免费文献传递   相关文献

Potential of four mosses as aquarium plants-deduced from their photosynthetic parameters in water

基于光合参数探讨四种藓类作水族箱植物的应用潜力(英文)



全 文 :广 西 植 物 Guihaia Oct.2015,35(5):697-703           http://journal.gxzw.gxib.cn 
DOI:10.11931/guihaia.gxzw201311039
申琳,张泽悠,夏乔莉,等.基于光合参数探讨四种藓类作水族箱植物的应用潜力[J].广西植物,2015,35(5):697-703
ShenL,ZhangZY,XiaQL,etal.PotentialoffourmossesasaquariumplantsGdeducedfromtheirphotosyntheticparametersinwater[J].Guihaia,2015,
35(5):697-703
PotentialoffourmossesasaquariumplantsGdeduced
fromtheirphotosyntheticparametersinwater
SHENLin,ZHANGZeGYou,XIAQiaoGLi,GUOShuiGLiang∗
(CollegeofLifeandEnvironmentalSciences,ShanghaiNormalUniversity,Shanghai200234,China)
Abstract:Aquaticmossescouldbeusedasaquariumplants,manysemiGaquaticmossesarealsoabletogrowinaquarG
ia.IneasternChina,therearefewaquaticmosses.Isitpossibletousesometerrestrialmossesinaquaria?Inorderto
answerthequestion,weelucidatedtheadaptabilityoffocalterrestrialmossestowaterenvironment.Inthepresent
work,wemeasuredthephotosyntheticparametersoffourterrestrialmossesincludingBrachytheciumprocumbens,
Hypnumhamulosum,Leucobryumglaucum,andHedwigiaciliataunderconditionssimilartotheirnaturalhabitats
andthoseaftertheirsubmersioninwater.WealsomadetheirphotosyntheticlightGresponsecurvesbyusingrectanguG
larhyperbolicmodel.Wefoundsignificantdiferencesamongtheirmaximumnetphotosynthesisrate(Pn),lightsatG
urationpoint(LSP),andlightcompensationpoint(LCP).ThevariationrangesoftheirmaximalPn,LSPandLCP
werefrom122.575to19.099μmolCO2􀅰kgG1DW􀅰sG1,from1166.00to670.030μmol􀅰mG2􀅰sG1,andfrom85.000
to5.3μmol􀅰mG2􀅰sG1,respectively.AfterBrachytheciumprocumbens,HedwigiahamulosumandLeucobryum
glaucumhadbeensubmergedinwaterfor30d,theirmaximalPnwere110.78%,80.84%and109.63%oftheconG
trol,respectively,indicatingthatthesethreemossesareabletosurviveinwaterduringtheexperimentalperiod.While
submergedinwaterfor20d,Hedwigiaciliatahadonly5.25%netphotosyntheticrateofthecontrol,revealingthat
H.ciliateisnotabletogrowinaquaticenvironment.Wealsodiscussedtherelationshipsoftheirphotosynthesiswith
theirmorphologicalstructureandhabitatconditions.OuranalysesshowedthatBrachytheciumprocumbens,H.hamG
ulosumandLeucobryumglaucum,thoughdistributeinterrestrialhabitatsinthefield,werethreepotentialaquarium
plants.
Keywords:terrestrialmosses;photosynthesis;submersion;aquariumplants
CLCnumber:Q945.11  Documentcode:A  ArticleID:1000G3142(2015)05G0697G07
基于光合参数探讨四种藓类作水族箱植物的应用潜力
申 琳,张泽悠,夏乔莉,郭水良∗
(上海师范大学 生命与环境科学学院,上海200234)
摘 要:水生藓类植物适宜作为水簇箱植物,许多半水生藓类植物同样能够生长于水体环境中.中国东部地区
的水生藓类植物种类不多,陆生藓类植物能否应用于水族箱中? 为了回答这一问题,需要阐明陆生藓类植物对
水体环境的适应能力.该研究测定了匐枝青藓(Brachytheciumprocumbens),弯叶灰藓(Hypnumhamulosum)、
白发藓(Leucobryumglaucum)和虎尾藓(Hedwigiaciliata)在与它们的自然生境相似条件下以及沉水环境下的
光合参数,并应用直角双曲线模型拟合了它们的光-光合响应曲线.结果表明:这四种藓类植物在最大净光合
收稿日期:2014G06G23  修回日期:2014G09G18
基金项目:上海市科委项目(12490502700,11391901200);上海市教委大学生创新项目(BG7062G12G001081).
作者简介:申琳(1993G),黑龙江哈尔滨人,上海师范大学生命与环境科学学院2011级学生,(EGmail)1000329797@smail.shou.edu.cn.
∗通讯作者:郭水良(1964G),教授,主要从事生态学教学科研工作,(EGmail)gsg@shnu.edu.cn.
速率(Pn)、光饱和点(LSP)和光补偿点(LCP)上存在很大差异.它们的最大净光合速率、光饱和点和光补偿点
的变异范围分别为122.575~19.099μmolCO2􀅰kgG1DW􀅰sG1、1166.00~670.030μmol􀅰mG2􀅰sG1和85.000~5.3
μmol􀅰mG2􀅰sG1.在沉水环境中生长30d后,匐枝青藓、弯叶灰藓和白发藓的最大净光合速率分别是对照的
110.78%、80.84%和109.63%,说明在实验周期里这三种藓类植物能够在水体环境中生存,而虎尾藓在水体中浸
泡20d后,其最大净光合速率仅为对照的5.25%,反映出该种植物并不适应水体环境.综上可知,四种藓类植物
的光合速率与其形态结构和原生境条件有很大的关系,虽然匐枝青藓、弯叶灰藓和白发藓主要分布于陆生环境,
但作为水族箱植物也具有一定的应用潜力.
关键词:陆生藓类;光合作用;沉水环境;水族箱植物
  Aquaticmosseshavebeenappliedasdecorative
plantsinaquaria.Theyalsoprovideoxygen,hiding
places,andeggGlayingsubstratesforfishes (Benl,
1958;Takakietal.,1982).Inmarkets,therepresentaG
tiveaquariumbryophytesareFissidensfontanus,BryG
um pseudotriquetrum,Fontinalisantipyretica,LepG
todictyumriparium,PlatyhypnidiumriparioiGdes,
Ricciafluitans,Ricciocarposnatans,TaxiphylGlum
barbieri,andVesiculariadubyana (Benl,1958;Takaki
etal.,1982;Gradsteinetal.,2003;Tanetal.,2004).
Mossesarefundamentalysimilartootherplants
intheirbasicnutritionrequirements.However,they
havespecificwaytoobtainnutrients.Evenifmosses
areabletousetheirrhizoidstogathersomenutrients,
theirrhizoidscannotpenetrateintosoils.Mosses
mainlyrelyonnutrientsfromdustontheirsurfacesor
dissolvedinrainfal,whichisaquitediferentstrategy
fromvascularplants.Typicaly,mosseshaveleavesof
onlyonecellayerinthicknessandwithoutcuticleand
specialprotectionstructures,exposingeveryleafcel
directlytotheirsurroundingstogetnutrients.ThegaG
metophytesofmanymossesareofshapeofsheets,filG
aments,twigs,etc.,withrelativelylargeleafsurfacearG
ea.Therefore,comparedwithmesicorxerictracheoG
phytes,mossesaremorphologicalysimilartoaquatic
tracheophytes.FromevolutionaryviewsandrecapituG
lationlaw,bryophytesbelongtoacladevolvedfrom
aquatictoterrestrialtaxa.Therefore,terrestrialor
semiGaquaticmossesmaybeeasierintroducedintoand
adaptedtoaquaticenvironments.Forexample,Bryum
pseudotriquetrum,aspeciesgrowingonthinsoilsof
rocks,hasbeenfoundintheAntarcticdeepGwaterarea
(Wangeretal.,2006).Fissidensfontanus,amossspeG
ciesoriginatingfromNorthAmerica,usualygrowson
rocks,treetrunks,andisalsoabletogrowinshalow
water(Crumetal.,1981),nowitisculturedasa
aquariumplantinSingapore(Tanetal.,2004).
IneasternChinaalongthePacificocean,thereis
fewaquaticbryophytes(Xu,1989;Liuetal.,2005).Is
itpossibletofindsometerrestrialbryophytesasaquarG
iumplants?Inordertoanswerthequestion,weconG
ductedexperimentstotesttheadaptabilityofsometerG
restrialbryophytespeciestowaterenvironment.
Brachythecium procumbens,Hypnum hamuloG
sum,LeucobryumglaucumandHedwigiaciliataare
fourabundantandwidelydistributedterrestrialmoss
speciesineasternChina.Insomestands,BrachytheciG
um procumbens and Hedwiagiahamulosum often
coverwideareas,appearas“greencarpet”,andH.cilG
iataappearsas“greypatch”onstonesandboulders,
whileLeucobryumglaucumas“whitegreenishpatch”
onforestfloorortrunkbaseofPinusmassonianaAsG
sociation.ThesefourmossspeciesarevaluableasorG
namentalplants.However,theiradaptabilityinaquatic
environmentisnotclear.
Photosyntheticparametersareimportantreference
valuesindicatingtheirabilitytoadapttoenvironments.
Therehavebeenconsiderablereportsaboutbryophyte
photosynthesis(Liuetal.,2001;VanGaalenetal.,
2007;Gofinetetal.,2008).Wateravailabilityisoneof
themostimportantfactorsthatlimitdistributionand
productivityofbryophytes.Dilksetal.(1975)found
thattherewasaspecificrangeofwatercontentforxeG
ric mossestokeepnormalphotosyntheticactivity.
Generalyspeaking,mossphotosynthesisrateisposiG
tivelycorrelatedwithmoisturecontentofambientenG
vironment.However,ifaboveorbelowacertainrange
ofwatercontent,thenetphotosyntheticrateofmost
mosseswouldbeinhibited.Liuetal.(2001)found
thattheoptimummoisturecontentofThuidiumcymG
896 广 西 植 物                  35卷
bifoliumandChrysocladiumretrorsum was200%to
400%oftheirdryweightfortheirphotosynthesis.For
thebryophytes mainlygrowinginhumidenvironG
ments,themoisturecontenthasnosignificantlyefects
on net photosyntheticrate,such as Hylocomium
splendensinB.S.G.andPleuroziumschreberi(Busby
etal.,1978).Thoughtherearemanyreportsaboutthe
toleranceofmossestodroughtbasedontheirphysioG
logicalresponsesincludingphotosyntheticandchloroG
phylfluorescenceparameters(Kalaposetal.,2001,
Zhangetal.,2011),littleworkaboutthetoleranceof
terrestrialmossestosubmergedenvironmenthasbeen
conducted.
ThepurposeofthisworkistocomparetheadaptG
abilityoftheabovefourmossspeciestowatervia
measuringtheirphotosyntheticcapacityinwater,toeG
lucidatethepossibilitytoapplywaterGtolerantterresG
trialmossesasaquariumplants.
1 MaterialsandMethods
Experimentalsamplesoffourmossspecieswere
colectedfromeasternChinaonMarch12-13,2009.
Amongthem,Leucobryum glaucum wascolected
fromNanmingMountaininthesuburbofLishuicity
inZhejiang(28°26′05″N,119°54′10″E,elevationca.82
m),Hedwigiahamulosumfromnorthernsuburbof
Jinhuacity,Zhejiang(29°13′19″N,119°37′56″E,elevaG
tionca.1180m),H.ciliatafromthesuburbofJinG
huacity,Zhejiang(29°12′55″N,119°38′26″E,elevation
ca.1090m),andBrachytheciumprocumbensfromthe
BotanicalGarden,XuhuiCampusofShanghaiNormal
University(31°09′51″N,121°24′50″E,elevation3m).
Plantmaterialswereconfirmedunderamicroscope,
sporophytesandimpuritieswereremovedfromthe
samples.Thematerials (greengametophytes)were
washedthreetimeswithdistiled water,then were
driedbynaturalventilationforexperiment.
Aweekafterthecolection,3gdrymaterialwere
putintoanylonbag(12cm×6cm,withmeshof5
mmindiameter)tomakeamossbag,atotaloffive
mossbagsweremadeforeachmossspecies,themoss
bagswereimmersedinaplasticbucket(height18cm
×diameter20cm)withtapwater(10cmindepth).
Duringtheexperiment,thesampleswerekeptatthe
temperatureof12-22℃andnotpumpedoxygeninto
thewater.Afterbeingsubmergedinwaterfor5,10,
15,20,30d,themossbagswereremovedfromwater,
respectively.Fivesamples(eachwithca.0.2gfresh
weight)weretookforeachspeciesasfiveduplicates.
Thematerial(ascontrol)wassoakedintotapwater
foroneminutebeforethedeterminationofitsphotoG
synthesisrate.Afterthemeasurement,thematerials
weredriedat80℃for8handthenweighed.
Thenetphotosyntheticrate(Pn)offourmoss
specieswasmeasuredwithaportablephotosynthesis
system(GFSG3000,Walzcompany,Germany)from9:
30amto11:00am,withtheleavecuvettecondition
beingsetwithrelativehumidityof(60±10)%,temG
peratureof20℃andCO2concentrationof340μmol􀅰
molG1.PARwasgivenbyLEDLightSource3040GLof
theGFSG3000atdiferentintensities.DatawererecorG
dedthreetimesforeveryPARintensity.
ThephotosyntheticlightGresponsecurves were
modeledusingrectangularhyperbolicmodelasPn=
a􀅰b􀅰PAR/(a􀅰PAR+b)Gc,herePnisnetphotoG
syntheticrate,PARisphotosyntheticactiveradiation
measuredintheupperpartofthecuvetteofthestandG
ardmeasuringhead3010GS,a,bandcareparameters.
BasedonphotosynthesisGlightresponsecurveequation,
LSPcorrespondingto95%ofmeasuredmaximalPn
andLCPwerecalculated.
Althetreatmentswerereplicatedfivetimes.The
datapresentedarethemeans±SE.OneGwayANOVA
wasemployedtotestthediferencesofthedatafrom
theexperimentswiththeprocedureofSPSS11.0staG
tisticalpackage(SPSSCorp).
2 ResultsandAnalysis
ThephotosyntheticlightGresponsecurves,maxiG
malPn,LSPandLCPoffourmossspeciesundernatG
uralconditionarelistedinTable1.
AccordingtotheirmaximalPnfromhightolow,
fourmossspeciesarerankedasB.procumbens,HedwiG
giahamulosum,Leucobryumglaucum andHedwigia
9965期       申琳等:基于光合参数探讨四种藓类作水族箱植物的应用潜力
ciliata,theirmaximalPn (μmolCO2􀅰kgG1 DW􀅰sG1)
being122.58,87.24,41.10and19.10,respectively;HedG
wigiaciliata hasthehighestLSP,being1166.00
μmol􀅰mG2􀅰sG1,thenB.procumbensandH.hamuloG
sum,being1018.60and941.80μmol􀅰mG2􀅰sG1,respecG
tively,andLeucobryumglaucumhasthelowestLSPat
670.00μmol􀅰mG2􀅰sG1;AsforLCP (μmol􀅰mG2􀅰sG1)
fromhightolow,fourspeciesarerankedasHedwigia
ciliata (85.00),Brachytheciumprocumbens (56.80),
Hedwigiahamulosum (20.50)andLeucobryumglauG
cum (5.3).
PnofBrachytheciumprocumbensafterimmerG
sioninwater:Afterbeingsubmergedinwaterfor5d,
thePnofB.procumbensat1600μmol􀅰mG2􀅰sG1is
127.10μmolCO2􀅰kgG1DW􀅰sG1,being98.74%ofthe
control,whichisnotsignificantlydiferentfromthe
control.Afterbeingsubmergedinwaterfor10,15and
20d,itsnetphotosyntheticratesat1600μmol􀅰mG2􀅰
sG1decreasetosomeextent,being78.21%,87.77%and
94.87%ofthecontrol,respectively(Table2).InterG
estingly,evenafterbeingsubmergedinwaterfor30d,
itsnetphotosyntheticrateat1600μmol􀅰mG2􀅰sG1is
142.61μmolCO2􀅰kgG1 DW􀅰sG1,being110.87% of
thecontrolsignificantlyhigherthanthecontrol.OverG
al,thenetphotosyntheticrateofB.procumbensin
waterdecreasesfirstlyandthenincreasesgradualy
withtheextensionofsubmersiontime(Table2).
PnofHedwigiahamulosumafterimmersionin
Table1 PhotosyntheticlightGresponsecurveequationsandphotosyntheticparametersoffourmossspecies
Mossspecies PhotosyntheticlightGresponsecurveequations
MaximalPn
(μmolCO2􀅰
kgG1DW􀅰sG1)
LSP
(μmol􀅰mG2􀅰sG1)
LCP
(μmol􀅰mG2􀅰sG1)
Brachytheciumprocumbens Pn=96.19􀅰PAR/(0.49􀅰PAR+195)-24.48,r=1.00∗ 122.58±1.73 1018.60 56.75
Hedwigiahamulosum Pn=38.24􀅰PAR/(0.31􀅰PAR+115)-1.32,r=0.99∗ 87.24±0.71 941.76 5.30
Leucobryumglaucum Pn=9.91􀅰PAR/(0.11􀅰PAR+91)-1.60,r=0.98∗ 41.10±1.45 670.03 20.50
Hedwigiaciliata Pn=340.28􀅰PAR/(3.74􀅰PAR+91)-70.94,r=0.97∗ 19.10±0.25 1166.00 85.00
 ∗:atthe0.01levelofsignificance.
Table2 NetphotosyntheticratesofBrachytheciumprocumbensaftersubmersion
inwaterfordifferentdays(μmolCO2􀅰kgG1DW􀅰sG1)
Immersed
days
Photosyntheticactiveradiation(μmol􀅰mG2􀅰sG1)
120 200 400 600 800 1200 1400 1600
0 18.37±0.67a 41.06±1.42a 72.56±0.90a 92.38±0.71a 106.44±0.46a 126.70±0.99a 129.56±0.35a 128.74±1.73a
5 17.04±0.54ac 34.31±1.12b 65.24±0.94b 83.11±0.91b 98.03±1.14b 123.04±1.18a 123.47±1.79b 127.12±0.71a
10 11.58±1.21b 27.55±0.87c 45.89±0.78c 63.85±0.99c 74.94±1.05c 97.16±0.60b 100.39±0.54c 100.68±0.59b
15 19.46±2.95a 27.57±0.55c 47.97±1.27c 63.91±0.96c 79.83±1.93d 110.15±2.80c 108.98±2.90e 113.00±1.56c
20 13.99±1.16bc 30.58±1.57c 62.11±1.16b 80.17±1.11b 91.81±0.86e 117.24±0.79d 119.33±1.52b 122.13±1.05d
30 17.52±0.28ac 47.43±2.27d 71.49±2.50a 97.81±1.72d 119.31±2.13f 133.78±0.61e 138.92±0.80e 142.61±1.38e
Significant
test
df=29
MSE=10.248
F=4.292
P=0.006
df=29
MSE=9.925
F=32.397
P=0.000
df=29
MSE=9.604
F=68.800
P=0.000
df=29
MSE=6.189
F=161.463
P=0.000
df=29
MSE=9.654
F=142.328
P=0.000
df=29
MSE=9.644
F=87.785
P=0.000
df=29
MSE=12.463
F=77.660
P=0.000
df=29
MSE=7.762
F=132.837
P=0.000
 Note:Datawereaverageoffivereplications±SEMsandthesamesuperscriptletterwithinarowmeansnodifferenceatthe0.01levelofsignificancebytheLSD
test.Thesamebelow.
water:Hypnumhamulosum,ifsubmergedinwater
for20and30d,itsnetphotosyntheticratesat50
μmol􀅰mG2􀅰sG1are7.80and7.34μmolCO2 􀅰kgG1
DW􀅰sG1,respectively,significantlylowerthantheconG
trol(10.60μmolCO2􀅰kgG1 DW􀅰sG1),whilethose
submergedfor5,10,15datthesamelightintensity
aresignificantlyhigherthanthatofthecontrol.OverG
al,thenetphotosyntheticrateofH.hamulosuminG
creasesfirstlyandthendecreasesgradualywiththe
extensionofsubmersiontime,butthenetphotosynG
theticratesofH.hamulosumat200,350,550,750,
1000,1100μmol􀅰mG2􀅰sG1,evensubmergedinwater
for30d,are96.63%,104.82%,106.10%,95.55%,
104.05% and96.96% ofthecontrol,respectively.
Therefore,H.hamulosumisabletosurviveinwater
after30Gdaysubmersion(Table3).
007 广 西 植 物                  35卷
Table3 NetphotosyntheticratesofHedwigiahamulosumaftersubmersion
inwaterfordifferentdays(μmolCO2􀅰kgG1DW􀅰sG1)
Immersed
days
Photosyntheticactiveradiation(μmol􀅰mG2􀅰sG1)
50 100 200 350 550 750 1000 1100
0 10.60±0.96a 24.43±1.39a 39.30±1.37ab 54.10±2.04a 67.00±1.22a 82.89±0.95a 84.11±1.87ab 89.05±0.71a
5 11.51±0.55a 27.09±0.98ab 43.97±1.01ac 63.53±0.66b 83.45±0.43b 99.20±1.40b 106.62±0.92c 106.87±2.92b
10 13.21±0.83b 22.74±1.20ac 40.17±1.80ab 54.55±0.52a 70.37±0.57cd 99.34±1.34b 102.60±1.97cd103.46±0.77b
15 12.53±2.93b 28.94±2.66bde46.80±2.97cd 63.45±2.42b 75.66±1.97e 86.50±0.99c 91.72±0.46e 94.29±0.26c
20 7.80±0.54c 25.36±1.00ae 41.01±0.44ae 53.93±0.48a 69.72±0.44adf 77.13±1.59d 82.42±1.55a 83.06±0.63d
30 7.37±0.59c 19.75±1.38cf 37.97±0.90be 56.71±0.52a 71.09±1.08cf 79.20±0.74d 87.51±1.07b 86.34±1.09ad
Significant
test
df=29
MSE=9.281
F=3.188
P=0.024
df=29
MSE=11.901
F=4.414
P=0.005
df=29
MSE=13.295
F=4.019
P=0.009
df=29
MSE=9.338
F=11.264
P=0.000
df=29
MSE=6.041
F=28.710
P=0.000
df=29
MSE=7.265
F=65.493
P=0.000
df=29
MSE=9.959
F=50.095
P=0.000
df=29
MSE=9.398
F=48.733
P=0.000
Table4 NetphotosyntheticratesofLeucobryumglaucumaftersubmersion
inwaterfordifferentdays(μmolCO2􀅰kgG1DW􀅰sG1)
Immersed
days
Photosyntheticactiveradiation(μmol􀅰mG2􀅰sG1)
50 150 250 350 500 650 800 900
0 5.13±0.44ab 10.42±0.16a 17.60±1.04a 25.09±0.33a 32.80±0.86a 41.49±1.12a 44.15±1.46a 42.70±1.35a
5 13.87±0.45c 24.73±1.45b 35.27±0.33b 42.28±0.78b 48.78±0.87b 51.03±0.92b 51.83±0.57b 50.45±0.76b
10 6.83±1.72a 19.71±1.42c 32.42±0.98c 37.36±0.61c 47.19±0.60b 47.39±0.67c 47.47±0.57c 47.44±0.97c
15 6.83±0.64a 19.48±0.84c 26.69±0.43d 31.48±0.50d 39.19±0.37c 44.69±1.06d 46.07±0.69ac 46.27±1.23c
20 6.14±0.75a 18.61±0.66c 32.53±0.46c 40.42±0.49e 47.15±0.53b 52.41±0.51b 57.18±0.46d 57.66±0.21d
30 3.37±0.87b 17.69±0.50c 27.55±0.31d 33.30±0.26f 38.62±0.36c 42.49±0.22ad 45.99±0.47ac 46.75±0.22c
Significant
test
df=29
MSE=4.208
F=15.382
P=0.000
df=29
MSE=4.609
F=23.248
P=0.000
df=29
MSE=2.193
F=91.320
P=0.000
df=29
MSE=1.361
F=148.159
P=0.000
df=29
MSE=1.991
F=101.956
P=0.000
df=29
MSE=3.314
F=30.390
P=0.000
df=29
MSE=3.068
F=38.503
P=0.000
df=29
MSE=4.106
F=31.760
P=0.000
Table5 NetphotosyntheticratesofHedwigiaciliataaftersubmersion
inwaterfordifferentdays(μmolCO2􀅰kgG1DW􀅰sG1)
Immersed
days
Photosyntheticactiveradiation(μmol􀅰mG2􀅰sG1)
100 160 300 500 700 900 1000 1100
0 3.38±0.42a 7.64±0.39a 11.02±0.47a 14.30±0.13a 16.56±0.17a 19.01±0.09a 18.82±0.28a 19.10±0.25a
5 2.91±0.10a 6.08±0.17b 10.17±0.15a 13.40±0.12b 16.61±0.11a 17.93±0.17b 18.31±0.18a 18.70±0.21a
10 0.84±0.43b 3.35±0.29c 6.70±0.16b 8.32±0.26c 11.63±0.18b 13.31±0.11c 13.79±0.12b 14.61±0.16b
15 ND 2.89±0.34c 7.10±0.48b 11.91±0.18d 14.16±0.11c 16.13±0.10d 16.96±0.07c 17.82±0.07c
20 ND ND 0.17±0.04c 0.48±0.04e 0.63±0.01d 0.86±0.02e 0.82±0.21d 0.99±0.02d
30 ND ND ND ND ND ND ND ND
Significant
test
df=14
MSE=0.622
F=14.697
P=0.001
df=19
MSE=0.474
F=53.717
P=0.000
df=24
MSE=0.498
F=182.860
P=0.000
df=24
MSE=0.132
F=1199.068
P=0.000
df=24
MSE=0.086
F=2565.208
P=0.000
df=24
MSE=0.062
F=4401.172
P=0.000
df=24
MSE=0.172
F=1625.677
P=0.000
df=24
MSE=0.134
F=2163.061
P=0.000
  PnofLeucobryumglaucumafterimmersionin
water:ThenetphotosyntheticratesofL.glaucum,
exceptthatsubmergedinwaterat50μmol􀅰mG2􀅰sG1
for30d,aresignificantlyhigherthanthecontrol(TaG
ble4).Aftersubmergedinwaterfor5,10,15,20and
30d,thenetphotosyntheticratesofL.glaucumat900
μmol􀅰mG2 􀅰sG1are50.45,47.44,46.27,57.66,and
46.75μmolCO2 􀅰kgG1 DW􀅰sG1,respectively,being
118.16%,111.11%,108.37%,135.03%and109.49%
ofthecontrol,respectively,indicatingthatL.glaucumis
alsoabletosurviveinwater,atleastfor30d(Table4).
PnofHedwigiaciliataafterimmersioninwaG
ter:Afterbeingsubmergedinwaterfor10-20d,the
netphotosyntheticrateofH.ciliataslightlyincreased
firstly,thendecreasedsharply,nonetphotosynthetic
rateofH.ciliatawasdetectedaftersubmergedinwaG
1075期       申琳等:基于光合参数探讨四种藓类作水族箱植物的应用潜力
terfor30days(Table5),indicatingthatHedwigia
ciliataisnotadaptedtowaterenvironmentover10d.
3 Discussion
TheLCPofshade herbsarelowerthan 20
μmol􀅰mG2􀅰sG1,andtheirLSParefrom500to1000
μmol􀅰mG2􀅰sG1orlower(Niuetal.,2004).TheLCP
ofH.hamulosumandLeucobryumglaucumare5.30
and20.50μmol􀅰mG2􀅰sG1,respectively,andtheirLSP
are941.80and670.00μmol􀅰mG2􀅰sG1,respectively,
indicatingthatbotharetypicalshadeplants.Compared
withL.glaucum,Hedwigiahamulosum haswider
light adaptation range under natural condition;
BrachytheciumprocumbensandHedwigiaciliatabeG
longtosunnyplants,whichisrevealedbytheirhigher
LCPfrom56.75to85.00μmol􀅰mG2􀅰sG1,andalso
higherlight saturation points from 1018.60 to
1166.00μmol􀅰mG2􀅰sG1.ComparedwithBrachyGtheG
ciumprocumbens,HedwigiaciliataisatypicalhelioG
phyte,similartootherterrestrialsunnyherbsinitsadG
aptationtolight.
TheLCPandLSPofthefourmossspeciesare
relatedtotheirnaturalhabitats.ThesamplesofHedG
wigiaciliata weretakenfromrocksurfaceinopen
field.H.ciliata,anextremelydroughtGtolerantmoss
species,oftendistributesonsurfaceofopenrockswith
stronglight;Brachytheciumprocumbensoccasionaly
growsongrasslands,hilsinsunnyandopenhabitats,
butalsoonfloorandbouldersunderforest(Huetal.,
2005).ThesamplesofB.procumbensweretakenfrom
roadsideofasparseforestinXuhuiCampusofShangG
haiNormalUniversity.ItshigherLCPandlowerlight
saturationpointindicatingthatB.procumbensisneiG
theratypicalshadeplant,noratypicalsunnyplant.
ThesamplesofHedwigiahamulosum weretaken
fromapatchofshrubbyroadside(evelvationca.1180
m)ofJinhuaMountain,thehabitatisshadyandoften
misty,thephotosyntheticparametersofH.hamuloG
sumreflectsthehabitatconditionstosomeextent.
FourmossspeciesvarymuchintheirPn.Among
them,BrachytheciumprocumbenshasthehighestvalG
ue,being122.575μmolCO2􀅰kgG1DW􀅰sG1,whileH.
ciliatathelowest,being19.10μmolCO2􀅰kgG1DW􀅰
sG1,theformerhas6.42timeshigherPnofthatofthe
latter.Theirphotosyntheticparametersarerelatedto
theirmorphologicaltraits.ThereasonforH.ciliata
haslowerPncouldbeexplainedasfolows:(1)HedG
wigiaciliataaregreygreenishwithlowerchlorophyl
contentcomparedwithBrachytheciumprocumbens,its
leafhyalinetipsarenotaphotosynthetictissue,acG
countingforalargepartofleaf;(2)itsleavesdensely
coveredwithmanysharptransparentpapilaeonboth
sides,which mayafecttheabsorptionoflight;(3)
Hedwigiaciliatahasprocumbentandstoutstems,the
photosyntheticcapacityofthispartwilcertainlybe
weakerthantheleaves.
ThePnofLeucobryumglaucumis41.10μmol
CO2􀅰kgG1 DW􀅰sG1,higherthanthatofHedwigia
ciliata,but significantly lower than those of
BrachytheciumprocumbensandHedwigiahamuloG
sum,whichisrelatedtoitsgametophytefeatures.The
leavesofLeucobryumglaucum havesmoothsurface
withoutpapiliaeandhyalinetipslikeHedwigiaciliaG
ta,buttheyhaveflatandwidecostae,andonlyone
layerofgreencelswithphotosyntheticfunction,and
thelargercelsonbothsidesofthegreencellayerare
colorless,withoutphotosyntheticpigments.
MostpreviousreportsaboutbryophytephotosynG
thesistookleafareaasunit,sowecannotcompareour
photosyntheticdatawiththoseofpreviouswork.DelG
toroetal.(1999)reportedthatthePnofLeucodon
sciuroidesinMediterraneanwas8-10mgCO2􀅰gG1
DW􀅰hG1 at15 ℃,whichisequalto50-60μmol
CO2􀅰kgG1 DW􀅰sG1,andclosetothatofLeucobryum
glaucuminthepresentwork.Convey(1994)reported
thatthePnofBartramiapatensandothertwelve
mossspeciesintheAntarcticvariedfrom0.879to
0.134mgC􀅰gG1DW􀅰hG1.ifconvertedintothesame
unit,thePnofBrachytheciumprocumbensis0􀆰82-
4􀆰50mgC􀅰gG1DW􀅰hG1.ConsideringtheharshAntG
arcticenvironment,thePnofthebryophytesmeasured
byConveyarenaturalylowerthanthoseofthepresG
entwork.Therefore,thephotosyntheticdataofthe
fourmossspeciesfalintothereasonablescope.Ueno
etal.(2006)reportedthenetphotosyntheticrateof
207 广 西 植 物                  35卷
Calliergongiganteum (asemiGaquaticmossspecies)
as1􀆰2-1􀆰6mgCO2􀅰gG1􀅰hG1,about113-150μmol
CO2 􀅰kgG1 DW 􀅰sG1,whichissimilartothatof
Brachytheciumprocumbens.Liuetal.(2001)found
thatthePnofPlagiomiumacutumandP.maximovG
icziinsummeris125.67and94.63μmolCO2􀅰kgG1
DW􀅰sG1,whichshowsthatPlagiomiumacutumand
Brachytheciumprocumbens,PlagiomiummaximovicG
ziandHedwigiahamulosumhavesimilarphotosynG
theticcapacity,respectively.
Aftersubmergedfordiferenttimes,thePnof
Brachytheciumprocumbensincreasesfirstlyandthen
decreasesgradualywiththeextensionofsubmersion
inwateratalPARintensitiesexceptfor120μmol􀅰
mG2􀅰sG1.ThephotosynthesisofBrachytheciumprocG
umbens,ifsubmergedforashorttime,wasinhibited
becauseofwaterstressinrelationtodeficiencyofoxyG
genandCO2.Withtheextensionofsubmergedtime,
B.procumbensisgradualyadaptedtowaterenvironG
mentanditsphotosyntheticcapacityrecovered,andeG
venexceededthecontrol.Duringthesubmersion,the
gametophytesofB.procumbenskeptgreenalthe
time,indicatingthatB.procumbensisabletosurvive
welinaquaticenvironment.Inthefield,B.procumG
bensoftendistributesonstonesonedgeofsome
streams,sometimessubmergesinwaterduringrainy
season.
ThenetphotosyntheticrateofLeucobryumglauG
cumincreasedfirstlyandthendecreasedgradualywith
theextensionofsubmersion,itsPnreachedapeakafG
terbeingsubmergedfor20d,indicatingthatLeucobryG
umglaucumisabletolivewelinwaterforashort
time.ThegametophyteofL.glaucumissomewhat
similartothatofSphagnumsp.,saySphagnumpalG
ustre,thelatterisabletolivewelinswampsandwet
environments.Therefore,L.glaucumhasmorphologiG
calandstructuralgroundtoadapttoaquaticenvironG
menttoacertaindegree.Whensubmergedinwater,
Hedwigia hamulosum and Leucobryum glaucum
shareasimilarchangepatternintheirPn.TheirPn
increasedfirstlyandthendecreasedgradualywiththe
extensionofsubmergedtime,buthigherornotsignifiG
cantlylowerthantheircontrol,respectively,evenafter
30Gdaysubmersioninwater,showingtheirgoodadaptG
abilitytowaterenvironment.
HedwigiaciliataisadroughtGtolerantsaxicolous
mossspecies.ThePnofH.ciliatadecreasedsharply
withtheextensionofsubmergedtime,indicatingthat
H.ciliataisnotadaptedtoaquaticenvironment.
4 Conclusions
Overal,Brachytheciumprocumbens,LeucobryG
umglaucumandHedwigiahamulosumareadaptedto
aquaticenvironmentstosomeextent,andtheyseems
tobepotentialaquariumplants.Itshouldbenotedthat
thisstudyhasmeasuredthePnofonlyfourmosses
aftertheirbeingsubmerged,ifweextendourpresent
workwithmoreotherterrestrialsandwetmossspeG
cies,wemaybefindmorespeciesadaptedtowaterenG
vironments,andthusprovidemorenewpotentialaG
quariumplants.
References:
BenlG.1958.JavamossfordecorationandasaspawningmediumG
ausefulaquaticplantwhichhasyettobeseeninBritain[J].
FishKeep,11:655
BusbyJR,WhitfieldDWA.1978.Waterpotential,watercontent
andnetassimilationofsomeborealforestmosses[J].CanJ
Bot,56:151-158.
ConveyP.1994.PhotosynthesisanddarkrespirationinAntarctic
mossesaninitialcomparativestudy[J].PolBiol,14:65-69
CrumHA,AndersonLE.1981.MossesofEasternNorthAmerica
[M].NewYork:ColumbiaUniversityPress
DeltoroVI,Calatayud,MoralesF,etal.1999.ChangesinnetphoG
tosynthesis,chlorophylfluorescenceandxanthophylcycleinter
conversionsduringfreezeGthawcyclesintheMediterraneanmoss
Leucodonsciuroides[J].Oecologia,120:499-505
DilksTJK,ProctorMCF.1975.ComparativeexperimentsontemG
peratureresponseofbryophytes:assimilation,respirationand
freezingdamage[J].JBryol,8:317-336
GoffinetB,Shaw AJ.2008.BryophyteBiology[M].New York:
CambridgeUniversityPress
GradsteinSR,ReinerGdrehwald ME,Muth H.2003.Überdie
IdentitätderneuenAquarienpflanze“Pelliaendiviifolia”[J].
AquaPlant,3:88-95
HuRL,WangYF.2005.FloraBryophytorumSinicorum (Vol.
7)[M].Beijing:Sciencepress
KalaposT,MázsaK.2001.Junipershadeenablesterricolous
lichensandmossestomaintainhighphotochemicalefficiency
inasemiaridtemperatesandgrassland[J].PhotosynthetiG
ca,39:263-268LarcherW.1982.PhysiologicalPlantEcology
[M].Beijing:SciencePress
LiuYD,ChenJ,CaoT.2001.Photosyntheticcharacteristicsoftwo
(下转第672页Continueonpage672)
3075期       申琳等:基于光合参数探讨四种藓类作水族箱植物的应用潜力