免费文献传递   相关文献

Analysis of soil CO2 efflux in Populus and Ulmus pumila planting shelterbelts in arid region,China

干旱区杨树、榆树人工防护林地土壤CO2释放通量研究



全 文 :植物生态学报 2010, 34 (5): 526–534 doi: 10.3773/j.issn.1005-264x.2010.05.006
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2009-08-14 接受日期Accepted: 2009-12-10
* 通讯作者Author for correspondence (E-mail: chenyn@ms.xjb.ac.cn)
干旱区杨树、榆树人工防护林地土壤CO2释放通量
研究
张丽华1,2 陈亚宁2* 赵锐锋3 李卫红2 谢忠奎1
1中国科学院寒区旱区环境与工程研究所皋兰生态与农业综合试验站, 兰州 730000; 2中国科学院绿洲生态与荒漠环境重点实验室, 中国科学院新疆生
态与地理研究所, 乌鲁木齐 830011; 3西北师范大学地理与环境科学学院, 兰州 730070
摘 要 土壤呼吸是陆地生态系统碳循环的重要组成部分。随着全球气候变暖趋势逐渐明显, 土壤呼吸的时空变异及其对温
度变化的响应已成为生态学研究的重要内容之一。利用LI-8100自动土壤CO2通量测量系统, 连续两年生长季测定了准噶尔盆
地新垦绿洲杨树(Populus sp.)、榆树(Ulmus pumila)人工防护林地土壤呼吸的时间动态, 并分析了土壤水热因子及光合作用对
土壤呼吸的影响。研究结果表明: 两种林分土壤呼吸日变化波动呈现一定的不规则性; 季节变化表现为明显的单峰格局。杨
树林地土壤呼吸速率显著高于榆树林地, 生长季平均土壤呼吸速率分别为3.71和1.82 μmol CO2·m–2·s–1。两种林分土壤呼吸的
季节变化与气温、不同深度层次土壤温度间均呈显著的指数相关, 而与土壤含水量之间相关不显著。50和35 cm土壤温度可
以分别解释两种林分土壤呼吸时间变化的78.5%和64.4%, 与土壤温度和含水量的共同解释率接近。林分间土壤呼吸速率差异
受到林木生长状况、光合作用及土壤盐分等的影响。研究结果初步阐明了准噶尔盆地干旱区典型绿洲防护林植被土壤呼吸的
季节动态特征及主要影响因子, 为进一步揭示该区域林地土壤碳循环特点提供了一定的理论基础。
关键词 水热因子, 防护林, 土壤碳循环, 温带荒漠区, 新疆
Analysis of soil CO2 efflux in Populus and Ulmus pumila planting shelterbelts in arid region,
China
ZHANG Li-Hua1,2, CHEN Ya-Ning2*, ZHAO Rui-Feng3, LI Wei-Hong2, and XIE Zhong-Kui1
1Gaolan Experiment Station for Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Acad-
emy of Sciences, Lanzhou 730000, China; 2Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese
Academy of Sciences, Ürümqi 830011, China; and 3College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
Abstract
Aims Our objective was to examine the effects of temperature, soil water content and photosynthesis on soil
respiration in Populus and Ulmus pumila planting shelterbelts in China’s Junngar Basin.
Methods Soil respiration was measured during the growing seasons in 2005 and 2006 using an automated CO2
efflux system (LI-8100). Air temperature (at 50 cm in height) and soil temperature (every 5 cm from 0 to 50 cm
depth) were monitored at three points adjacent to the chamber using a digital thermometer (WMY-01C, Huachen
Medical Instrument Inc., Shanghai, China) at each site. Gravimetric soil moisture at 0–5, 5–15, 15–30, and 30–50
cm depths at three points were measured using the oven-drying method at 105 °C for 48 h.
Important findings Soil respiration displayed irregular fluctuation of daytime pattern and significant sin-
gle-peaked curve of seasonal pattern in the two woodlands. Seasonally, soil respiration was characterized by a
maximum in July or August and a minimum in October or May, following the change of soil temperature. The rate
of soil respiration was significantly higher in Populus woodland than that in U. pumila woodland with mean rates
of 3.71 and 1.82 μmol CO2·m–2·s–1 in two growing seasons, respectively. Soil respiration was significantly corre-
lated with temperature in exponential equation, but uncorrelated with soil water content in the two woodlands.
Soil temperature at 50 and 30 cm depths could explain 78.5% and 64.4% of seasonal variations of soil respiration
in Populus woodland and U. pumila woodland, respectively, which confirms the common explanation by tem-
perature and soil water content. The difference in soil respiration between the woodlands was influenced by
growth state of trees, photosynthesis and soil salinity. Our results suggested that there was significant seasonal
variation of soil respiration in oasis shelterbelts in the arid region and soil temperature was the main regulating
张丽华等: 干旱区杨树、榆树人工防护林地土壤 CO2释放通量研究 527

doi: 10.3773/j.issn.1005-264x.2010.05.006
factor.
Key words hydrothermal factor, planting shelterbelts, soil carbon cycle, temperate desert area, Xinjiang

植树造林和人工林经营是增强陆地碳汇功能、
减缓大气CO2浓度增加的有效途径之一 (IPCC,
2000)。目前, 有关人工林在全球碳循环中的地位和
作用的研究较多, 主要集中于湿润地区人工林生态
系统(杨玉盛等, 2005; Wang et al., 2006; 王光军等,
2008; 周文君等, 2008; 王国兵等, 2009), 对内陆干
旱区人工林的研究较为鲜见。干旱区绿洲内部人工
防护林在防风固沙、改善生态环境等方面发挥着重
要作用。杨树(Populus sp.)、榆树(Ulmus pumila)作
为我国西北地区的主要造林树种, 从吉林、黑龙江
二省西部, 到内蒙古河套地区、宁夏银川平原、甘
肃河西走廊和新疆灌区绿洲, 基本建成了以杨树为
主体, 面积约40万hm2的带、片、网相结合的防护林
体系(吕文等, 2000)。但是关于其固碳效益的研究报
道极少(葛之葳等, 2009)。
土壤作为一个巨大的碳库, 是大气CO2的重要
源或汇, 其轻微的变化也会导致大气中CO2浓度明
显改变。土壤CO2释放研究对估算未来大气CO2浓
度及全球变化具有举足轻重的意义(Schlesinger &
Andrews, 2000; Liang et al., 2004; Trumbore, 2006;
Piao et al., 2008)。土壤呼吸是一个受生物和非生物
因素控制的非常复杂的过程, 具有很大的空间和时
间变异性(Xu & Qi, 2001a; Davidson et al., 2006;
Han et al., 2007; Carbone et al., 2008; Vargas et al.,
2009)。随着全球气候变暖趋势逐渐明显, 研究土壤
呼吸的时空变异规律及调控机理已成为生态学研
究的重要内容之一。本文以温带干旱区准噶尔盆地
西部的典型防护林杨树、榆树两种林分为研究对象,
采用定位连续观测的方法测定土壤呼吸, 研究了土
壤呼吸的季节变异规律及其主要影响因子, 探讨两
种林分类型间土壤呼吸速率的差异及原因, 旨在为
评价干旱荒漠区人工防护林的碳源汇功能提供基
础数据。
1 研究区概况
研究区地处典型温带荒漠准噶尔盆地西北缘
的克拉玛依市农业开发区, 北靠扎依尔山区, 南接
玛纳斯河下游冲积、湖积平原, 地势西南高东北低,
西南部海拔在273–280 m, 东北部海拔在258–260
m。土壤类型主要有水成土纲的残余沼泽土、盐碱
土纲的残余盐土、初育土纲的荒漠风沙土(钱亦兵
等, 2004)。属于典型的大陆性干旱荒漠气候, 冬季
严寒, 夏季高温炎热, 年平均气温8 ℃, 年平均降
水量l05.3 mm, 冬季无稳定积雪, 年平均蒸发量达3
545 mm, 春夏季多大风。
杨树、榆树固定样地位于农业开发区西北部的
外围基干防护林体系, 大小均为20 m × 45 m, 2001
年栽植。其中, 在杨树样地(45°28.810′ N, 84°54.436′
E)内, 1.3 m处平均胸径10.5 cm, 平均树高6 m, 株
行距1.5 m × 2 m, 共9行, 林下无其他植被, 有2–3
cm的枯枝落叶层。榆树人工防护林林地(45°28.732′
N, 84°54.384′ E), 1.3 m处平均胸径7.0 cm, 平均树
高4.5 m, 株行距1.5 m × 2 m, 共9行, 林下无其他植
被, 枯枝落叶层较少。林地内地势平坦, 林地两侧
分别为宽度为4 m的道路和种植的20 m宽的灌木林
地。杨树林地一侧种植的枸杞(Lycium barbarum)较
榆树林地同侧的紫穗槐(Amorpha fruticosa)低矮、稀
疏, 造成杨树林内空气流通性好于榆树林地。
2 研究方法与数据采集
每个样地内设置5个土壤呼吸监测点, 依林地
形状呈“之”字形分布, 临近监测点的间距为10 m左
右。在第一次测定时, 提前1–3天将测定基座(soil
collar)嵌入土壤中。基座距树干基部的距离在10–80
cm之间。基座为直径10 cm、高10 cm的聚氯乙烯圆
柱体, 嵌入土中约7 cm。经过24 h的平衡后, 土壤呼
吸速率会恢复到基座放置前的水平, 从而避免了由
于安置气室对土壤扰动而造成的短期内呼吸速率
的波动。土壤呼吸速率测定采用开路式土壤碳通量
测量系统 (LI-8100, LI-COR Inc., Lincoln, NE,
USA)。
2005和2006年5–10月, 每月20日左右在每个样
地分别测定土壤呼吸等相关参数。在每个测定日的
8:00–20:00 (北京时间)每间隔2 h测定1次土壤呼吸。
在测定土壤呼吸速率的同时, 使用数字显示温度计
(WMY-01C, 上海华辰医用仪表有限公司)测定了距
地面50 cm高度的气温和0–50 cm (5 cm间隔)的土壤
温度, 采用烘干法测定了0–5、5–15、15–30和30–50
528 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (5): 526–534

www.plant-ecology.com
cm的土壤含水量。土壤温度和含水量在3个监测点
进行重复测量。同时分层(0–5、5–15、15–30和30–50
cm)取混合土样一份, 带回实验室测定土壤养分、盐
分含量。
2008年7月11日(晴天), 采用便携式调制荧光仪
Mini-PAM (Walz, Effeltrich, Germany)测定杨树、榆
树叶片叶绿素荧光参数的日进程。从8:00–20:00, 每
隔2 h测定1次。
采用SPSS统计软件对土壤呼吸与环境因子之
间进行回归分析, 对土壤呼吸速率、环境因子在林
地类型间、月份和年际间的差异进行方差分析; 在
Sigmaplot 10.0中完成绘图。
3 结果和分析
3.1 两种林分类型土壤CO2释放速率的时间变异
土壤呼吸日变化具有一定的规律性, 但也存在
不规则的波动, 多呈现2–3个峰值, 与近地面气温
的变化趋势不一致(图1)。7月, 两种林分土壤呼吸速
率的最大值均出现在18:00–20:00; 10月由于气温日
变幅减小, 加之观测日为阴天, 呼吸速率变幅亦减
小。
杨树、榆树人工林地土壤呼吸速率值存在明显
差异。如图1所示, 以盛夏和秋季观测日为例, 杨树
林地土壤呼吸明显高于榆树林地。7月观测日, 杨树
林地土壤呼吸日变幅在4.70–5.89 μmol CO2·m–2·s–1
之间, 平均速率为5.17 μmol CO2·m–2·s–1; 榆树林平
均速率2.50 μmol CO2·m–2·s–1, 在2.04–3.17 μmol
CO2·m–2·s–1间变动。10月, 杨树、榆树林土壤呼吸
日变化范围分别为 2.46–2.57和 0.78–1.43 μmol
CO2·m–2·s–1。榆树林地近地面气温均高于杨树林地,
两林分土壤含水量无明显不同。
在生长季, 两种林分土壤呼吸速率的季节变化
表现为明显的单峰曲线, 多在7月达到最大值(图
2A)。土壤呼吸季节变化与土壤温度具有较高的同
步性, 与土壤含水量的变化趋势存在明显不同。
杨树林地生长季日平均土壤呼吸速率明显高
于榆树林地(图2A), 尤其在生长旺盛期(7、8月)差异
更大。而两种林分间近地面气温、土壤温度和土壤
含水量差异并不明显(图2B、2C)。杨树、榆树林地
月平均土壤呼吸速率分别为1.79–7.46和0.97–3.43
μmol CO2·m–2·s–1, 两个生长季平均土壤呼吸速率分
别为3.71和1.82 μmol CO2·m–2·s–1。进一步通过均值
比较、方差分析得出, 2005和2006年杨树、榆树林
地间土壤呼吸速率存在显著差异。就同一种林地类
型而言, 6–8月间及与其他月土壤呼吸亦存在显著
差异(表1)。此外, 主效应分析反映出年际间、月份
间和林地类型间土壤呼吸速率的差异均达到显著
水平(p < 0.05)。



图1 2005年7月(A)、2006年10月(B)杨树人工林地土壤呼吸速率(■)和近地面气温(□)的日变化, 榆树人工林地土壤呼吸速率
(●)和近地面气温(○)的日变化。
Fig. 1 Changes of Populus sp. woodland’s soil respiration rate (■) and air temperature near soil surface (□), as well as Ulmus
pumila woodland’s soil respiration rate (●) and air temperature near soil surface (○), measured in July 2005 (A) and October 2006
(B).
张丽华等: 干旱区杨树、榆树人工防护林地土壤 CO2释放通量研究 529

doi: 10.3773/j.issn.1005-264x.2010.05.006


图2 2005和2006年生长季杨树(实心图标)、榆树(空心图标)人工林地土壤呼吸速率(A)、温度(B)和土壤含水量(C)的季节变化。
Fig. 2 Seasonal variations of soil respiration rate (A), temperature (B) and soil water content (C) in Populus sp. (solid symbols) and
Ulmus pumila (open symbols) woodlands in growing season in 2005 and 2006.


3.2 两种林分类型土壤CO2释放速率对环境因子
的响应
两种林地2005和2006年生长季土壤呼吸速率
与各温度间指数分析所得R2值见表2 (样本数n =
12)。两种林地土壤呼吸与近地面气温、地表温度的
相关性接近, 榆树林地土壤呼吸与5–15 cm土壤温
度的相关性高于杨树林, 而杨树林20–50 cm土壤温
度与土壤呼吸存在更高的相关性。与杨树、榆树林
地土壤呼吸的最佳拟合温度分别是50和35 cm土壤
温度, 两林分土壤呼吸的Q10值分别为2.89和2.32
(图3)。
生长季两种林地标准化到10 ℃时的土壤呼吸
速率与土壤含水量间的相关性均未达到显著水平
(p > 0.5)。
530 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (5): 526–534

www.plant-ecology.com
表1 2005和2006年两种林地土壤呼吸速率的差异性比较
Table 1 Comparison of difference in soil respiration rate at two woodlands in 2005 and 2006

Year
类型
Type
5月
May
6月
June
7月
July
8月
August
9月
September
10月
October
变幅
Fluctuation
杨树
Populus sp.
1.854 A 2.696 aB 5.170 aC 3.489 aD 2.297 aAB 2.234 aAB 4.486 2005
榆树
Ulmus pumila
2.106 bA 2.497 bA 1.418 bB 1.290 bBC 0.999 bBD 2.689
杨树
Populus sp.
2.968 aA 3.251 aAC 7.461 aB 6.853 aB 3.853 aC 2.505 aD 6.259 2006
榆树
Ulmus pumila
1.043 bAE 2.387 bB 1.594 bCE 3.433 bD 2.314 bB 1.159 bE 3.187
同一列内相同小写字母表示每年同一月不同林地类型的土壤呼吸速率差异不显著(p > 0.05); 同一行中相同大写字母表示同一林地类型不同
月土壤呼吸速率差异不显著(p > 0.05)。
The same lower-cased letters in columns denote the difference in soil respiration is insignificantly at p > 0.05 at the different woodland type in same
months, and the same capital letters in rows denote the difference in soil respiration is insignificantly at p > 0.05 at the same woodland type in the
different month.


表2 杨树、榆树林地土壤呼吸速率与温度的指数相关关系
Table 2 Exponential correlation between soil respiration rate and temperature at two woodlands
温度 Temperature (℃) 林地类型
Woodland type Ta T0 T5 T10 T15 T20 T25 T30 T35 T40 T50
杨树
Populus sp.
0.436 0.348 0.538 0.567 0.611 0.641 0.682 0.720 0.747 0.769 0.785
榆树
Ulmus pumila
0.415 0.330 0.610 0.616 0.624 0.628 0.637 0.642 0.644 0.635 0.610
Ta, 近地面气温; T0, 地表温度; T5, 5 cm土壤温度; T10, 10 cm土壤温度; T15, 15 cm土壤温度; T20, 20 cm土壤温度; T25, 25 cm土壤温度; T30, 30
cm土壤温度; T35, 35 cm土壤温度; T40, 40 cm土壤温度; T50, 50 cm土壤温度。除榆树林地土壤呼吸速率与T0间回归分析未达到显著水平外(p =
0.064), 其他均达到显著水平。
Ta, air temperature near soil surface; T0, soil surface temperature; T5, soil temperature at 5 cm depth; T10, soil temperature at 10 cm depth; T15, soil
temperature at 15 cm depth; T20, soil temperature at 20 cm depth; T25, soil temperature at 25 cm depth; T30, soil temperature at 30 cm depth; T35, soil
temperature at 35 cm depth; T40, soil temperature at 40 cm depth; T50, soil temperature at 50 cm depth. Soil respiration rate in two woodlands was
significantly correlated with temperature at all depth at p < 0.05, except with T0 in Ulmus pumila woodland (p = 0.064).




图3 杨树林地土壤呼吸速率与50 cm土壤温度、榆树林地土
壤呼吸与35 cm土壤温度的指数回归。
Fig. 3 Exponential regressions between soil respiration rate and
soil temperature at 50 cm depth for Populus sp. woodland and
at 35 cm depth for Ulmus pumila woodland.

50 cm土壤温度、15–30 cm土壤含水量组合对
杨树林地土壤呼吸季节变化的解释率最高, 35 cm
土壤温度、5–15 cm土壤含水量与榆树林地土壤呼
吸的拟合最佳。温度-土壤水分双变量方程对杨树林
地土壤呼吸时间变异的拟合结果优于榆树林地
(表3)。
3.3 两种林分类型土壤CO2释放通量差异的原因
分析
由图2可知, 两种林地温度、土壤含水量指标并
不存在明显不同。同时, 土壤养分特征相近(表4),
仅榆树林地0–5 cm土壤电导率、全盐含量较杨树略
高, 这可能与不同林木对土壤质量改善程度有关。
野外调查时发现, 林木生长指标(胸径、树高和缺苗
率)不同, 林下枯落物厚度和叶面积(阔叶与小叶)也
有区别。
样地内杨树的部分生长指标高于榆树。1.3 m高
张丽华等: 干旱区杨树、榆树人工防护林地土壤 CO2释放通量研究 531

doi: 10.3773/j.issn.1005-264x.2010.05.006
表3 杨树、榆树人工林地土壤呼吸速率与温度、土壤含水量的最佳拟合方程
Table 3 Best regression equations between soil respiration rate and temperature, soil water content at the Populus sp. and Ulmus
pumila woodlands
林地类型
Woodland type
4–Rs = a +b (TW) R2 7–Rs = aebTWc R2 6–Rs = aTbWc R2
杨树
Populus sp.
Rs = –0.494 + 0.015T50W15–30 0.56** Rs = 0.091e0.131T50W15–300.490 0.81* Rs = 0.002T502.201
W15–300.479
0.77*
榆树
Ulmus pumila
Rs = 0.560 + 0.004T35W5–15 0.42* Rs = 0.181e0.084T35W5–150.291 0.59* Rs = 0.017T351.382
W5–150.258
0.58*
8–Rs = a + bT + cW + dTW R2 5–Rs = a + bT + cW R2
杨树
Populus sp.
Rs = 13.554–0.738T50 –1.053W15–30
+ 0.071T50W15–30
0.82** Rs = –3.472 + 0.402T50 +
0.025W15–30
0.69**
榆树
Ulmus pumila
Rs = 0.698 + 0.043T35 –0.087W5–15
+ 0.006T35W5–15
NS Rs = –0.842 + 0.134T35 +
0.022W5–15
0.56*
a、b、c、d, 方程系数; R2, 决定系数; Rs, 土壤呼吸速率; T, 温度; W, 土壤含水量; NS, 方差分析未达到显著性水平。*, p < 0.05; **, p < 0.01.
a, b, c, d, coefficients in equation; R2, determined coefficient; Rs, soil respiration rate; T, temperature; W, soil water content; NS, not significant. *, p <
0.05; **, p < 0.01.


表4 杨树、榆树林地土壤养分、盐分性质比较
Table 4 Comparison of soil nutrient and salinity at two woodlands in 2005 and 2006
林地类型
Woodland
type
深度
Depth
(cm)
有机碳
Organic carbon
(g·kg–1)
全量N
Total N
(g·kg–1)
有效N
Available N
(mg·kg–1)
pH (土水比1:5)
(1:5 for soil:
water)
电导率
Electrical con-
ductivity
(ms·cm–1)
全盐
Total
salinity
(g·kg–1)
HCO3–
(g·kg–1)
0–5 6.959 0.657 31.28 8.13 0.24 0.885 0.258
5–15 4.173 0.330 21.12 8.24 0.22 0.895 0.261
15–30 3.043 0.357 30.69 8.17 0.24 0.859 0.240
杨树
Populus sp.
30–50 2.926 0.235 13.73 8.31 0.15 0.654 0.270
0–5 7.298 0.659 62.72 7.97 0.62 1.695 0.230
5–15 4.191 0.442 22.90 8.17 0.18 0.668 0.329
15–30 4.406 0.378 28.79 8.15 0.21 0.833 0.326
榆树
Ulmus
pumila
30–50 4.407 0.429 14.78 7.91 0.14 0.270 0.947



图4 杨树、榆树表观光合电子传递速率对光合有效辐射响
应的比较。
Fig. 4 Comparison of response curves of apparent photosyn-
thetic electron transport rate to photosynthetically active radia-
tion in leaves of Populus sp. and Ulmus pumila woodlands.
处杨树平均胸围30 cm, 榆树平均胸围为22 cm。榆
树林样地树木死亡/缺苗率高于杨树林, 平均树高
亦低于杨树林。同时, 杨树叶片属阔叶, 叶面积大
于榆树。据2006年10月观测记录, 杨树林地内枯落
物厚度为1.5–2.0 cm, 大于榆树林, 枯落物下的土
表颜色为黑色, 而榆树林内土表多呈土的本色。
进一步通过测定叶绿素荧光了解两种林木光
合作用的差异。光系统II(PSII)的电子传递量子效率
(ΦPSII)反映PSII反应中心部分关闭情况下的实际
光能捕获的效率, 是PSII实际光化学效率。表观光
合电子传递效率(ETR)反映实际光强条件下的表观
电子传递效率。杨树ΦPSII为0.408 ± 0.016, 大于榆
树(0.277 ± 0.018)。由图4可知, 杨树的ETR大于榆
树。
4 讨论和结论
本文得出温带干旱区杨树、榆树人工防护林土
壤呼吸具有明显的季节性变异, 并且与土壤温度的
532 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (5): 526–534

www.plant-ecology.com
变化趋势一致, 均表现为夏季土壤呼吸速率高于
春、秋季, 这与许多研究结果一致(Xu & Qi, 2001a;
Epron et al., 2004; 褚金翔和张小全, 2005; 王光军
等, 2008; 王国兵等, 2009)。影响土壤呼吸的生物和
非生物因素可能会随着季节的变化而发生变化, 从
而导致土壤呼吸具有明显的季节性变异。土壤温度
是影响土壤呼吸的一个非常重要的因子, 土壤水分
是另一个重要因子, 仅次于土壤温度(Luo et al.,
2001; Campbell et al., 2004; Dilustro et al., 2005)。本
研究虽未得出两种林分土壤呼吸速率与土壤含水
率之间存在显著关系, 这主要是由于人工防护林地
定期接受灌溉, 土壤水分未对土壤呼吸产生限制作
用。同时,林地高大的树冠减少了土壤水分蒸发, 使
得0–30 cm平均土壤含水率在10%–24%之间波动,
不足以影响植物根系与土壤微生物的生理活动。温
度-土壤含水量对两种林分土壤呼吸季节变化的共
同解释并未明显高于温度单因素作用, 同时, 土壤
呼吸速率的季节变化与土壤温度一致, 表明温带干
旱区土壤温度是人工防护林地调控土壤呼吸季节
波动的主要非生物因素。
森林土壤呼吸作用主要源于林木根系的自养
呼吸和土壤微生物的异养呼吸, 土壤呼吸速率是众
多因子协同作用的结果, 但其中的主要限制因子因
森林生态系统而异(Xu & Qi, 2001b)。土壤呼吸受水
热条件影响的程度, 主要是由于不同森林类型的生
物量积累、根系呼吸、凋落物质量和数量及土壤微
生物数量和活性不同引起的(Erland & Hakan, 2003;
Campbell & Law, 2005)。在相同立地条件下(气候状
况和土壤本底相同), 森林植被对土壤呼吸有重要
的影响, 它可通过影响生态系统地上、地下新陈代
谢和基质的可利用性(净初级生产力、光合速率、根
系生物量、凋落物中易分解有机碳量), 以及土壤、
小气候等微生境而引起土壤呼吸的差异(Raich &
Tufekcioglu, 2000; Janssens & Pilegaard, 2003; Kang
et al., 2003)。
本研究发现杨树林地土壤呼吸速率高于榆树
林地, 生长季前者平均速率为后者的2倍。秋季杨树
林地表凋落物厚度大于榆树林地。Davidson等
(2002)研究得出, 不同森林类型年土壤呼吸速率与
凋落物存在正相关关系。地上凋落物向土壤中输入
了可溶性有机化学物质和纤维素, 从而对土壤呼吸
起到激发效应(Hamer & Marschner, 2005; Dilly &
Zyakun, 2008; Schaefer et al., 2009)。较高的ΦPSII
和ETR, 有利于提高光能转化效率, 为暗反应中的
光合碳同化积累更多所需的能量, 以促进碳同化的
运转和有机物的积累。植物光合速率和ETR的动态
变化一致。本文得出杨树林地具有更高的ΦPSII和
ETR, 光合作用与土壤呼吸均强于榆树林地, 许多
研究也都表明光合作用与土壤呼吸有直接的联系
(Irvine et al., 2005; Liu et al., 2006; Moyano et al.,
2007, 2008)。在玉米(Zea mays)生长土壤中, 白天土
壤呼吸的δ13C值显著高于夜间, 植株遮光处理后,
土壤呼吸的δ13C值显著降低(杨兰芳等, 2007)。很多
研究表明, 大部分地下呼吸来自于新近同化产物的
转化(Ekblad & Högberb, 2001; Illeris et al., 2003;
Tang et al., 2005)。另外, 榆树林地表层较高的土壤
盐分含量也可能对土壤微生物活性产生抑制, 进而
影响了土壤呼吸速率。Yuan等(2007)在位于半干旱
区的甘肃安西县研究发现, 电导率与微生物生物量
C之间具有显著的负指数关系, 较高的土壤盐分会
引起微生物群落减小,以及新陈代谢效率降低。因
此, 林木光合速率、林内土壤盐分等差异综合引起
了两种林地生态系统土壤呼吸速率的不同。
总之, 连续两年生长季土壤呼吸的定位测定结
果表明: 在温带干旱区, 杨树和榆树人工防护林地
的土壤呼吸具有趋势一致的显著季节变化, 土壤温
度是起主要影响作用的非生物因子。杨树林地土壤
呼吸速率显著大于榆树林地, 土壤呼吸的温度敏感
性也更高。两种林分土壤呼吸速率的差异受两种林
地生态系统内树木光合作用、土壤特性、凋落物等
多种因素共同影响, 本试验尚未区分各因素的贡献
度, 仍需要开展进一步研究和验证。
致谢 国家科技支撑计划项目 (2006BAD26B-
0901、2006BAC01A03和2006BAD26B0201)、国家
自然科学基金(40871059)、中国科学院知识创新工
程重要方向项目(KSCX2-YW-N-46-05)和新疆重大
专项课题(200733144-4)共同资助。
参考文献
Campbell JL, Law BE (2005). Forest soil respiration across
three climatically distinct chronosequences in Oregon.
Biogeochemistry, 73, 109–125.
Campbell JL, Sun OJ, Law BE (2004). Supply-side controls on
soil respiration among Oregon forests. Global Chang
Biology, 10, 857–1869.
Carbone MS, Winston GC, Trumbore SE (2008). Soil respiration
张丽华等: 干旱区杨树、榆树人工防护林地土壤 CO2释放通量研究 533

doi: 10.3773/j.issn.1005-264x.2010.05.006
in perennial grass and shrub ecosystems: linking environ-
mental controls with plant and microbial sources on sea-
sonal and diel timescales. Journal of Geophysical Re-
search, 113, G02022, doi:10.1029/2007JG000611.
Chu JX (褚金翔), Zhang XQ (张小全) (2006). Dynamic and
fractionalization of soil respiration under three different
land use/covers in the subalpine region of western Sichuan
Province, China. Acta Ecologica Sinica (生态学报), 26,
1693–1700. (in Chinese with English abstract)
Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS,
Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS,
Randolph JC, Zak D (2002). Belowground carbon alloca-
tion in forests estimated from litterfall and IRGA-based
soil respiration measurements. Agricultural and Forest
Meteorology, 113, 39–51.
Davidson EA, Janssens IA, Luo YQ (2006). On the variability
of respiration in terrestrial ecosystems: moving beyond
Q10. Global Change Biology, 12, 154–164.
Dilly O, Zyakun A (2008). Priming effect and respiratory quo-
tient in a forest soil amended with glucose. Geomicrobi-
ology Journal, 25, 425–431.
Dilustro JJ, Collins B, Duncan L, Crawford C (2005). Moisture
and soil texture effects on soil CO2 efflux components in
southeastern mixed pine forests. Forest Ecology and
Management, 204, 85–95.
Ekblad A, Högberb P (2001). Nature aboundance of 13C in CO2
respired from forest soils reveals speed of link between
tree photosynthesis and root respiration. Oecologia, 127,
305–308.
Epron D, Nouvenon Y, Roupsard O, Mouvondy W, Mabiala A,
Saint-andre L, Joffre R, Jourdan C, Bonnefond J-M, Ber-
bigier P, Hamel O (2004). Spatial and temporal variations
of soil respiration in an Eucalyptus plantation in Congo.
Forest Ecology and Management, 202, 149–160.
Erland B, Hakan W (2003). Soil and rhizosphere microorgan-
isms have the same Q10 for respiration in a model system.
Global Change Biology, 9, 1788–1791.
Ge ZW (葛之葳), Gong JR (龚吉蕊), Duan QW (段庆伟), You
X (尤鑫 ), Zhang XS (张新时 ) (2009). Diurnal and
monthly variation of soil respiration during growing sea-
son in Yili, Xinjiang. Journal of Nanjing Forestry Univer-
sity (Natural Science Edition) (南京林业大学学报(自然
科学版), 33, 65–68. (in Chinese with English abstract)
Hamer U, Marschner B (2005). Priming effects in soils after
combined and repeated substrate additions. Geoderma,
128, 38–51.
Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007).
Biotic and abiotic factors controlling the spatial and tem-
poral variation of soil respiration in an agricultural
ecosystem. Soil Biology and Biochemistry, 39, 418–425.
Illeris L, Michelsen A, Jonasson S (2003). Soil plus root respi-
ration and microbial biomass following water, nitrogen,
and phosphorus application at a high arctic semi desert.
Biogeochemistry, 85, 15–29.
IPCC (Intergovernmental Panel on Climate Change) (2000).
Land use, land-use change and forestry. In: Watson RT,
Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dok-
ken DJ eds. A Special Report of the IPCC. Cambridge
University Press, Cambridge, UK.
Irvine J, Law BE, Kurpius MR (2005). Coupling of canopy gas
exchange with root and rhizosphere respiration in a semi-
arid forest. Biogeochemistry, 73, 271–282.
Janssens IA, Pilegaard K (2003). Large seasonal changes in Q10
of soil respiration in a beech forest. Global Change Biol-
ogy, 9, 911–918.
Kang SY, Doh S, Lee DV, Jin L, Kimball JS (2003). Topog-
raphic and climatic controls on soil respiration in six tem-
perate mixed-hardwood forest slopes, Korea. Global
Change Biology, 9, 1427–1437.
Liang NS, Nakadai T, Hirano T, Qu LY, Takayoshi K, Yasumi
F, Gen I (2004). In situ comparison of four approaches to
estimating soil CO2 efflux in a northern larch (Larix
kaempferi Sarg.) forest. Agricultural and Forest Meteor-
ology, 123, 97–117.
Liu Q, Edwards NT, Post WM, Gu L, Ledford J, Lenhart S
(2006). Temperature-independent diel variation in soil
respiration observed from a temperate deciduous forest.
Globe Change Biology, 12, 2136–2145.
Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatiza-
tion of soil respiration to warming in a tall grass prairie.
Nature, 413, 622–625.
Lü W (吕文), Zhang WD (张卫东), Bao J (包军) (2000). Dis-
cussion on developing of Poplar and construction of
Three Norths Protection Forest Project. Protection Forest
Science and Technology (防护林科技), 43(2), 67–69. (in
Chinese)
Moyano FE, Kutsch WL, Rebmann C (2008). Soil respiration
fluxes in relation to photosynthetic activity in broad-leaf
and needle-leaf forest stands. Agricultural and Forest Me-
teorology, 148, 135–143.
Moyano FE, Kutsch WL, Schulze ED (2007). Response of
mycorrhizal, rhizosphere and soil basal respiration to
temperature and photosynthesis in a barley field. Soil Bi-
ology and Biochemistry, 39, 843–853.
Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M,
Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP,
Grelle A, Hollinger DY, Laurila T, Lindroth A, Richard-
son AD, Vesala T (2008). Net carbon dioxide losses of
northern ecosystems in response to autumn warming.
Nature, 451, 49–52.
Qian YB (钱亦兵), Zhou HR (周华荣), Xu M (徐曼), Jiang J
534 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (5): 526–534

www.plant-ecology.com
(蒋进), Wang XQ (王雪芹), Li DM (李东梅), Zhao CJ
(赵从举) (2004). Relationship between water-soil proper-
ties and desert plant diversities in agricultural develop-
ment area of Kelamayi. Journal of Soil and Water Con-
servation (水土保持学报), 18, 186–189. (in Chinese with
English abstract)
Raich JW, Tufekcioglu A (2000). Vegetation and soil respira-
tion: correlations and controls. Biogeochemistry, 48,
71–90.
Schaefer DA, Feng WT, Zou XM (2009). Plant carbon inputs
and environmental factors strongly affect soil respiration
in a subtropical forest of southwestern China. Soil Biology
and Biochemistry, 41, 1000–1007.
Schlesinger WH, Andrews JA (2000). Soil respiration and the
global carbon cycle. Biogeochemistry, 48, 7–20.
Tang JW, Badocchi DD, Xu LK (2005). Tree photosynthesis
modulates soil respiration on a diurnal time scale. Global
Change Biology, 11, 1298–1304.
Trumbore S (2006). Carbon respired by terrestrial ecosys-
tems-recent progress and challenges. Global Change Bi-
ology, 12, 141–153.
Vargas R, Detto M, Baldocchi DD, Allen MF (2009). Multis-
cale analysis of temporal variability of soil CO2 produc-
tion as influenced by weather and vegetation. Global
Change Biology, doi: 10.1111/j.1365-2486.2009.021-11.x.
Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six
temperate forests in China. Global Change Biology, 12,
1–12.
Wang GB (王国兵), Tang YF (唐燕飞), Ruan HH (阮宏华),
Shi Z (施政), He R (何容), Wang Y (王莹), Lin F (蔺菲),
Su GX (苏广鑫) (2009). Seasonal variation of soil respi-
ration and its main regulating factors in a secondary oak
forest and a pine plantation in north-subtropical area in
China. Acta Ecologica Sinica (生态学报), 29, 966–975.
(in Chinese with English abstract)
Wang GJ (王光军), Tian DL (田大伦), Zhu F (朱凡), Yan WD
(闫文德), Li SZ (李树战) (2008). Comparison of soil res-
piration and its controlling factors in sweetgum and cam-
phortree plantations in Hunan, China. Acta Ecologica
Sinica (生态学报), 28, 4107–4114. (in Chinese with Eng-
lish abstract)
Xu M, Qi Y (2001a). Soil surface CO2 efflux and its spatial and
temporal variation in a young ponderosa pine plantation in
northern California. Global Change Biology, 7, 667–677.
Xu M, Qi Y (2001b). Spatial and seasonal variations of Q10
determine by soil respiration measurements at a Sierra
Nevadan forest. Global Biogeochemical, 15, 687–696.
Yang LF (杨兰芳), Cai ZC (蔡祖聪), Qi SH (祁士华) (2007).
Effects of maize growth and photosynthesis on δ13C in soil
respiration. Acta Ecologica Sinica (生态学报 ), 27,
1072–1078. (in Chinese with English abstract)
Yang YS (杨玉盛), Chen GS (陈光水), Wang XG (王小国),
Xie JS (谢锦升), Dong B (董彬), Li Z (李震), Gao R (高
人) (2005). Effect of clear-cutting on soil respiration of
Chinese fir plantation. Acta Pedologica Sinica (土壤学
报), 42, 584–590. (in Chinese with English abstract)
Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007). Microbial
biomass and activity in salt affected soils under arid con-
ditions. Applied Soil Ecology, 35, 319–328.
Zhou WJ (周文君), Sha LQ (沙丽清), Shen SG (沈守艮),
Zheng Z (郑征) (2008). Seasonal change of soil respira-
tion and its influence factors in rubber (Hevea brasilien-
sis) plantation in Xishuangbanna, SW China. Journal of
Mountain Science (山地学报), 26, 317–325. (in Chinese
with English abstract)

责任编委: 于贵瑞 责任编辑: 王 葳