
6 结 语
GS作为十字花科植物重要的次生代谢物,是抵
御植食性昆虫攻击的有力武器,但又可间接影响天
敌的取食和生长发育. GS作为十字花科植物特有的
次生代谢物,是寡食性害虫寄主选择的重要信息,同
时寡食性害虫为了应对 GS 的毒性,又在长期的协
同进化中形成了多种解毒机制. 虫害可诱导十字花
科植物体内的 GS-黑芥子酶系统发生变化,而这些
变化又可直接或间接地帮助被害植株抵御植食性昆
虫的攻击.因此 GS 强烈影响着植物与昆虫间的关
系.尽管有关 GS 与昆虫间关系的研究已有超过 50
年的历史,但目前得到的信息还比较模糊,许多方面
还需进行更加细致、深入的研究. 首先,以往有些研
究在分析不同处理对昆虫的影响以及它们间的 GS
差异前,已假定 GS可对昆虫产生影响.这样就导致
我们对其他次生代谢物的忽视. 尽管可通过 GS 标
准品、人工材料(如:饲料、滤纸)以及转基因植物来
研究 GS对昆虫的影响,但此时忽略了其他次生代
谢物与 GS间的相互影响和目标基因的多效性. 因
此,有关非 GS 次生代谢物对十字花科植物与昆虫
间关系的调节的研究急需加强.此外,以往的部分研
究只是粗旷、笼统地研究 GS或哪一类 GS 对昆虫的
影响,因此仍需大量、细致的工作明确哪些 GS 具有
生物活性;关于植食性昆虫如何识别十字花科植物
体表 GS,已争论了很多年,但目前仍无定论;目前我
们只对一小部分寡食性害虫的 GS 适应机制有所了
解,而对天敌知之甚少;相对于地上害虫,地下害虫
与 GS间的关系还未深入研究. 但随着现代科学技
术,特别是化学分析技术、代谢组学等的不断进步,
并结合传统的生物测定,一定会看到一张有关 GS
与昆虫间关系的更加细致、清晰的画面.
参考文献
[1] Reichelt M,Brown PD,Schneider B,et al. Benzoic
acid glucosinolate esters and other glucosinolates from
Arabidopsis thaliana. Phytochemistry,2002,59:663-
671
[2] Tonsor SJ,Alonso-Blanco C,Koornneef M. Gene func-
tion beyond the single trait:Natural variation,gene
effects,and evolutionary ecology in Arabidopsis thali-
ana. Plant,Cell and Environment,2005,28:2-20
[3] Hopkins RJ,van Dam NM,van Loon JJA. Role of glu-
cosinolates in insect-plant relationships and multitrophic
interactions. Annual Review of Entomology,2009,54:
57-83
[4] Kliebenstein DJ,Kroymann J,Brown P,et al. Genetic
control of natural variation in Arabidopsis glucosinolate
accumulation. Plant Physiology,2001,126:811-825
[5] Poelman EH,Broekgaarden C,van Loon JJA,et al. In-
ducing herbivore affects direct defense response against
subsequent colonist:Contrasting consequences for spe-
cies abundance in the field. Molecular Ecology,2008,
17:3352-3365
[6] Smallegange RC,van Loon JJA,Blatt SE,et al. Flower
vs leaf feeding by Pieris brassicae:Glucosinolate-rich
flower tissues are preferred and sustain higher growth
rate. Journal of Chemical Ecology,2007,33:1831 -
1844
[7] van Dam NM,Tytgat TOG,Kirkegaard J. Root and
shoot glucosinolates:A comparison of their diversity,
function and interactions in natural and managed ecosys-
tems. Phytochemistry Reviews,2009,8:171-186
[8] van Leur H,Raaijmakers CE,van Dam NM. A herita-
ble glucosinolate polymorphism within natural popula-
tions of Barbarea vulgaris. Phytochemistry,2006,67:
1214-1223
[9] Wittstock U,Gershenzon J. Constitutive plant toxins
and their role in defense against herbivores and patho-
gens. Current Opinion in Plant Biology,2002,5:1-8
[10] Rask L,Andreasson E,Ekbom B,et al. Myrosinase:
Gene family evolution and herbivore defense in Brassi-
caceae. Plant Molecular Biology,2000,42:93-113
[11] Wittstock U,Halkier BA. Glucosinolate research in the
Arabidopsis era. Trends in Plant Science,2002,7:
236-270
[12] Ahuja I,Rohloff J,Bones AM. Defence mechanisms of
Brassicaceae:Implications for plant-insect interactions
and potential for integrated pest management-A review.
Agronomy for Sustainable Development,2010,30:311-
7752 期 蔡晓明等:芥子油苷在十字花科植物与昆虫相互关系中的作用
348
[13] Gols R,Bukovinszky T,van Dam NM,et al. Perform-
ance of generalist and specialist herbivores and their en-
doparasitoids differs on cultivated and wild Brassica pop-
ulations. Journal of Chemical Ecology,2008,34:132-
143
[14] Gols R,Wagenaar R,Bukovinszky T,et al. Genetic
variation in the defense chemistry of wild cabbage affects
native herbivores and their endoparasitoids. Ecology,
2008,89:1616-1626
[15] Harvey JA,Gols R,Wagenaar R,et al. Development of
an insect herbivore and its pupal parasitoid reflect differ-
ences in direct plant defense. Journal of Chemical Ecol-
ogy,2007,33:1556-1569
[16] Müller R,de Vos M,Sun JY,et al. Differential effects
of indole and aliphatic glucosinolates on Lepidopteran
herbivores. Journal of Chemical Ecology,2010,36:
905-913
[17] van Leur H,Vet LEW,H,van der Putten WH,et al.
Barbarea vulgaris glucosinolate phenotypes differentially
affect performance and preference of two different spe-
cies of Lepidopteran herbivores. Journal of Chemical
Ecology,2008,34:121-131
[18] Li Q,Eigenbrode SD,Stringham GR,et al. Feeding
and growth of Plutella xylostella and Spodoptera eridania
on Brassica juncea with varying glucosinolate concentra-
tions and myrosinase activities. Journal of Chemical
Ecology,2000,26:2401-2419
[19] Agrawal AA,Kurashige NS. A role for isothiocyanates
in plant resistancea against the specialist herbivore Pieris
rapae. Journal of Chemical Ecology,2003,29:1403-
1415
[20] Eltayeb EM,Zhang GA,Xie JG,et al. Study on the
effect of allylisothiocyanate formulations on three Lepi-
dopterous insect larvae,the diamond back moth,Plutel-
la xylostella L., the small cabbage white butterfly,
Pieris rapae L. and tobacco cut worm,Spodoptera litura
Fabr. American Journal of Environmental Sciences,
2010,6:168-176
[21] Müller C,Sieling N. Effects of glucosinolate and my-
rosinase levels in Brassica juncea on a glucosinolate-se-
questering herbivore and vice versa. Chemoecology,
2006,16:191-201
[22] Stdler E,Reifenrath K. Glucosinolates on the leaf sur-
face perceived by insect herbivores:Review of ambigu-
ous results and new investigations. Phytochemistry Re-
views,2009,8:207-225
[23] Barker AM,Molotsane R,Müller C,et al. Chemosen-
sory and behavioural responses of the turnip sawfly,
Athalia rosae, to glucosinolates and isothiocyanates.
Chemoecology,2006,16:209-218
[24] Finch S,Skinner G. Trapping cabbage root flies in traps
baited with plant extracts and with natural and synthetic
isothiocyanates. Entomologia Experimentalis et Applica-
ta,1982,31:133-139
[25] Pivnick KA,Lamb RJ,Reed D. Response of flea bee-
tles,Phyllotreta spp.,to mustard oils and nitriles in
field trapping experiments. Journal of Chemical Ecolo-
gy,1992,18:863-873
[26] Evans KA,Allen-Williams LJ. Response of cabbage
seed weevil (Ceutorhynchus assimilis)to baits of extrac-
ted and synthetic host-plant odor. Journal of Chemical
Ecology,1998,24:2101-2114
[27] Bartlet E,Blight MM,Lane P,et al. The responses of
the cabbage seed weevil Ceutorhynchus assimilis to vola-
tile compounds from oilseed rape in a linear track olfac-
tometer. Entomologia Experimentalis et Applicata,
1997,85:257-262
[28] Rohloff J,Bones AM. Volatile profiling of Arabidopsis
thaliana-putative olfactory compounds in plant commu-
nication. Phytochemistry,2005,66:1941-1955
[29] Sun JY,Snderby IE,Halkier BA,et al. Non-volatile
intact indole glucosinolates are host recognition cues for
ovipositing Plutella xylostella. Journal of Chemical Ecol-
ogy,2009,35:1427-1436
[30] Dai J,Deng J,Du J. Development of bisexual attract-
ants for diamondback moth,Plutella xylostella (Lepi-
doptera:Plutellidae)based on sex pheromone and host
volatiles. Applied Entomology and Zoology,2008,43:
631-638
[31] Shiojiri K,Takabayashi J. Effects of specialist parasit-
oids on oviposition preference of phytophagous insects:
Encounter-dilution effects in a tritrophic interaction. Ec-
ological Entomology,2003,28:573-578
[32] Choh Y,Uefune M,Takabayashi J. Diamondback moth
females oviposit more on plants infested by non-parasit-
ised than by parasitized conspecifics. Ecological Ento-
mology,2008,33:565-568
[33] Ikeura H,Kobayashi F,Hayata Y. How do Pieris rapae
search for Brassicaceae host plants?Biochemical System-
atics and Ecology,2010,38:1199-1203
[34] Little D,Gouhier-Darimont C,Bruessow F,et al. Ovi-
position by pierid butterflies triggers defense responses
in Arabidopsis. Plant Physiology,2007,143:784-800
[35] de Vos M,Kriksunov KL,Jander G. Indole-3-acetoni-
trile production from indole glucosinolates deters oviposi-
tion by Pieris rapae. Plant Physiology,2008,146:
916-926
[36] Mumm R,Burow M,Bukovinszkine’Kiss G,et al. For-
mation of simple nitriles upon glucosinolate hydrolysis
affects direct and indirect defense against the specialist
herbivore,Pieris rapae. Journal of Chemical Ecology,
2008,34:1311-1321
[37] Reed DW,Pivnick KA,Underhill EW. Identification of
chemical oviposition stimulants from the diamondback
moth,Plutella xylostella,present in three species of
Brassicaceae. Entomologia Experimentalis et Applicata,
1989,53:227-286
[38] Miles CI,del Campo ML,Renwick JAA. Behavioral
and chemosensory responses to a host recognition cue by
larvae of Pieris rapae. Journal of Comparative Physiology
A:Neuroethology, Sensory, Neural, and Behavioral
Physiology,2005,191:147-155
[39] Gabrys B,Tjallingii WF,van Beek TA. Analysis of
EPG recorded probing by cabbage aphid on host plant
parts with different glucosinolate contents. Journal of
Chemical Ecology,1997,23:1661-1673
[40] Roessingh P,Stdler E,Fenwick GR,et al. Oviposi-
tion and tarsal chemoreceptors of the cabbage root fly are
stimulated by glucosinolates and host plant extracts. En-
tomologia Experimentalis et Applicata,1992,65:267-
282
875 应 用 生 态 学 报 23 卷
[41] Simmonds MSJ,Blaney WM,Mithen R,et al. Behav-
ioral and chemosensory responses of the turnip root fly
(Delia floralis)to glucosinolates. Entomologia Experi-
mentalis et Applicata,1994,71:41-57
[42] Du YJ,van Loon JJA,Renwick JAA. Contact chemore-
ception of oviposition-stimulating glucosinolates and an
oviposition-deterrent cardenolide in two subspecies of
Pieris napi. Physiological Entomology,1995,20:164-
174
[43] van Loon JJA,Wang CZ,Nielsen JK,et al. Flavonoids
from cabbage are feeding stimulants for diamondback
moth larvae additional to glucosinolates:Chemoreception
and behaviour. Entomologia Experimentalis et Applicata,
2002,104:27-34
[44] Reifenrath K,Müller C. Multiple feeding stimulants in
Sinapis alba for the oligophagous leaf beetle Phaedon co-
chleariae. Chemoecology,2008,18:19-27
[45] Hurter J,Ramp T,Patrian B,et al. Oviposition stimu-
lants for the cabbage root fly:Isolation from cabbage
leaves. Phytochemistry,1999,51:377-382
[46] Roessingh P,Stdler E,Baur R,et al. Tarsal chemore-
ceptors and oviposition behaviour of the cabbage root fly
(Delia radicum) sensitive to fractions and new com-
pounds of host-leaf surface extracts. Physiological Ento-
mology,1997,22:140-148
[47] Reifenrath K,Riederer M,Müller C. Leaf surface wax
layers of Brassicaceae lack feeding stimulants for Pha-
edon cochleariae. Entomologia Experimentalis et Applica-
ta,2005,115:41-50
[48] Badenes-Pérez FR,Reichelt M,Gershenzon J,et al.
Phylloplane location of glucosinolates in Barbarea spp.
(Brassicaceae)and misleading assessment of host suita-
bility by a specialist herbivore. New Phytologist,2010,
189:549-556
[49] Spencer JL. Waxes enhance Plutella xylostella oviposi-
tion in response to sinigrin and cabbage homogenates.
Entomologia Experimentalis et Applicata,1996,81:
165-173
[50] Roessingh P,Stdler E. Foliar form,color and surface
characteristics influence oviposition behavior in the cab-
bage root fly Delia radicum. Entomologia Experimentalis
et Applicata,1990,57:93-100
[51] Müller C. Interactions between glucosinolate- and my-
rosinase containing plants and the sawfly Athalia rosae.
Phytochemistry Reviews,2009,8:121-134
[52] Ratzka A,Vogel H,Kliebenstein DJ,et al. Disarming
the mustard oil bomb. Proceedings of the National Acad-
emy of Sciences of the United States of America,2002,
99:11223-11228
[53] Falk KL,Gershenzon J. The desert locust,Schistocerca
gregaria,detoxifies the glucosinolates of Schouwia pur-
purea by desulfation. Journal of Chemical Ecology,
2007,33:1542-1555
[54] Wittstock U,Agerbirk N,Stauber EJ,et al. Successful
herbivore attack due to metabolic diversion of a plant
chemical defense. Proceedings of the National Academy
of Sciences of the United States of America,2004,101:
4859-4864
[55] Agerbirk N,Müller C,Olsen CE,et al. A common
pathway for detoxification of 4-hydroxybenzylglucosino-
late in Pieris and Anthocaris (Lepidoptera:Pieridae).
Biochemical Systematics and Ecology,2006,34:189 -
198
[56] Agerbirk N,Olsen CE,Poulsen E,et al. Complex me-
tabolism of aromatic glucosinolates in Pieris rapae cater-
pillars involving nitrile formation,hydroxylation,dem-
ethylation,sulfation,and host plant dependent carboxyl-
ic acid formation. Insect Biochemistry and Molecular Bi-
ology,2010,40:126-137
[57] Winde I,Wittstock U. Insect herbivore counteradapta-
tions to the plant glucosinolate-myrosinase system. Phy-
tochemistry,2011,72:1566-1575
[58] Weber G,Oswald S,Zllner U. Suitability of rape cul-
tivars with different glucosino-late content for Brevicoryne
brassicae L. and Myzus persicae Sulzer (Hemiptera:
Aphididae). Journal of Plant Diseases and Protection,
1986,93:113-124
[59] Bridges M,Jones AME,Bones AM,et al. Spatial or-
ganization of the glucosinolate-myrosinase system in
brassica specialist aphids is similar to that of the host
plant. Proceedings of the Royal Society Series B:Biologi-
cal Sciences,2002,269:187-191
[60] Aliabadi A,Renwick JAA,Whitman DW. Sequestration
of glucosinolates by Harlequin bug Murgantia histrioni-
ca. Journal of Chemical Ecology,2002,28:1749 -
1762
[61] Kazana E,Pope TW,Tibbles L,et al. The cabbage
aphid:A walking mustard oil bomb. Proceedings of the
Royal Society Series B:Biological Sciences,2007,274:
2271-2277
[62] Blande JD,Pickett JA,Poppy GM. A comparison of
semiochemically mediated interactions involving special-
ist and generalist Brassica-feeding aphids and the bra-
conid parasitoid Diaeretiella rapae. Journal of Chemical
Ecology,2007,33:767-779
[63] Müller C,Agerbirk N,Olsen CE,et al. Sequestration
of host plant glucosinolates in the defensive hemolymph
of the sawfly Athalia rosae. Journal of Chemical Ecolo-
gy,2001,27:2505-2516
[64] Müller C,Wittstock U. Uptake and turn-over of glucosi-
nolates sequestered in the sawfly Athalia rosae. Insect
Biochemistry and Molecular Biology,2005,35:1189-
1198
[65] Textor S,Gershenzon J. Herbivore induction of the glu-
cosinolate-myrosinase defense system:Major trends,bi-
ochemical bases and ecological significance. Phytochem-
istry Reviews,2009,8:149-170
[66] van Dam NM,Raaijmakers CE. Local and systemic in-
duced responses to cabbage root fly larvae (Delia radic-
um)in Brassica nigra and B. oleracea. Chemoecology,
2006,16:17-24
[67] Soler R,Bezemer TM,Cortesero AM,et al. Impact of
foliar herbivory on the development of a root-feeding in-
sect and its parasitoid. Oecologia,2007,152:257-264
[68] Chen X,Petersen BL,Olsen CE,et al. Long-distance
phloem transport of glucosinolates in Arabidopsis. Plant
Physiology,2001,127:194-201
[69] Kusnierczyk A,Winge P,Midelfart H,et al. Tran-
scriptional responses of Arabidopsis thaliana ecotypes
with different glucosinolate profiles after attack by po-
lyphagous Myzus persicae and oligophagous Brevicoryne
brassicae. Journal of Experimental Botany,2007,58:
9752 期 蔡晓明等:芥子油苷在十字花科植物与昆虫相互关系中的作用
2537-2552
[70] Mewis I,Tokuhisa JG,Schultz JC,et al. Gene expres-
sion and glucosinolate accumulation in Arabidopsis thali-
ana in response to generalist and specialist herbivores of
different feeding guilds and the role of defense signaling
pathways. Phytochemistry,2006,67:2450-2462
[71] Knill T,Schuster J,Reichelt M,et al. Arabidopsis
branched-chain aminotransferase 3 functions in both
amino acid and glucosinolate biosynthesis. Plant Physi-
ology,2008,146:1028-1039
[72] Kim JH,Jander G. Myzus persicae (green peach aphid)
feeding on Arabidopsis induces the formation of a deter-
rent indole glucosinolate. The Plant Journal,2007,49:
1008-1019
[73] Travers-Martin N,Müller C. Specificity of induction re-
sponses in Sinapis alba L. and their effects on a special-
ist herbivore. Journal of Chemical Ecology,2007,33:
1582-1597
[74] Pontoppidan B,Hopkins R,Rask L,et al. Differential
wound induction of the myrosinase system in oilseed rape
(Brassica napus) :Contrasting insect damage with me-
chanical damage. Plant Science,2005,168:715-722
[75] Fritz VA. Glucosinolate enhancement in cabbage in-
duced by jasmonic acid application. Hortscience,2010,
45:1188-1191
[76] Bruinsma M,van Dam NM,van Loon JJA,et al. Jas-
monic acid-induced changes in Brassica oleracea affect
oviposition preference of two specialist herbivores. Jour-
nal of Chemical Ecology,2007,33:655-668
[77] de Vos M,van Oosten VR,van Poecke RM,et al. Sig-
nal signature and transcriptome changes of Arabidopsis
during pathogen and insect attack. Molecular Plant-Mi-
crobe Interactions,2005,18:923-937
[78] Poelman EH,van Loon JJA,van Dam NM,et al. Her-
bivore-induced plant responses in Brassica oleracea pre-
vail over effects of constitutive resistance and result in
enhanced herbivore attack. Ecological Entomology,
2010,35:240-247
[79] Fatouros NE,van Loon JJA,Hordijk KA,et al. Herbi-
vore-induced plant volatiles mediate in-flight host dis-
crimination by parasitoids. Journal of Chemical Ecology,
2005,31:2033-2047
[80] Jonsson M,Lindkvist A,Anderson P. Behavioural re-
sponses in three ichneumonid pollen beetle parasitoids to
volatiles emitted from different phenological stages of oil-
seed rape. Entomologia Experimentalis et Applicata,
2005,115:363-369
[81] Murchi AK,Smart LE,Williams IH. Responses of
Dasineura brassicae and its parasitoids Platygaster subul-
iformis and Omphale clypealis to field traps baited with
organic isothiocyanates. Journal of Chemical Ecology,
1997,23:917-926
[82] Pope TW,Kissen R,Grant M,et al. Comparative in-
nate responses of the aphid parasitoid Diaeretiella rapae
to alkenyl glucosinolate derived isothiocyanates,nitriles,
and epithionitriles. Journal of Chemical Ecology,2008,
34:1302-1310
[83] Blande JD,Pickett JA,Poppy GM. Attack rate and
success of the parasitoid Diaeretiella rapae on specialist
and generalist feeding aphids. Journal of Chemical
Ecology,2004,30:1781-1795
[84] Vlieger L,Brakefield PM,Müller C. Effectiveness of
the defence mechanism of the turnip sawfly,Athalia ro-
sae (Hymenoptera:Tenthredinidae) ,against predation
by lizards. Bulletin of Entomological Research,2004,
94:283-289
[85] Müller C,Brakefield PM. Analysis of a chemical de-
fense in sawfly larvae:Easy bleeding targets predatory
wasps in late summer. Journal of Chemical Ecology,
2003,29:2683-2694
[86] Husebye H,Arzt S,Burmeister WP,et al. Crystal
structure at 1. 1  resolution of an insect myrosinase
from Brevicoryne brassicae shows its close relationship to
β-glucosidases. Insect Biochemistry and Molecular Biolo-
gy,2005,35:1311-1320
[87] Harvey JA,van Dam NM,Gols R. Interactions over
four trophic levels:Food plant quality affects develop-
ment of a hyperparasitoid as mediated through a herbi-
vore and its primary parasitoid. Journal of Animal Ecolo-
gy,2003,72:520-531
[88] Soler R,Bezemer TM,van der Putten WH,et al. Root
herbivore effects on above-ground herbivore,parasitoid
and hyperparasitoid performance via changes in plant
quality. Journal of Animal Ecology,2005,74:1121 -
1130
[89] Francis F,Lognay G,Wathelet JP,et al. Effects of al-
lelochemicals from first (Brassicaceae) and second
(Myzus persicae and Brevicoryne brassicae)trophic levels
on Adalia bipunctata. Journal of Chemical Ecology,
2001,27:243-256
[90] Vanhaelen N,Gaspar C,Francis F. Influence of prey
host plant on a generalist aphidophagous predator:Epi-
syrphus balteatus (Diptera:Syrphidae). European Jour-
nal of Entomology,2002,99:561-564
[91] Francis F,Haubruge E,Hastir P,et al. Effect of aphid
host plant on development and reproduction of the third
trophic level,the predator Adalia bipunctata (Coleop-
tera:Coccinellidae). Environmental Entomology,2001,
30:947-952
[92] Chaplin-Kramer R,Kliebenstein DJ,Chiem A,et al.
Chemically mediated tritrophic interactions:Opposing
effects of glucosinolates on a specialist herbivore and its
predators. Journal of Applied Ecology,2011,48:880-
887
作者简介 蔡晓明,男,1979 年生,博士.主要从事昆虫化学
生态与农药残留研究. E-mail:cxm_d@ yahoo. com. cn
责任编辑 肖 红
085 应 用 生 态 学 报 23 卷