全 文 :— 73 —现代中药研究与实践2015年第29卷第2期Chin. Med. J. Res. Prac., 2015 Vol. 29 No.2
基金项目:江苏省青蓝工程中青年学术带头人资助项目
作者简介:汪远超 (1988-),女,硕士研究生,研究方向:天然药物化学。E-mail :irir1988@126.com
通讯作者:汪 豪 (1969-),男,博士,教授,研究方向:天然药物化学。E-mail :wanghao@cpu.edu.cn
卫矛科木栓烷型三萜类化学成分及药理活性
汪远超,李明炀,汪 豪 *,叶文才
( 中国药科大学天然药物化学教研室 , 江苏 南京 210009)
摘 要:木栓烷型三萜类是卫矛科植物重要的特征性成分,具有抗肿瘤、抗炎、抗菌等药理活性。本
文在检索国内外相关文献的基础上,对卫矛科植物木栓烷型三萜类化学成分和药理作用研究进展进行了综
述。
关键词 : 卫矛科;木栓烷型三萜;药理活性
中图分类号:R93 文献标识码:A 文章编号:1673-6427(2015)02-73-07
doi: 10.13728/j. 1673-6427. 2015. 02. 024
Study on Chemical Constituents and Pharmacological Activities of Friedelane
Triterpenes in Celastraceae
WANG Yuan-chao, LI Ming-yang, WANG Hao*, YE Wen-cai
(Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China)
Abstract: The friedelane triterpenes are the chemical characteristics of medicinal plants in the Celastraceae
family and possess some important pharmacological activities, such as antitumor, anti-infl ammatory, antibacterial,
and so on. This article reviewed chemical components and pharmacological activities of friedelane tritrpenes in
Celastraceae.
Key words: Celastraceae; friedelane triterpenes; pharmacological activities
卫矛科 (Celastraceae) 植物是一类重要的天然药
用资源,在我国民间有着悠久的药用历史,主要用
于抗肿瘤、抗炎、抗菌等。卫矛科包括 4个亚科 55
属,850 种,主要分布于热带、亚热带及其他温暖地
区,我国有13属 201种 [1]。木栓烷型三萜类 (friedelane
triterpenes) 化合物因具有较强的生物活性而受到广泛
关注,也是卫矛科重要的特征性化学成分 [2,3]。
木栓烷型三萜广泛存在于卫矛科巧茶属 (Catha
Forssk.)、南蛇藤属(Celastrus L.)、雷公藤属(Tripterygium
Hook. F.)、卫矛属 (Euonymus L.)、假卫矛属 (Microtropis
Wall. ex Meisn.)、美登木属(Maytenus Molina)等植物中。
本文综述了卫矛科植物中木栓烷型三萜类化学成
分及药理活性的研究进展,以期为该类化合物和富含
该类成分的卫矛科植物的研究开发提供借鉴和参考。
1 化学成分研究
据文献报道,国内外学者已从卫矛科植物中分离
得到近 200 个木栓烷型三萜,根据 A环氧化程度不
同和结构特点将其分为醌类甲基型、酚性去甲基木栓
烷型、木栓烷 -3- 酮型、其他木栓烷型及二聚体三
聚体五种类型。
1.1 醌甲基型三萜 (Quinone Methides, QM)
自 1936 年首次报导从雷公藤根部提取得到萜类
色素雷公藤红素 (tripterine/celastrol)[4],醌类甲基型三
萜 (QM) 开始得到了广泛的研究。以雷公藤红素为代
表 QM的化合物见表 1。
1.2 酚性去甲基木栓烷型三萜 (24-norfriedelanes,
PNFs)
酚性去甲基木栓烷型三萜 ( 含苯环 ),包括 24,
29- 二去甲基木栓烷,多数为 24-nor-D: A-friedoleane
结 构。 自 从 Kokoona zeylanica 首 次 分 离 得 到
zeglasterone(47) 和 zeglasteral(48) 后,在卫矛科植物中
分离得到 37 个 PNFs,化合物见表 2。
1.3 木栓烷 -3- 酮型三萜 (3-oxo-friedelane)
木栓烷 -3- 酮型三萜在自然界中比较罕见,却
— 74 — 现代中药研究与实践2015年第29卷第2期Chin. Med. J. Res. Prac., 2015 Vol. 29 No.2
在卫矛科中较常见,也是目前自然界得到木栓烷型三
萜中数量最多的。此类化合物在结构上具有木栓酮母
核特征,化合物见表 3。
1.4 其他木栓烷型
其他木栓烷型三萜包括木栓烷 -2- 酮型、木栓
烷 -齐墩果烷型 ( 饱和环 ) 和开环木栓烷型等。木栓
烷 -齐墩果烷型三萜 ( 饱和环,D: A-friedooleanan),
普遍被认为是木栓烷类三萜的前体化合物,主要
在美登木属植物Maytenus truncata Reiss、雷公藤
(Tripterygium wilfordi.) 中分离得到,化合物见表 4。
1.5 二聚体和三聚体
木栓烷三萜二聚体三聚体是由一个或多个醌式
单元和一个或多个芳香单元组成的,这些单元 ( 包括
pristimerin,、tingenone、netzahualcoyene 或者他们衍
生物 ) 通过酯键将两个 A环或者 A 环与 B 环相连接
而得到的二聚体和三聚体。
从 1995 年到 2004 年,Shirota O 等 [60] 从 Maytenus
chuchuhuasca 中分离得到 16 个二聚体三萜化合物:
Xuxuasin A(169),Xuxuarine Bβ(170),Xuxuarine Aα (171)
等。1999 年,González A. 等从 Maytenus scutioides 中
分离得到 2 个蒽醌类单元的三聚体三萜化合物:
Triscutin A (172) 和 Triscutin B(173)。
显然,木栓烷三萜二聚体三聚体的天然产物几乎
都出自美登木属,相较于其他木栓烷类三萜由酶催
化的狄尔斯-阿尔德反应(Diels-Alder reaction)所得,
此类化合物由 2个或者 3个单元的单体化合物自由基
偶联反应所得 [18]。这些化合物表现出比他们的单体
化合物的更弱的抗菌活性和抗癌活性 [61]。
2 药理作用
卫矛科木栓烷型三萜具有多种药理活性,如细胞
毒活性、抗HIV活性、抗炎、抗菌、免疫抑制、抗生
育作用、氧自由基清除作用、细胞因子诱导作用等 [3]。
表 1 卫矛科植物中分离得到的醌类甲基型 (QM) 化合物
Tab. 1 QM friedelanes from plants of Celastraceae
编号 化合物名称 分子式 植物来源 文献
1 扁蒴藤素 pristimerin C30H42O4 M. chuchuhuasca, T. wilfordii. 5, 6
2 南蛇藤素 / 雷公藤红素 celastrol(tripterine) C29H38O4 M. chuchuhuasca, T. wilfordii. 5, 6
3 卫矛酮 tingenone(tingenin A, maitenin) C28H36O3 M. chuchuhuasca, T. wilfordii 5, 6
4 22β-hydroxy-tingenone(tingenin B) C28H36O4 M. chuchuhuasca, T. wilfordii 5, 6
5 Maytenin C29H38O3 M. ilicifolia 7
6 salaquinone A C28H34O5 S. chinensis, T. wilfordii 6, 8
7 Salacin C28H38O4 S. chinensis, T. wilfordii 6, 8
8 20α-hydroxymaytenin C28H36O4 S. campestris 8
9 20-epi-isoiguesterinol C28H39O3 S. campestris 8
10 Isoiguesterinol C29H39O3 S. campestris 8
11 30-hydroxypristimerin C31H41O5 S. campestris 8
12 Iguesterine C27H31O2 C. cassinoides 9
13 Isoiquesterin C27H34O2 S. madagascariensis 10
14 28-nor-isoiguesterin-17-carbaldehyde C28H34O3 S. hraussii 11
15 17-(methoxycarbonyl) -28-nor-isoiguesterin C29H36O4 S. hraussii 11
16 28-hydroxyisoiguesterin C28H36O3 S. hraussii 11
17 Salaciquinone C28H36O3 S. reticulata var. 11
18 Dispemroquinone C30H38O5 M. dispermus 12
19 20-oxo-20,21-seco-tingen-21-oic acid C28H36O5 G. sclerocarpum 13
20 20-oxo-21-nor-20,21-seco-tingen-22-al C28H36O4 G. sclerocarpum 13
21 20,22β-dihydroxytingenone C28H36O5 G. sclerocarpum 13
22 20,22β-dihydroxy-20-epi-tingenone C28H36O5 G. sclerocarpum 13
23 20,21α-dihydroxy-22-oxo-21-desoxotingenone C28H36O5 G. sclerocarpum 13
24 20-hydroxy-22-oxotingenone C28H34O5 G. sclerocarpum 13
25 20-hydroxy-22-oxo-20-epi-tingenone C28H34O5 G. sclerocarpum 13
26 21α-hydroxy-20,22-dioxo-30(20 → 21)-abeo-21-desoxotingenone C28H34O5 G. sclerocarpum 13
27 21-oxopristimerine C30H38O5 M. retusa 14
28 3,22β-dihydroxy-24,29-dinor-l(10)-3,5-friedelatriene-2,7,21-trione C28H37O4 M. amazonica 15
29 3,22β-dihydroxy-24,29-dinor-l(10),3,5–friedelatriene-21-one C28H37O3 M. amazonica 15
30 Amazoquinone C28H36O3 M. amazonica 16
31 (7S,8S)-7-hydroxy-7,8-dihydro-tingenone C28H38O3 M. amazonica 16
32 Tripterygone C29H42O4 T. wilfordii. 6
33 15α-hydroxyl -21-keto-pristimerine C30H38O6 M. catingarum 17
34 3,5,7-tetraen-29-oic acid methyl ester C30H40O4 M. catingarum 17
35 16β-hydroxyiguesterin C28H36O3 M. canariensis 18
36 7-oxo-7,8-dihydroscutione C28H34O4 M. retusa 14
37 Netzahualcoyene C30H36O5 S. chinensis 8
38 Scutione C28H34O3 M. scutioides 19
— 75 —现代中药研究与实践2015年第29卷第2期Chin. Med. J. Res. Prac., 2015 Vol. 29 No.2
美登木属、卫矛属、南蛇藤属及雷公藤属在全世界范
围内都是作为研究抗癌药的对象。现将近几年有关卫
矛科植物木栓烷型三萜的药理活性研究总结如下。
2.1 抗炎活性
从卫矛科雷公藤属植物雷公藤 (Tripterygium
wilfordii) 中分离出来的雷公藤红素 (Celastrol, 2),能抑
制致炎细胞因子前体物质白介素 (IL-1α, IL-1β and
IFN-γ等 ) 及 PGE2 的释放,降低了人血管内皮生长
因子抗体 1和 2(VEGFR-1, VEGFR-2) 和 mRNA 的表
达从而抑制血管内皮细胞的增殖 [62]。
研究认为急、慢性炎症的发生均与一氧化氮 (NO)
有关,雷公藤红素也能抑制体内一氧化氮 (NO) 的异
常增加,从而起到其抗炎作用 [63]。
2.2 免疫抑制作用
L De León 等 [62] 从雷公藤 (Tripterigium wilfordii )
中分离得到的去甲泽拉木醛 (Demethylzeylasteral, 39)
能抑制混合淋巴细胞反应,延长肾移植大鼠的生存
时间;能抑制外周血中无细胞毒性的单核细胞增殖;
能抑制 CD4 及其他参与免疫反应的细胞 [39]。
2.3 抗菌作用
L Moujir 等 [64] 从 美 登 木 属 植 物 Maytenus
blepharodes 中分离得到酚性去甲基木栓烷型三萜
(zeylasterone, 47; zeylasteral, 48; demethylzeylasteral, 39
demethylzeylasterone, 40),并证明其对革兰氏阳性细
菌的抑制作用,尤其是形成芽孢阶段。
2.4 抗肿瘤作用
QM是一类非常重要的具有生物活性的有机物
质,甲基醌结构 α 位电子云密度降低,成为亲核
反应中心,是大量化学、生物过程中的活性中间
体 [65]。实验证实,雷公藤红素 (Celastrol, 2)、扁蒴藤
素 (pristimerin, 1)、卫矛酮 (tingenone, 3) 等 QM化合物
对多种恶性肿瘤,如乳腺癌、结肠癌、卵巢癌、白血
表 2 卫矛科植物中分离得到的酚性去甲基木栓烷型三萜 (PNFs)
Tab. 2 PNFs from plants of Celastraceae
编号 化合物名称 分子式 植物来源 文献
39 demethylzeylasteral C29H36O6 T. wilfordii, M. blepharodes 20,21
40 demethylzeylasterone C29H36O7 T. wilfordii, M. blepharodes 20,21
41 wilforol A C29H38O5 S. campestris, T. wilfordii 8,20
42 triptohypol A C30H40O6 T. hypoglaucum 22
43 triptohypol B C30H46O5 T. hypoglaucum 22
44 23-nor-oxodemethylpristimerol C28H36O5 T. wilfordii 20
45 regeol C C29H38O6 T. wilfordii var. regelii 23
46 6-oxoisoiguesterin C27H33O3 S.madagascariensi 8
47 zeylasterone C30H38O7 C. paniculatus 24
48 zeylasteral C30H38O6 C. paniculatus 24
49 6-oxopristimerol C30H40O5 M. ilicifolia, M. chuchuhuasca 25
50 blepharotriol C29H38O6 M. blepharodes 26
51 wilforic acid A C29H42O4 T. wilfordii var. regelii 23
52 6-deoxoblepharodol C30H44O4 M. blepharodes 26
53 isoblepharodol C30H44O5 M. blepharodes 26
54 7-oxoblepharodol C30H44O6 M. blepharodes 26
55 triptohypol C C29H40O4 T. wilfordii var. regelii 23
56 2,3-dihydroxy-1,3,5(10),7-tetraene-6α(1 -hydroxyethyl)-24-nor-D:A-friedooleane-29-oic acid C31H44O5 T. wilfordii 23,27
57 2,3-dihydroxy-1,3,5(10),7-tetraene-6β(1 -hydroxyethyl)-24-nor-friedelan-29-oic acid C30H46O6 T. wilfordii 23
58 6-oxotingenol C28H38O4 M. ilicifolia, M. chuchuhuasca 25
59 3-methyl-6-oxotingenol C29H40O4 M. ilicifolia, M. chuchuhuasca 25
60 3-methyl-22β,23-dihydroxy-6-oxotingenol C29H40O6 M. ilicifolia, M. chuchuhuasca 25
61 3-methyl-23-ol-6-oxotingenol C29H38O6 T. wilfordii 28
62 3-methyl-22β,23-diol-6-oxotingenol C29H38O5 T. wilfordii 28
63 2,3,22β-trihydroxy-24,29-dinor-1,3,5(10),7-friedelatetraene-6,21-dione-23-al C28H34O6 M. amazonica 15
64 2,3,22β-trihydroxy-3-methoxy-24,29-dinor-1,3,5(10),7 –friedelatetraene -6,21-dione C28H36O5 M. amazonica 15
65 2,3, 22β-triihydroxy-23,24,29-trinor-1,3,5(10),7-friedelatetraene-6,21-dione C27H34O5 M. amazonica 15
66 2,22β-dihydroxyl-3-methoxy-24,29-dinor-1,3,5(10),7-friedelatetraene-6,21-dione C29H38O5 M. amazonica 15
67 23-nor-6-oxo-tingenol C27H34O4 M. amazonica 16
68 regeol A C28H40O4 T. wilfordii 23
69 2,3,22β-trihydroxy-24,29-dinor-1,3, 5(10)-friedelatriene-6, 21-dione C28H38O5 M. amazonica 15
70 2,15α,22β-trihydroxy-3-methoxy-24,29-dinor-1,3, 5(10)-friedelatriene-21-one C29H42O4 M. amazonica 15
71 7,8-dihydro-6-oxo-tingenol C28H38O5 M. amazonica 16
72 2,3,22,β-trihydroxy-24,29-dinor-25(9 → 8)-1,3,5(10),7-friedelatetraene-21-one-23-al C27H32O5 M. amazonica 15
73 23-oxo-iso-tingenone C28H36O4 M. amazonica 16
74 wilforol B C29H38O4 T. wilfordii, C. orbiculatusv 20, 29
75 salaquinone B C28H36O5 S. chinensis 30
— 76 — 现代中药研究与实践2015年第29卷第2期Chin. Med. J. Res. Prac., 2015 Vol. 29 No.2
表 3 卫矛科植物中分离得到的木栓烷 -3- 酮型三萜
Tab. 3 3-oxo-friedelanes from plants of Celastraceae
编号 化合物名称 分子式 植物来源 文献
76 friedelin(3-oxo-friedelane) C30H50O E. glaucum 31
77 canophyllal(3-oxofriedelan-28-al) C30H48O2 E. glaucum 31
78 canophyllol(3-oxo-28-hydroxyfriedelane) C30H50O2 E. glaucum 31
79 friedelin-3-on-25-al C30H48O2 E. glaucum 31
80 friedelin-3-on-25-ol C30H50O2 E. glaucum 31
81 Elaeodendrol C29H48O2 E. glaucum 31
82 Elaeodendradiol C29H48O3 E. glaucum 31
83 populnonic acid(maytenonic acid) C30H48O3 A. populnea 32
84 methyl populnonate C31H50O3 A. populnea 33
85 friedelan-3-one-29-ol C30H50O2 M. dzffusa 33
86 friedelan-3-one-29-al C30H48O2 M. dzffusa 33
87 celasdin A C30H50O3 C. hindsii 34
88 celasdin B C30H50O3 C. hindsii 34
89 29-hydroxy-3-oxo-D:A-friedooleanan-28-oic acid C30H50O2 E. revolutus 35
90 3-oxo-friedelan-28-oic acid C30H48O3 E. revolutus 35
91 3,21-dioxofriedelane C30H48O2 K. zeylanica 36
92 3-oxo-21α-hydroxyfriedelane C30H50O2 K. zeylanica 36
93 kokoonol(3-oxo-27-hydroxyfriedelane) C30H50O2 K. zeylanica 36
94 kokoononol(3,21-dioxo-27-hydroxyfrie-delane) C30H48O3 K. zeylanica 36
95 kokoondiol(3-oxo-21α,27-dihydroxyfriedelane) C30H50O3 K. zeylanica 36
96 zeylanol(3-oxo-6β-hydroxyfriedelane) C30H50O2 K. zeylanica 36
97 zeylanonol(3,21-dioxo-6β-hydroxyfriedelane) C30H48O3 K. zeylanica 36
98 zeylandiol(3-oxo-6β,21β-dihydroxyfriedelane) C30H50O3 K. zeylanica 36
99 kokzeylanol (3-oxo-6β,27-dihydroxyfriedel-ane C30H50O3 K. zeylanica 37
100 kokzeylanonol(3,21-dioxo-6β,27-dihydroxyfriedelane) C30H48O4 K. zeylanica 37
101 3,15-dioxofriedelane C30H48O2 P. compta 38
102 3-oxo-15α-hydroxyfriedelane C30H50O2 P. compta 38
103 1,3-dioxo-15α-hydroxyfriedelane C30H48O3 P. compta 38
104 1,3-dioxofriedelane C30H48O2 P. compta 38
105 celasdin C C30H48O3 C. hindsii 34
106 salasones D C30H50O3 S. chinensis 30
107 salasones E C30H50O3 S. chinensis 30
108 Cerin C30H50O2 C. vulcanicola 41
109 wilforic acid C C30H48O4 S. chinensis 30
110 wilforic acid F C30H48O4 T. wilfordii 39
111 3,15-dioxo-21α-hydroxy C30H48O3 M. robusta 40
112 7β-hydroxy-3-oxo-D:A-friedooleanan-28-oic acid C30H48O4 C. vulcanicola 41
113 7β-hydroxy-3-oxo-D:A-friedooleanan-28-oic acid methyl ester C31H50O4 C. vulcanicola 41
114 7β,29-dihydroxy-3-oxo-D:A-friedooleanane C30H50O3 C. vulcanicola 41
115 1β,30-Dihydroxy-3-oxo-D:A-friedooleanane C30H50O3 C. vulcanicola 41
116 1β-Hydroxy-3-oxo-D:A-friedooleanan-30-oic acid C30H48O4 C. vulcanicola 41
117 1β-hydroxy-3-oxo-D:A-friedooleanane C30H50O2 C. vulcanicola 41
118 3,11-dioxofriedelane C30H48O2 M. gonoclada 42
119 3,16-dioxofriedelane C30H48O2 M. gonoclada 42
120 3,12-dioxofriedelan-28-al C30H46O3 C. monospermus 43
121 3,12-dioxo-28-hydroxyfriedelane C30H48O3 C. monospermus 43
122 3-oxo-12α –hydroxyfriedelane C30H50O2 M. gonoclada 42
123 3-oxo-12α,28-dihydroxyfriedelane C30H50O3 P. compta 38
124 Prionostemmadione C30H48O2 P. compta 38
125 Monospermol C30H50O2 P. compta 38
126 Maytenfoliol C30H50O3 M. diversifolia 44
127 3-oxo-D:A-friedooleanan-30-al C30H48O2 M. diversifolia 45
128 octandronic acid(3-oxo-D:A-friedooleanan-30-oic acid) C30H48O3 C. cassinoides 46
129 28,29-dihydroxy-3-oxo-D:A-friedoleanane C30H50O3 E. balae 47
130 29-hydroxy-3-oxo-D:A-friedooleanan-28-al C30H48O3 T. wilfordii 48
131 29-hydroxy-3-oxo-D:A-friedooleanan-28-oic acid C30H48O4 E. fevdutus 52
132 25-hydroxy-3-oxo-D:A-friedooleanane C30H50O2 C. vulcanicola 41
133 3,24-dioxo-rfiedelan-29-oicacid C30H46O4 T. wilfordii 49
134 triptocalline A C28H42O4 T. wilfordii 50
135 wilofric acid B C29H44O4 T. wilfordii 27
136 regeol B C29H44O5 T. wilfordii 27
137 maytenfolone A C30H46O4 M. dzffusa 34
138 2α-hydroxy-3-oxo-D:A-friedooleanan-28-oic acid C30H48O4 E. fevdutus 52
— 77 —现代中药研究与实践2015年第29卷第2期Chin. Med. J. Res. Prac., 2015 Vol. 29 No.2
表 4 卫矛科植物中分离得到的其他木栓烷型
Tab. 4 other friedelanes from plants of Celastraceae
编号 化合物名称 分子式 植物来源 文献
139 3a-hydroxy-2-oxo-D:A-friedooleanane C30H50O2 C. vulcanicola 41
140 3α-hydroxy-2-oxo-D:A-friedooleanan-28-oic acid C30H48O4 E. fevdutus 35, 52
1401 3-hydroxy-2-oxo-D:A-friedoolean-3-en-29-oic acid C30H46O4 T. wilfordii, A. populnea 39,53
142 Cangoronine C30H44O5 T. wilfordii 39, 51
143 cangoronine methyl ester C31H46O5 E. schlechteranum 54
144 3-hydroxy-2-oxofridelen-3-ene-20α-methy-carboxylic acid C31H48O4 T. wilfordii, A. populnea 52,53
145 3β-hydroxy-2-oxofriedela-20α-carboxylic acid C30H48O4 A. populnea 53
146 salaspemric acid C30H48O4 T. wilfordii 51
147 wilofric acid E C30H46O5 T. wilfordii 39
148 orthosphenic acid C30H48O5 T. wilfordii 55
149 wilforic acid D C31H52O6 T. wilfordi 39
150 Epifriedelinol(3β-friedelinol) C30H52O M. truncata Reiss 41, 56
151 3α-friedelinol C30H52O M. truncata Reiss 56
152 3α-hydroxy-D:A-friedooleanan-28-oic acid C30H50O3 C. vulcanicola 41
153 3b,24-Epoxy-2a,3a-dihydroxy-D:A-friedooleanan-29-oic acid methyl ester C31H50O5 C. vulcanicola 41
154 2a-Acetoxy-3b,24-epoxy-3a-hydroxy-D:A-friedooleanan-29-oic acid methyl ester C33H52O6 C. vulcanicola 41
155 3b,24-epoxy-2a,3a,6b-trihidroxy-D:A-friedooleanan-29-oic acid methyl ester C31H50O6 C. vulcanicola 41
156 triptocallic acid C C30H48O4 T.wilfordii 51
157 triptocallic acid B C30H48O3 T. wilfordii 57
158 triptocallic acid D C30H48O4 T. wilfordii 57
159 dulcioic acid C30H48O3 T. wilfordii 39
160 Celastolide C30H46O5 T. hypoglaucum 22
161 3,4-seco-28-hydroxyfriedelan-3-oic acid C30H50O3 A. populnea 58
162 3,4-secofriedelan-3-oic acid C30H50O2 A. populnea 58
163 4-oxo-2,3-secooleanane-2,29-dioc acid C29H44O6 T. wilfordii 59
164 wilforlide A C30H46O3 T. wilfordii 51
165 wilforlide B C30H44O3 T. wilfordii 51
166 Regelin C31H48O4 T. wilfordii 51
167 3b-acetoxy-11-ursen-13a,30-olide, 25-chloro-24-hydroxytirucall-7-en-3-one C32H48O4 T. doianum 58
168 Regelone C28H38O6 T. doianum 49
病等都有明确的杀伤和抑制作用 [66]。
2.5 抗 HIV 作用
Yu 等综述了很多三萜类化合物能开发为抗 AIDS
的药物潜能,Namyan等也发现雷公藤红素(Celastrol, 2)
能抑制 HIV 病毒的复制和转录 [67]。
2.6 抗生殖作用
去甲泽拉木醛 (Demethylzeylasteral, 39) 有导致男
性可逆性不育的能力 [68]。雷公藤红素 (Celastrol, 2) 也
同样具有明显抗生育作用,是一类极具潜质的非类固
醇类男性避孕药剂。
2.7 神经组织保护作用
QM化合物雷公藤红素 (Celastrol, 2) 对于神经炎
症过程具有明显的抗炎和免疫调节作用,可用来调节
与改善神经退行性疾病 [68]。
2.8 杀虫作用
卫矛科植物雷公藤 (Tripterigium wilfordii ) 在我国
很早以前就用防治各种害虫,以清朝赵学敏编著的
《本草纲目》记载最为详细。根据文献报道,QM化
合物被认为是植物的化学屏障,如 pristimerin(1)、雷
公藤酮 (tingenone, 3) 等都有杀虫作用 [69]。
3 结语
卫矛科木栓烷型三萜,生源上是由齐墩果烯甲基
移位演变而来,其甲基迁移重排也会影响药理活性,
如抑菌性的有无。进一步研究表明,E环中的羰基和
羟基以及 C(22)=O 基团的存在加强了抗菌活性,三萜
中 C28 位羧基通常是细胞毒活性的重要基团 [70]。
木栓烷型三萜主要存在于卫矛科,种类繁多,对
于其结构与疗效间的关系并不是很明确。本文综述了
卫矛科木栓烷型三萜结构类型和药理活性,提出其中
可能存在的构效关系,对其进一步开发成高效低毒的
抗肿瘤药物、免疫抑制剂、抗艾滋病毒药物、抗溃疡
药物、抗风湿以及抗菌药物等具有重要意义。
参考文献
[1] 中国科学院中国植物志编辑委员会 . 中国植物志 [M]. 北京 : 科学出版社 ,
1999, 45(3): 82 - 84.
[2] Chandler R F, Hooper S N, Friedelin and associated triterpenoids[J].
Phytochemistry, 1979, 18(5): 711 - 724.
[3] Torres-Romero D, King-Diaz B, Strasser R J, et al . Friedelane triterpenes from
Celastrus vulcanicola as photosynthetic inhibitors[J]. J. Agric. Food Chem.,
2010, 58(20): 10847 - 10854.
[4] 王桂影 , 黄文华 , 孙欣光 , 等 . 雷公藤化学成分的研究 [C]. 第八届全国药
用植物及植物药学术研讨会论文集 , 2009.
[5] Morita H, Hirasawa Y, Muto A, et al . Antimitotic quinoid triterpenes from
Maytenus chuchuhuasca[J]. Bioorg. Med. Chem. Lett., 2008, 18(3): 1050 - 1052.
[6] Yang G Z, Xi M L, Li Y C. Two novel phenolic triterpenes from tripterygium
wilfordii[J]. J Asia Nat Prod Res, 2001, 3(2): 83 - 88.
— 78 — 现代中药研究与实践2015年第29卷第2期Chin. Med. J. Res. Prac., 2015 Vol. 29 No.2
[7] Gullo F P, Sardi J C O, Santos V A, et al . Antifungal activity of maytenin and
pristimerin[J]. Evid - Based Comp Alt, 2012, 2012.
[8] Carvalho P R F, Silva D H S, Bolzani V S, et al . Antioxidant quinonemethide
triterpenes from Salacia campestris[J]. Chem Biodivers., 2005, 2(3): 367 - 372.
[9] González A G, Francisco C G, Freire R, et al . Iguesterin, a new quinonoid
triterpene from Catha cassinoides[J]. Phytochemistry, 1975, 14(4): 1067 - 1070.
[10] Kamuhabwa A, Nshimo C, de Witte P. Cytotoxicity of some medicinal plant
extracts used in Tanzanian traditional medicine[J]. J Ethnopharmacol, 2000,
70(2): 143 - 149.
[11] Zukat Y, Ikuch O,Studies on terpenoids and steroids, 25. Complete 1H -
and 13C - NMR spectral assignments of salaciquinone, a new 7 - oxo -
quinonemethide dinortriterpenoid[J]. J Nat Prod, 1994, 57(2):270 - 276.
[12] Martin J D, The structure of dispermoquinone: A triterpenoid quinone
methide from Maytenus dispermus[J]. Tetrahedron, 1973, 29(19): 2997 -
3000.
[13] Sotanaphun U, Suttisri R, Lipipun V, et al . Quinone - methide triterpenoids
from Glyptopetalum sclerocarpum[J]. Phytochemistry, 1998, 49(6): 1749 -
1755.
[14] Oramas - Royo S M, Chávez H, Martín - Rodríguez P, et al . Cytotoxic
triterpenoids from Maytenus retusa[J]. J Nat Prod, 2010, 73(12): 2029 - 2034.
[15] Chávez H, Valdivia E, Estévez - Braun A, et al . Structure of new bioactive
triterpenes related to 22 - β - hydroxy - tingenone[J]. Tetrahedron, 1998,
54(44): 13579 - 13590.
[16] Chávez H, Estévez - Braun A, Ravelo A G, et al . New phenolic and quinone
- methide triterpenes from Maytenus amazonica[J]. J Nat Prod, 1999, 62(3):
434 - 436.
[17] Alvarenga N L, Velázquez C A, Gómez R, et al . A new antibiotic
nortriterpene quinone methide from Maytenus catingarum[J]. J Nat Prod,
1999, 62(5): 750 - 751.
[18] Gonzalez A G, Alvarenga N L, Ravelo A G, et al . Two triterpenes from
Maytenus canariensis[J]. J Nat Prod, 1995, 58(4): 570 - 573.
[19] González A G, Alvarenga N L, Ravelo A G, et al . Scutione, a new bioactive
norquinonemethide triterpene from Maytenus scutioides(Celastraceae)[J].
Bioorg Med Chem.,1996, 4(6):815 - 820.
[20] Morota T, Yang C X, Ogino T, et al . D: A - friedo - 24 - noroleanane
triterpenoids from Tripterigium wilfordii[J]. Phytochemistry, 1995, 39(5):
1159 - 1163.
[21] De León L, Moujir L. Activity and mechanism of the action of zeylasterone
against Bacillus subtilis[J]. J Appl Microbiol, 2008, 104(5): 1266 - 1274.
[22] Duan H, Kawazoe K, Bando M, et al . Di - and triterpenoids from
Tripterygium hypoglaucum [J]. Phytochemistry, 1997, 46(3): 535 - 543.
[23] Takaishi Y, Wariishi N, Tateishi H, et al . Triterpenoid inhibitors of
interleukin - 1 secretion and tumour - promotion from Tripterygium wilfordii
var. regelii[J]. Phytochemistry, 1997, 45(5): 969 - 974.
[24] Gamlath C B, Leslie Gunatilaka A A, Tezuka Y, et al . Quinone - methide,
phenolic and related triterpenoids of plants of Celastraceae: further evidence
for the structure of Celastranhydride [J]. Phytochemistry, 1990, 29(10): 3189
- 3192.
[25] Shirota O, Morita H, Takeya K, et al . Cytotoxic aromatic triterpenes from
Maytenus ilicifolia and Maytenus chuchuhuasca[J]. J Nat Prod, 1994, 57(12):
1675 - 1681.
[26] Rodríguez F M, López M R, Jiménez I A, et al . New phenolic triterpenes
from Maytenus blepharodes. Semisynthesis of 6 - deoxoblepharodol from
pristimerin[J]. Tetrahedron, 2005, 61(9): 2513 - 2519.
[27] Duan H, Takaishi Y, Momota H, et al . Immunosuppressive terpenoids from
extracts of Tripterygium wilfordii[J]. Tetrahedron, 2001, 57(40): 8413 - 8424.
[28] Takaishi Y, Miyagi K, Kawazoe K, et al . Terpenoids from Tripterygium
wilfordii var. regelii [J]. Phytochemistry, 1997, 45(5): 975 - 978.
[29] Wu J, Zhou Y, Wang L, et al . Terpenoids from root bark of Celastrus
orbiculatus[J]. Phytochemistry, 2012, 75: 159 - 168.
[30] Kishi A, Morikawa T, Matsuda H, et al . Structures of new friedelane
- and norfriedelane - type triterpenes and polyacylated eudesmane
- type sesquiterpene from Salacia chinensis LINN.(S. prinoides
DC., Hippocrateaceae) and radical scavenging activities of principal
constituents[J]. Chem Pharm Bull, 2003, 51(9): 1051 - 1055.
[31] Anjaneyulu A S R, Narayanarao M. Elaeodendrol and elaeodendradiol, new
nor - triterpenes from Elaeodendron glaucum[J]. Phytochemistry, 1980,
19(6): 1163 - 1169.
[32] De Sousa J R, Silva G D F, Pedersoli J, et al . Friedelane and oleanane
triterpenoids from bark wood of Austroplenckia populnea[J]. Phytochemistry,
1990, 29(10): 3259 - 3261.
[33] Martínez V M, Corona M M, Vélez C S, et al . Terpenoids from Montonia
diffusa[J]. J Nat Prod, 1988, 51(4): 793 - 796.
[34] Kuo Y H, Kuo L M Y. Antitumour and anti - AIDS triterpenes from Celastrus
hindsii[J]. Phytochemistry, 1997, 44(7): 1275 - 1281.
[35] Kumar N S, Muthukuda P M, MacLeod J K. New D: A - friedooleananes from
Euonymus revolutus(celastraceae)[J]. J. Chem. Soc., Perkin Trans. 1, 1985,
685 - 689.
[36] Gunatilaka A A L, Nanayakkara N P D, Sultanbawa M U S. Studies on
terpenoids and steroids. Part 1. Structures of six novel 27 - hydroxy and 6β
- hydroxy di - and tri - oxygenated D: A - friedo - oleanane triterpenes from
Kokoona zeylanica[J]. J. Chem. Soc., Perkin Trans. 1, 1983: 2459 - 2469.
[37] Leslie Gunatilaka A A, Dhammika Nanayakkara N P. Studies on terpenoids
and steroids - 2: Structures of two new tri - and tetra - oxygenated D: A -
friedo - oleanan triterpenes from kokoona zeylanica[J]. Tetrahedron, 1984,
40(4): 805 - 809.
[38] Klass J, Tinto W F, McLean S, et al . Friedeland triterpenoids from peritassa
compta: complete 1H - and 13C Assignments by 2D nmr Spectroscopy[J]. J
Nat Prod, 1992, 55(11): 1626 - 1630.
[39] Duan H, Takaishi Y, Momota H, et al . Triterpenoids from Tripterygium
wilfordii[J]. Phytochemistry, 2000, 53(7): 805 - 810.
[40] Niero R, Mafra A P, Lenzi A C, et al . A new triterpene with antinociceptive
activity from Maytenus robusta[J]. Nat Prod Res, 2006,20 (14): 1315 - 1320.
[41] Ardiles A E, González - Rodríguez , Núez M J, et al . Studies of naturally
occurring friedelane triterpenoids as insulin sensitizers in the treatment type
2 diabetes mellitus[J]. Phytochemistry, 2012, 84: 116 - 124.
[42] Oliveira M L G, Duarte L P, Silva G D F, et al . 3 - Oxo - 12α -
hydroxyfriedelane from Maytenus gonoclada: structure elucidation by 1H and
13C chemical shift assignments and 2D - NMR spectroscopy[J]. Magn Reson
Chem, 2007, 45(10): 895 - 898.
[43] Xie H, Chen M, Wang D, et al . Three novel friedelane triterpenes with
antimicrobial activity from the stems of Celastrus monospermus[J]. J Chem
Res - s, 2013, 37(1): 14 - 18.
[44] Nozaki H, Suzuki H, Lee K H, et al . Structure and stereochemistry of
maytenfolic acid and maytenfoliol, two new antileukemic triterpenes from
Maytenus diversifolia: X - ray crystal structures[J]. J. Chem. Soc., Chem.
Commun., 1982 (18): 1048 - 1051.
[45] Nozaki H, Suzuki H, Hirayama T, et al . Antitumour triterpenes of Maytenus
diversifolia[J]. Phytochemistry, 1986, 25(2): 479 - 485.
[46] Yeboah E M O, Majinda R R T, Kadziola A, et al . Dihydro - β - agarofuran
Sesquiterpenes and Pentacyclic Triterpenoids from the Root Bark of Osyris
lanceolata[J]. J Nat Prod, 2010, 73(6): 1151 - 1155.
[47] Weeratunga G, Kumar V, Sul tanbawa M U S, e t a l . 28, 29 -
Dihydroxyfriedelan - 3 - one, a friedelane with two oxygenated methyl
groups, from Elaeodendron balae(Celastraceae)[J]. J. Chem. Soc., Perkin
Trans. 1, 1982: 2457 - 2459.
[48] Yang J H, Luo S D, Wang Y S, et al . Triterpenes from Tripterygium wilfordii
Hook[J]. J Asian Nat Prod Res, 2006, 8(5): 425 - 429.
[49] 张纬江 , 潘德济 , 张罗修 , 等 . 雷公藤三萜成分研究 [J]. 药学学报 ,
1986, 21(8): 592.
[50] Nakano K, Oose Y, Masuda Y, et al . A diterpenoid and triterpenes from tissue
cultures of Tripterygium wilfordii[J]. Phytochemistry, 1997, 45(2): 293 - 296.
[51] 郭夫江 , 方佩芬 , 李援朝 . 雷公藤三萜成分 [J]. 药学学报 , 1999, 34(3):
210 - 213.
[52] Kumar N S, Muthukuda P M, MacLeod J K. New D: A - friedooleananes from
Euonymus revolutus(celastraceae)[J]. J. Chem. Soc., Perkin Trans. 1, 1985:
685 - 689.
[53] De Sousa J R., Silva G D F., Pedersoli J., et al . Friedelane and oleanane
triterpenoids from bark wood of Austroplenckia populnea[J]. Phytochemistry,
1990, 29(10): 3259 - 3261.
[54] Maregesi S M, Hermans N, Dhooghe L, et al . Phytochemical and biological
investigations of Elaeodendron schlechteranum[J]. J Ethnopharmacol, 2010,
129(3): 319 - 326.
[55] 张崇璞, 张永刚, 吕燮余, 等. 雷公藤总甙 (T_Ⅱ) 中三萜成分的研究[J].
中国医学科学院学报 , 1989, 5: 322 - 325.
[56] Salazar G C M, Silva G D F, Duarte L P, et al . Two epimeric friedelane
triterpenes isolated from Maytenus truncata Reiss: 1H and 13C chemical shift
assignments[J]. Magn Reson Chem, 2000, 38(11): 977 - 980.
[57] Nakano K, Oose Y, Takaishi Y. A novel epoxy - triterpene and nortriterpene
from callus cultures of Tripterygium wilfordii[J]. Phytochemistry, 1997, 46(7):
1179 - 1182.
[58] Vieira Filho S A, Duarte L P, Silva G D F, et al . Total assignment of 1H
and 13C NMR spectra of two 3, 4 - secofriedelanes from Austroplenckia
populnea[J]. Magn Reson Chem, 2001, 39(12): 746 - 748.
— 79 —现代中药研究与实践2015年第29卷第2期Chin. Med. J. Res. Prac., 2015 Vol. 29 No.2
基金项目:安徽省教育厅自然科学基金资助项目(KJ2012A031);省教育厅创新训练项目 (AH201310357170);安徽大学大学生创新训练计划项目(201310357170);
《细胞生物学》省级精品课程资助项目(2009024)
作者简介:金 欣 (1993-),研究方向为细胞信号转导与药理学研究。E-mail :604728609@qq.com
通讯作者:陈 勤 (1958-),男,教授,博士。研究方向为细胞信号转导与药物基础研究。E-mail :chenqin169@163.com
桔梗的药理作用研究新进展
金 欣,陈 勤 *
(安徽大学生命科学学院,安徽省中药研究与开发重点实验室,安徽 合肥 230601)
关键词:桔梗;药理作用;进展
中图分类号:R284.1; R284.2; R285.5 文献标识码:A 文章编号:1673-6427(2015)02-79-04
doi: 10.13728/j. 1673-6427. 2015. 02. 025
中 药 桔 梗 为 桔 梗 科 植 物 桔 梗(Platycodon
grandiflorum (Jacq.) A. DC.)的根。中医认为,本品
性味苦、辛、平,归肺经。有宣肺祛痰、排脓消痈之功,
适用于咳嗽痰多,或咯痰不爽、胸膈满闷、咽痛嘶哑
及肺痈胸痛、咳吐脓血、痰黄腥臭等。桔梗是临床上
常用的止咳化痰平喘中药之一。除治疗慢性支气管
炎和哮喘外,桔梗还被广泛用于慢性咽喉炎、感冒、
音哑声带息肉、鼻窦炎、肺梗塞、肺脓肿、肺心病、
郁证等治疗。化学分析表明,桔梗中含有桔梗皂苷、
桔梗酸等多种活性成分,并含有丰富的淀粉、蛋白
质、维生素、氨基酸等营养成分,其食用价值也很高,
桔梗的嫩苗、根均为可供食用的蔬菜,也可以加工成
罐头、果脯、酱菜、什锦袋菜、保健饮料等,是一种
名符其实的食药两用佳品。本文对近 5年关于桔梗药
理研究的新进展作一综述。
1 祛痰镇咳平喘作用
动物实验表明,呼吸道分泌液量增多,有利于使
附着呼吸道黏膜的浓痰变稀,从气道壁脱落,从而起
到祛痰作用。小鼠 ip 酚红后,酚红随呼吸道分泌液
排出,而酚红排泌量的多少可间接反映出呼吸道分泌
液量。根据该原理,利用氨水刺激建立小鼠咳嗽模型,
并施以桔梗水提液进行治疗,结果与模型组比较,桔
梗水提液中、高剂量组(8 g·kg-1、16 g·kg-1)可使
小鼠咳嗽潜伏期显著延长,咳嗽次数明显减少,且小
鼠气管酚红排泌量显著增加(P<0.05或P <0.01) [1]。
孙荏苒等人报道 [2],桔梗皂苷胶囊能延长组胺引喘及
枸橼酸致咳的潜伏期,减少咳喘次数,同时增加呼吸
道的酚红排泄量。郑繁慧 [3] 还证明桔梗皂苷 D和多
种单体皂苷也具有祛痰的作用。
于维颖 [4] 等对豚鼠腹腔注射 10% 卵蛋白生理盐
水 1 ml 致敏,15 天后采用 1% 卵蛋白生理盐水进行
超声雾化吸入建立哮喘豚鼠模型,结果发现桔梗水
提物可使豚鼠引喘潜伏期明显延长,并有效地升高
支气管哮喘豚鼠血清 IFN-γ 的水平,通过增强细
胞免疫功能和非特异性抗感染能力,抑制 B 淋巴细
胞增殖及 IgE 的分泌,从而防止呼吸道感染诱发的
支气管哮喘。
2 抗炎作用
桔梗皂苷不同剂量对鹿角菜胶性急性炎症和棉
球性慢性炎症均有不同程度的抑制效应,表明桔梗皂
[59] Yang G, Yin X, Li Y. Chemical Constituents of Tripterygium wilfordii[J].
Helv Chim Acta, 2000, 83(12): 3344 - 3350.
[60] Shirota O, Morita H, Takeya K, et al . Structures of xuxuarines, stereoisomeric
triterpene dimers from Maytenus chuchuhuasca[J]. Tetrahedron, 1995, 51(4):
1107 - 1120.
[61] González A G, Kennedy M L, Rodriguez F M, et al . Absolute configuration
of triterpene dimers from Maytenus species (Celastraceae)[J]. Tetrahedron,
2001, 57(7): 1283 - 1287.
[62] Xu W, Lin Z, Yang C, et al . Immunosuppressive effects of demethylzeylasteral
in a rat kidney transplantation model[J]. Int Immunopharmacol, 2009, 9(7):
996 - 1001.
[63] Chu C, He W, Kuang Y, et al . Celastrol protects kidney against ischemia–
reperfusion - induced injury in rats[J]. J Surg Res, 2014, 186(1): 398 - 407.
[64] Moujir L, de León L, Bazzocchi I. Mode of action of 6 - oxophenolic
triterpenoids against Bacillus subtilis[C], Planta Med. Rudigerstr 14, D -
70469 Stuttgart, Germany: Georg Thieme Verlag KG, 2007, 73(9): 862 - 862.
[65] Chen Y, Shen L, Zhang F, et al . The equine estrogen metabolite 4 -
hydroxyequilenin causes DNA single - strand breaks and oxidation of DNA
bases in vitro[J]. Chem. Res. Toxieol, 1998, 11(9): 1105 - 1111.
[66] Cao S, Peng X. Exploiting Endogenous Cellular Process to Generate Quinone
Methides In Vivo[J]. Curr Org Chem, 2014, 18(1): 70 - 85.
[67] Narayan V, Ravindra K C, Chiaro C, et al . Celastrol inhibits Tat - mediated
human immunodeficiency virus (HIV) transcription and replication[J]. Journal
of molecular biology, 2011, 410(5): 972 - 983.
[68] Westerheide S D., Bosman J D., Mbadugha B N A, et al . Celastrols as
inducers of the heat shock response and cytoprotection[J]. Journal of
Biological Chemistry, 2004, 279(53): 56053 - 56060.
[69] Ríos J L. Effects of triterpenes on the immune system[J]. Journal of
ethnopharmacology, 2010, 128(1): 1 - 14.
[70] Chiang Y M, Chang J Y, Kuo C C, et al . Cytotoxic triterpenes from the aerial
roots of Ficus microcarpa[J]. Phytochemistry, 2005, 66(4): 495 - 501.
收稿日期:2014-04-10