免费文献传递   相关文献

Effects of simulated acid rain on the activity of antioxidant enzyme and the emission of induced green leaf volatiles in Phyllostachys pubescens

模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响


为了探讨酸雨胁迫与毛竹(Phyllostachys pubescens)绿叶挥发物(green leaf volatiles, GLVs)释放规律以及抗氧化酶活性的关系, 通过盆栽试验, 采用不同pH (5.6、4.0、2.5)的模拟酸雨对毛竹三年生实生苗进行处理, 研究酸雨对毛竹叶片可溶性蛋白质含量、丙二醛(MDA)含量和抗氧化酶活性的影响, 并采用热脱附/气相色谱/质谱联用技术对毛竹释放的GLVs成分和含量进行分析。结果表明: 酸雨胁迫下毛竹叶片MDA含量明显增加, pH 2.5模拟酸雨胁迫处理45天毛竹叶片MDA含量与对照相比增加了43.0% (p < 0.01); pH 4.0处理MDA含量增加缓慢, 处理75天时MDA含量比对照增加了0.36倍(p < 0.01)。pH 4.0和pH 2.5模拟酸雨胁迫处理45天时, 毛竹叶片可溶性蛋白质含量极显著增加, 与对照相比分别增加了32.0%和65.0% (p < 0.01)。在酸雨胁迫下, 毛竹叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的响应时间存在一定差异, 表现为互相协调, pH 2.5模拟酸雨胁迫处理SOD活性和POD活性分别在45天和60天时达到最大值, 分别为对照的1.67倍和1.31倍(p < 0.01), 随后降低。pH 4.0和pH 2.5模拟酸雨胁迫处理, 毛竹叶片GLVs含量比对照分别增加26.4%和132.9% (p < 0.01), 新增GLVs为 (E)-2-辛烯醛、2-乙基己醛、(E)-2-己烯醛和(E)-2-壬烯醛。研究表明: 酸雨胁迫条件下, 毛竹可以通过调节保护酶活性、可溶性蛋白质含量和释放GLVs来提高适应环境的能力。

Aims In order to understand the effects of acid rain on Phyllostachys pubescens seedlings, we analyzed the composition and content of green leaf volatiles (GLVs) and the activity of antioxidant enzyme in 3-year-old seedlings of P. pubescens under simulated acid rain stress (i.e. at pH values of 5.6, 4.0 and 2.5). We aim to elucidate the adaptation mechanisms of P. pubescens leaves to acid rain stress from aspects of GLVs emission and their biochemical characteristics.
Methods The composition and content of GLVs were analyzed under near-natural conditions using the thermal desorption system/gas chromatography/mass spectrometer technique (TDS-GC-MS), and the content of soluble protein and malondialdehyde (MDA), activity of antioxidant enzymes in the leaves of P. pubescens seedlings were measured under different acid rain treatments.
Important findings Results showed that the MDA content did not respond to the pH 5.6 treatment in P. pubescens. The content of MDA was elevated in treatments of pH 4.0 and pH 2.5 after 75 days and 45 days, respectively (p < 0.01). The content of soluble protein in P. pubescens leaves was significantly influenced by acid rain; under the treatments of pH 4.0 and pH 2.5, the content of soluble protein was 32% and 65%, respectively, of the controls (p < 0.01). In the pH 5.6 treatment, the content of soluble protein was only slightly increased. There were differences in the timing of responses to acid rain stress among the activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), reflecting possibly a coordinative reaction of those antioxidant enzymes to stress. Compared with the control, GLVs were increased by 26.4% and 132.9% (p < 0.01), respectively, under the treatments of pH 4.0 and pH 2.5. (E)-2-nonenal, 2-ethyl-hexanal, 2-hexenal and (E)-2-nonenal were newly found GLVs under the acid rain stress. The results indicated that P. pubescens could enhance its ability to resist acid rain stress by adjusting its activities of antioxidant enzymes, improving contents of soluble protein and releasing GLVs.


全 文 :植物生态学报 2014, 38 (8): 896–903 doi: 10.3724/SP.J.1258.2014.00084
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2014-04-01 接受日期Accepted: 2014-05-28
* 通讯作者Author for correspondence (E-mail: wyukui@126.com)
模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥
发物的影响
郭慧媛1 马元丹2 王 丹2 左照江2 高 岩2 张汝民2 王玉魁1*
1国家林业局竹子研究开发中心, 杭州 310012; 2浙江农林大学亚热带森林培育国家重点实验室培育基地, 浙江临安, 311300
摘 要 为了探讨酸雨胁迫与毛竹(Phyllostachys pubescens)绿叶挥发物(green leaf volatiles, GLVs)释放规律以及抗氧化酶活
性的关系, 通过盆栽试验, 采用不同pH值(5.6、4.0、2.5)的模拟酸雨对毛竹三年生实生苗进行处理, 研究酸雨对毛竹叶片可溶
性蛋白质含量、丙二醛(MDA)含量和抗氧化酶活性的影响, 并采用热脱附/气相色谱/质谱联用技术对毛竹释放的GLVs成分和
含量进行分析。结果表明: 酸雨胁迫下毛竹叶片MDA含量明显增加, pH 2.5模拟酸雨胁迫处理45天毛竹叶片MDA含量与对照
相比增加了43.0% (p < 0.01); pH 4.0处理MDA含量增加缓慢, 处理75天时MDA含量比对照增加了0.36倍(p < 0.01)。pH 4.0和
pH 2.5模拟酸雨胁迫处理45天时, 毛竹叶片可溶性蛋白质含量极显著增加, 与对照相比分别增加了32.0%和65.0% (p < 0.01)。
在酸雨胁迫下, 毛竹叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的响应时间存在一定差异, 表现为互
相协调, pH 2.5模拟酸雨胁迫处理SOD活性和POD活性分别在45天和60天时达到最大值, 分别为对照的1.67倍和1.31倍(p <
0.01), 随后降低。pH 4.0和pH 2.5模拟酸雨胁迫处理, 毛竹叶片GLVs含量比对照分别增加26.4%和132.9% (p < 0.01), 新增
GLVs为 (E)-2-辛烯醛、2-乙基己醛、(E)-2-己烯醛和(E)-2-壬烯醛。研究表明: 酸雨胁迫条件下, 毛竹可以通过调节保护酶活
性、可溶性蛋白质含量和释放GLVs来提高适应环境的能力。
关键词 酸雨胁迫, 抗氧化酶, 绿叶挥发物, 毛竹
Effects of simulated acid rain on the activity of antioxidant enzyme and the emission of in-
duced green leaf volatiles in Phyllostachys pubescens
GUO Hui-Yuan1, MA Yuan-Dan2, WANG Dan2, ZUO Zhao-Jiang2, GAO Yan2, ZHANG Ru-Min2, and WANG Yu-Kui1*
1China National Research Center of Bamboo, Hangzhou 310012, China; 2The Nurturing Station for the State Key Laboratory of Subtropical Silviculture,
Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300, China
Abstract
Aims In order to understand the effects of acid rain on Phyllostachys pubescens seedlings, we analyzed the
composition and content of green leaf volatiles (GLVs) and the activity of antioxidant enzyme in 3-year-old
seedlings of P. pubescens under simulated acid rain stress (i.e. at pH values of 5.6, 4.0 and 2.5). We aim to
elucidate the adaptation mechanisms of P. pubescens leaves to acid rain stress from aspects of GLVs emission and
their biochemical characteristics.
Methods The composition and content of GLVs were analyzed under near-natural conditions using the thermal
desorption system/gas chromatography/mass spectrometer technique (TDS-GC-MS), and the content of soluble
protein and malondialdehyde (MDA), activity of antioxidant enzymes in the leaves of P. pubescens seedlings
were measured under different acid rain treatments.
Important findings Results showed that the MDA content did not respond to the pH 5.6 treatment in P.
pubescens. The content of MDA was elevated in treatments of pH 4.0 and pH 2.5 after 75 days and 45 days, re-
spectively (p < 0.01). The content of soluble protein in P. pubescens leaves was significantly influenced by acid
rain; under the treatments of pH 4.0 and pH 2.5, the content of soluble protein was 32% and 65%, respectively, of
the controls (p < 0.01). In the pH 5.6 treatment, the content of soluble protein was only slightly increased. There
were differences in the timing of responses to acid rain stress among the activity of superoxide dismutase (SOD),
peroxidase (POD) and catalase (CAT), reflecting possibly a coordinative reaction of those antioxidant enzymes to
stress. Compared with the control, GLVs were increased by 26.4% and 132.9% (p < 0.01), respectively, under the
treatments of pH 4.0 and pH 2.5. (E)-2-nonenal, 2-ethyl-hexanal, 2-hexenal and (E)-2-nonenal were newly found
郭慧媛等: 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响 897

doi: 10.3724/SP.J.1258.2014.00084
GLVs under the acid rain stress. The results indicated that P. pubescens could enhance its ability to resist acid rain
stress by adjusting its activities of antioxidant enzymes, improving contents of soluble protein and releasing
GLVs.
Key words acid rain stress, antioxidant enzyme, green leaf volatiles, Phyllostachys pubescens

随着工业迅速发展, 酸沉降日益严重, 这已成
为全球性环境污染问题之一。目前中国是继欧洲和
北美之后世界第三大酸雨集聚区(张新民等, 2010;
Chen et al., 2012; Cuculovic et al., 2014), 且酸沉降
区域还在不断扩大(Malakoff, 2010)。酸雨使植物叶
片变黄脱落, 甚至造成森林成片衰亡, 由酸雨导致
的植物伤害、生态平衡破坏、经济损失等诸多问题
已引起人们广泛的关注(Shukla et al., 2013)。酸雨能
够破坏植物叶片结构(Sant’Anna-Santos et al., 2006;
Wang et al., 2012)、降低叶绿素含量(陈威等, 2008)、
影响光合作用(宋莉英等, 2013)、增大叶片细胞膜透
性(冯丽丽等, 2011)、影响植物酶活性(Kováčik et al.,
2011; 水德聚等, 2012)等。研究表明, 已经沉降在森
林中的大气酸性物质对生态系统的影响仍会持续数
十年(Reis et al., 2012)。
植物挥发性有机化合物(volatile organic com-
pounds, VOCs)可自发生成, 也有多种外界因素诱导
产生, 其中诱导植物产生VOCs的环境因素分为生
物因素和非生物因素(左照江等, 2010; Copolovici et
al., 2014)。植物VOCs不仅参与其直接防御过程, 还
可通过诱导防御相关基因表达促进防御化合物累
积, 在植物间接防御过程中发挥着重要作用(孙海
峰等, 2013)。绿叶挥发物(green leaf volatiles, GLVs)
是多烯脂肪酸(polyenoic fatty acids, PUFA)被氧化的
衍生物, 是具有顺,顺-1,4-戊二烯结构的多聚不饱和
脂肪酸加氧反应生产的含氧VOCs, 在干旱条件下,
植物可通过增加GLVs释放量以抵御非生物胁迫
(Loreto & Schnitzler, 2010)。Morfopoulos等(2013)研
究发现异戊二烯等单萜类和倍半萜烯可通过与活性
氧(reactive oxygen species, ROS)结合来抵御氧化性
损伤, 这种间接的化学防御能够增强植物的适应性,
从而迅速建立起重要的诱导防御系统。植物体内积
累过量的ROS会诱导产生醛类化合物 (周帅等 ,
2012), 植物叶片损伤诱导释放大量的GLVs, 被认
为是评价植物受损的优秀指标(Brilli et al., 2011;
Babu & Madhavan, 2011)。GLVs中的C6醛异构体
(E)-3-己烯醛和(E)-2-己烯醛含有α,β-不饱和的羰基,
该羰基属于活性亲电基团, 能诱导植物体内萜类挥
发物的释放、内源乙烯的生成及防御基因的表达,
因此可调节植物的抗性反应(陈书霞等, 2012; Kän-
naste et al., 2013)。酸雨是一种非生物胁迫因素, 植
物是否也会通过释放GLVs作为一种适应酸雨的机
制, 尚待验证。
毛竹(Phyllostachys pubescens)作为我国南方一
种重要的森林资源, 具有较高的社会、经济和生态
效益, 在竹产业中具有重要地位。目前对毛竹的研
究主要集中在毛竹生长(施拥军等, 2013)和选育(朱
强根等, 2013)等方面, 关于酸雨对毛竹生理特性影
响的研究较少。为进一步探讨酸雨胁迫下毛竹叶片
GLVs的释放规律及对生化特性的影响, 本试验以
毛竹为材料, 人工模拟酸雨, 利用动态顶空气体循
环法和热脱附/气相色谱/质谱联用技术(TDC-GC-
MS)测定毛竹叶片释放GLVs成分的变化, 同时测定
毛竹叶片抗氧化酶活性的变化, 以期从毛竹叶片释放
GLVs和生化角度揭示其对酸雨胁迫的适应机制, 为
毛竹经营和植物抗酸雨胁迫机理研究提供理论依据。
1 材料和方法
1.1 试验材料
试验苗木为三年生毛竹实生苗, 苗高约1 m,
于2013年4月移栽到高26 cm、直径35 cm的花盆中,
每盆1株, 栽培土为红壤。盆栽苗置于温室中, 缓苗
期间用自来水浇灌, 常规管理, 光照条件为自然光。
2013年6月选取长势基本一致的盆栽苗20盆, 随机
分为4组, 每组5盆, 进行人工酸雨喷施。
1.2 试验处理
模拟酸雨的配制根据浙江省临安市酸雨监测分
析资料, 按照酸雨中SO42–:NO3– = 4:1 (摩尔比)的比
例, 用浓硫酸和浓硝酸配制母液, 再用蒸馏水稀释
成pH值为2.5、4.0和5.6的酸液, 对照用pH 6.9的自来
水喷施。根据临安市常年月均降水量确定酸雨喷施
量, 每周喷施2次, 每次每盆喷施100 mL。
1.3 试验方法
酶液提取: 称取毛竹中上部成熟叶片0.2 g, 加
898 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 896–903

www.plant-ecology.com
入适量预冷的0.05 mol·L–1、pH 7.8的磷酸缓冲溶液,
充分冰浴研磨后, 定容至10 mL。混匀后在4 ℃下
15 000 r·min–1离心20 min。回收上清液直接用于抗
氧化酶活性、可溶性蛋白质和丙二醛(MDA)含量的
测定。酶活性测定温度为25 ℃。
超氧化物歧化酶 (SOD)活性测定参照Giann-
opolitis和Riess (1977)的方法, 以抑制NBT光氧化还
原50%的酶量为一个酶活性单位U。过氧化物酶
(POD)和过氧化氢酶(CAT)活性测定参照Chance和
Maehy (1955)的方法, POD以时间扫描方式测定4
min内吸光值的变化, 取线性部分, 计算每min吸光
度变化值; CAT以3 min内吸光度减少0.1的酶量为1
个酶活性单位U。可溶性蛋白质含量测定参照
Bradford (1976)的方法。MDA含量测定参照Zhang
和Kirkham (1994)的方法。取上述酶提取液1 mL, 加
入三氯乙酸和TBA混合液4 mL, 沸水中加热15 min,
冰浴速冷, 离心, 取上清液于分光光度计中测定
450、532和600 nm处的吸光值, 计算MDA含量。
VOCs采集及分析方法 : 在9:00–11:00, 采用
QC-2型大气采样仪(北京市劳保所科技发展有限责
任公司, 北京)动态顶空气体循环采集法收集毛竹
叶片释放的VOCs, 首先用Reynolds微波炉袋(Rey-
nolds Metals Company, USA)从毛竹顶端套住并用
胶带固定, 袋的上端插入一根出气管, 用胶带扎紧,
随即用大气采样仪将经活性炭过滤的空气通过进气
硅胶管充入袋内, 使袋内气体体积达到采样袋体积
的3/4, 用硅胶管连接形成一个闭合回路, 接通吸附
管采集样品气体, 气体流量0.1 m3·min–1, 采样时间
30 min。VOCs成分分析采用热脱附/气相色谱/质谱
联用技术(TDS-GC-MS)。仪器及参数设置条件参考
Gao等(2005)的方法, TDS (TD3, Gerstel GmbH &
Co. KG, Mülheim, Germany)工作条件: 载气压力为
20 kPa; 进样口温度250 ℃, 脱附温度250 ℃ (10
min); 冷阱温度–100 ℃ (保持3 min); 进样时冷阱温
度骤然升至260 ℃。GC (7890A, Agilent Technologies
Company, Santa Clara, USA)工作条件: 色谱柱30 m
× 250 μm × 0.25 μm HP-5MS柱; 程序升温: 初始温
度40 ℃, 保持4 min后, 以6 ℃·min–1的速率升至250
℃, 保持3 min后, 以10 ℃·min–1的速率升至270 ℃,
保持5 min。MS (5975C, Agilent Technologies Com-
pany, Santa Clara, USA)工作条件: 电离方式为EI; 电
子能量为70 eV; 质量范围28–450 aum; 接口温度
280 ℃, 离子源温度为230 ℃, 四级杆温度150 ℃。
1.4 数据分析
采用NIST 2008谱库检索, 并根据已报道的植
物VOCs保留时间和特征离子对其各组分进行定性。
VOCs定量方法: 采用单位采样时间内单株植物释
放出的VOCs特征离子峰面积进行定量。使用
Oringin 8.0和SPSS软件进行数据处理、统计分析及
图表制作, 方差分析采用LSD法。
2 结果和分析
2.1 酸雨胁迫对可溶性蛋白质含量的影响
酸雨胁迫初期, 各处理可溶性蛋白质含量与对
照无显著差异(图1)。随着酸雨胁迫时间的延长, pH
4.0和pH 2.5处理蛋白质含量逐渐增加, 均在处理45
天时与对照差异达到极显著水平, 蛋白质含量分别
是对照的1.32倍和1.65倍(p < 0.01), 随后pH 2.5处理
可溶性蛋白质含量迅速减少, pH 4.0处理仍增加且
维持在较高水平。pH 5.6处理可溶性蛋白质含量增
加缓慢, 且与对照差异不显著。



图1 不同处理毛竹叶片可溶性蛋白质含量的变化(平均值
±标准误差)。
Fig. 1 Changes of soluble protein content in Phyllostachys
pubescens under different treatments (mean ± SE). *, p < 0.05;
**, p < 0.01.


2.2 酸雨胁迫对MDA含量的影响
酸雨胁迫对毛竹叶片MDA含量的影响见图2。
pH 5.6处理MDA含量与对照无明显差异。pH 4.0和
pH 2.5处理随胁迫时间延长, MDA含量均呈增加趋
势: pH 4.0处理MDA含量增加缓慢, 处理75天时
MDA含量比对照增加了0.36倍(p < 0.01), 差异性极
显著; pH 2.5处理使毛竹叶片MDA含量迅速增加,
郭慧媛等: 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响 899

doi: 10.3724/SP.J.1258.2014.00084
并且在第45天时达到极显著水平(p < 0.01), 比对照
增加了43%, 之后继续增加, 胁迫60天和75天时pH
2.5处理毛竹叶片MDA含量分别为对照的1.54倍和
1.61倍(p < 0.01)。



图2 不同处理毛竹叶片丙二醛含量的变化(平均值±标准
误差)。
Fig. 2 Changes of malonaldehyde content in Phyllostachys
pubescens under different treatments (mean ± SE). *, p < 0.05;
**, p < 0.01.


2.3 酸雨胁迫对抗氧化酶活性的影响
由图3A可以看出, pH 5.6处理毛竹叶片SOD活
性与对照无显著差异。初期pH 4.0和pH 2.5处理SOD
活性增加缓慢, 处理15天时与对照无显著差异, 处
理30天后pH 2.5处理SOD活性迅速增强, 45天时达
到最大值, 为对照的1.67倍(p < 0.01), 随后其SOD
活性迅速降低, 在处理75天时SOD活性为对照的
83.7%, 差异极显著(p < 0.01); pH 4.0处理于60天时
SOD活性达到最大值, 比对照增加52.7%, 差异极
显著(p < 0.01)。
酸雨处理初期, 毛竹叶片POD活性与对照无显
著差异(图3B)。pH 4.0处理POD活性增加缓慢, 于处
理75天时达到最大, 比对照增加12.8%, 差异显著(p
< 0.05)。pH 2.5酸雨处理使毛竹叶片POD活性迅速
增强, 并在处理30天时与对照差异显著(p < 0.05),
在60天达到最大值, 比对照提高了31.0% (p < 0.01),
随后降低, 但仍与对照差异极显著。
酸雨胁迫初期, pH 4.0和pH 2.5处理的毛竹叶片
CAT活性与对照之间无显著差异(图3C), 随着胁迫
时间延长, CAT活性逐渐增强, 分别在第60天和第
45天时达到最大值, CAT活性分别是对照的1.08倍


图3 不同处理毛竹叶片抗氧化酶活性的变化(平均值±标准
误差)。A, 超氧化物歧化酶。B, 过氧化物酶。C, 过氧化
氢酶。
Fig. 3 Changes of antioxidant enzyme activities in
Phyllostachys pubescens under different treatments (mean ±
SE). A, Superoxide dismutase (SOD). B, Peroxidase (POD). C,
Catalase (CAT). *, p < 0.05; **, p < 0.01.


和1.35倍(p < 0.01), 随后毛竹叶片CAT活性降低。
pH 5.6处理毛竹叶片CAT活性与对照差异不显著。
2.4 毛竹释放GLVs成分分析
采用TDS/GC/MS对毛竹释放的GLVs成分进行
分析, 不同酸雨胁迫处理下毛竹叶片GLVs释放量
及种类存在差异(表1)。随着酸雨胁迫强度增加, 毛
竹叶片GLVs释放量均呈增加趋势, pH 4.0和pH 2.5
处理分别比对照增加26.4%和132.9%, 差异均达到
极显著水平(p < 0.01)。pH 5.6处理比对照增加了一
种GLVs——(E)-2-辛烯醛, pH 4.0处理比对照增加
了2种GLVs, 分别为(E)-2-辛烯醛和(E)-2-壬烯醛;
pH 2.5处理比对照增加3种GLVs, 为(E)-2-己烯醛、
2-乙基己醛和(E)-2-壬烯醛。pH 2.5处理毛竹叶片释
放GLVs中含量最高的成分为癸醛, 占其GLVs总量
的24.7%, pH 5.6和pH 4.0处理释放含量最高的GLVs
900 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 896–903

www.plant-ecology.com
表1 酸雨处理下毛竹绿叶挥发物释放量的变化(平均值±标准误差)
Table 1 Variations in the release of green leaf volatiles in acid rain damaged leaves of Phyllostachys pubescens (mean ± SE)
处理 Treatment 绿叶挥发物
Green leaf volatiles
分子式
Chemical formula
CK pH 5.6 pH 4.0 pH 2.5
(E)-2-己烯醛 (E)-2-hexenal C6H10O – – – 4.21 ± 0.65
(E)-3-己烯醇 (E)-3-hexen-1-ol C6H12O 5.91 ± 0.58 0.71 ± 0.03* 4.95 ± 1.06 16.60 ± 0.98**
庚醛 Heptanal C7H14O 0.55 ± 0.01 – – 11.79 ± 1.06**
2-乙基己醛 2-ethyl-hexanal C8H16O – – – 0.78 ± 0.01
苯甲醛 Benzaldehyde C7H6O 1.18 ± 0.09 0.75 ± 0.01 0.77 ± 0.01 3.04 ± 0.03*
辛醛 Octanal C8H16O 1.68 ± 0.18 3.02 ± 0.40* 4.15 ± 0.52* 6.73 ± 0.72**
2-乙基-1-己醇 2-ethyl-1-hexanol C8H18O 33.21 ± 2.87 17.72 ± 1.22** 32.39 ± 2.93 22.41 ± 2.19*
(E)-2-辛烯醛 (E)-2-octenal C8H14O – 0.39 ± 0.01 0.48 ± 0.01 1.07 ± 0.02
壬醛 Nonanal C9H18O 6.75 ± 0.89 6.74 ± 0.77 10.60 ± 0.16* 17.94 ± 1.97**
(E)-2-壬烯醛 (E)-2-nonenal C9H16O – – 0.43 ± 0.01 1.14 ± 0.02
3,7-二甲基-1-辛醇 3,7-dimethyl-1-octanol C10H22O 0.42 ± 0.01 0.32 ± 0.01* 0.71 ± 0.04** 7.28 ± 1.16**
癸醛 Decanal C10H20O 6.95 ± 1.17 9.89 ± 0.97* 15.10 ± 1.18** 33.09 ± 1.91**
十四烷醛 Tetradecanal C14H28O 0.98 ± 0.07 2.33 ± 0.07* 3.28 ± 0.55** 8.14 ± 1.01**
–, 未检测到化合物
–, no compound is found. *, p < 0.05; **, p < 0.01.


均为2-乙基-1-己醇, 分别占其GLVs总量的42.3%和
44.5%。
3 讨论和结论
MDA是膜脂过氧化作用的最终分解产物, 当
酸雨胁迫超过植物自身可调节范围时, 植物细胞膜
受损, 质膜透性增加(孙业民等, 2012), 因此MDA含
量高低可迅速反映出植物遭受逆境伤害的程度(Liu
& Liu, 2011)。本研究显示毛竹叶片MDA含量随pH
值的降低而显著增大(图2), 说明酸雨胁迫一段时间
后, 毛竹叶片细胞膜结构被破坏, 超氧阴离子自由
基代谢平衡被打破, 高浓度酸雨处理的毛竹叶片超
氧阴离子自由基产生速度超过了抗氧化酶的清除速
度, 导致MDA累积(王强等, 2013)。可溶性蛋白质是
植物体内的一种渗透调节物质, 对缓解逆境对植物
体的伤害有重要的调节作用(刘建福等, 2013), 酸雨
胁迫下蛋白质含量增加(图1), 可能是由于酸雨胁迫
使毛竹叶片刺激逆境蛋白大量合成, 通过主动积累
可溶性有机溶质, 增加细胞渗透势, 维持细胞膨压
以保持正常代谢, 从而提高植物的抗性, 而长时间
高浓度酸雨胁迫可溶性蛋白质含量降低, 原因可能
是酸雨破坏了植物逆境蛋白的合成机制(王丽华等,
2013)。
研究表明, 随着酸雨处理时间延长, 植物叶片
产生过量的ROS, SOD活性提高, 催化超氧阴离子
自由基歧化生成基态的分子氧和H2O2增多, POD和
CAT活性随之提高(赵栋等, 2010), 这与本研究酸雨
处理的结果一致(图3)。说明在酸雨胁迫初期, 毛竹
叶片启动活性氧清除系统以维持活性氧的动态平衡
(龙云等, 2009; Kacharava et al., 2013)。但随着胁迫
强度加剧和时间延长, 毛竹叶片SOD活性迅速下降,
表明歧化超氧阴离子的能力下降, CAT活性随之下
降, 但POD活性保持稳定来抵御胁迫, 说明3种保护
酶对酸雨胁迫的响应时间可能存在一些差异(刘芳
等, 2012; Chen et al., 2013)。酸雨胁迫下毛竹叶片抗
氧化酶活性的变化趋势表明, 毛竹可以通过SOD、
POD和CAT的协同作用在一定程度上降低自由基对
植物体的伤害, 因此SOD、POD和CAT的活性变化
可作为研究酸雨对毛竹叶片膜系统影响的敏感
指标。
植物释放GLVs是植物防御应答中的重要信号
分子, Brilli等(2011)研究表明叶片损伤后植物释放
大量的醛类化合物, 胁迫环境造成的氧化反应使植
物体内累积过量的ROS, 诱导产生的醛类化合物可
以增强植物的抵御能力(Niinemets et al., 2010; Kask
et al., 2013), 减轻叶绿体膜的氧化损伤, 本研究表
明酸雨胁迫处理下毛竹叶片释放的醛类化合物明显
高于对照(表1)。由于酸雨胁迫形成的ROS破坏类囊
郭慧媛等: 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响 901

doi: 10.3724/SP.J.1258.2014.00084
体膜结构, 膜脂成分中的亚油酸、油酸和亚麻酸经
催化形成壬醛、 (E)-2-己烯醛和 2-壬烯醛等
(Hatanaka, 1993), 加快细胞内形成并释放醛类化合
物的速度(Egigu et al., 2014), (E)-2-己烯醛具有α,β-
不饱和羰基基团, 其分子的亲电特性通过细胞损伤
激活基因, 可能是诱导植物防卫反应的主要原因,
研究表示GLVs可诱导植物POD活性增加(胡增辉等,
2009)。C6醛激活植物体内乙烯、水杨酸和茉莉酸等
信号途径, 通过该途径防御相关基因表达水平增加
来提高植物抗性(Yi et al., 2011), 推测在酸雨胁迫
下毛竹叶片通过大量释放醛类化合物的生理机制,
增强对酸雨胁迫的抗性。综上所述, 植物抵御逆境
胁迫的策略为多种机制协同作用, 在酸雨胁迫处理
初期毛竹通过提高保护酶活性降低ROS对细胞膜的
损伤, 通过调节自身抗氧化系统逐渐适应环境。随
着胁迫时间延长, 重度酸雨处理下毛竹叶片的代谢
紊乱, 抗氧化酶活性逐渐降低, 催化细胞内游离脂
肪酸大量合成GLVs, 以减少ROS积累, 减轻细胞膜
系统氧化程度, 进一步提高毛竹对酸雨胁迫的适应
能力。
基金项目 国家林业局948项目(2013-4-23)、国家自
然基金(30972397)和浙江省科技计划项目(2012F-
20025)。
参考文献
Babu R, Madhavan M (2011). Impact of simulated acid rain of
different pH on the seeds and seedlings of two commonly
cultivated species of legumes in Kerala, India. Plant
Archives, 11, 607–611.
Bradford MM (1976). A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Analytical
Biochemistry, 72, 248–254.
Brilli F, Ruuskanen TM, Schnitzhofer R, Müller M, Breiten-
lechner M, Bittner V, Hansel A (2011). Detection of plant
volatiles after leaf wounding and darkening by proton
transfer reaction “time-of-flight” mass spectrometry
(PTR-TOF). PLoS ONE, 26, e20419.
Chance B, Maehly AC (1955). Assay of catalases and
peroxidases. Methods in Enzymology, 2, 764–775.
Chen J, Wang WH, Liu TW, Wu FH, Zheng HL (2013).
Photosynthetic and antioxidant responses of Liquidambar
formosana and Schima superba seedlings to sulfuric-rich
and nitric-rich simulated acid rain. Plant Physiology and
Biochemistry, 64, 41–51.
Chen ST, Shen XS, Hu ZH, Chen HS, Shi YS, Liu Y (2012).
Effects of simulated acid rain on soil CO2 emission in a
secondary forest in subtropical China. Geoderma, 189–
190, 65–71.
Chen SX, Chen Q, Wang CY, Hao LN, Fang YL (2012).
Progress in research on the metabolic regulation and mo-
lecular mechanism of green leave volatiles (GLVs).
Scientia Agricultura Sinica, 45, 1545–1557. (in Chinese
with English abstract) [陈书霞, 陈巧, 王聪颖, 郝丽宁,
房玉林 (2012). 绿叶挥发物代谢调控及分子机理研究
进展. 中国农业科学, 45, 1545–1557.]
Chen W, He BH, Xu J, Xia Q (2008). Influence of acid rain on
diversity and structure of bryophytes under the Pinus
massoniana wood. Journal of Southwest China Normal
University, 33(2), 78–82. (in Chinese with English
abstract) [陈威, 何丙辉, 徐健, 夏钦 (2008). 酸雨对马
尾松林下苔藓植物的影响. 西南师范大学学报(自然科
学版), 33(2), 78–82.]
Copolovici L, Kännaste A, Remmel T, Niinemets Ü (2014).
Volatile organic compound emissions from Alnus
glutinosa under interacting drought and herbivory stresses.
Environmental and Experimental Botany, 100, 55–63.
Cuculovic AA, Pavlovic MS, Savovic JJ, Veselinovic DS
(2014). Desorption of metals from Cetraria islandica (L.)
Ach. lichen using solutions simulating acid rain. Archives
of Biological Sciences, 66, 273–284.
Egigu MC, Ibrahim MA, Riikonen J, Yahya A, Holopainen T,
Julkunen-Tiitto R, Holopainen JK (2014). Effects of rising
temperature on secondary compounds of yeheb
(Cordeauxia edulis Hemsley). American Journal of Plant
Sciences, 5, 517–527.
Feng LL, Yao FF, Wang XH, Yang QS, Yang HB, Ding HM
(2011). Effects of simulated acid rain with lower S/N ratio
on gas exchange and membrane of three domiant species
in subtropical forests. Acta Ecologica Sinica, 31, 1911–
1917. (in Chinese with English abstract) [冯丽丽, 姚芳芳,
王希华, 杨庆松, 杨海波, 丁慧明 (2011). 低硫氮比酸
雨对亚热带典型树种气体交换和质膜的影响. 生态学
报, 31, 1911–1917.]
Gao Y, Jin YJ, Li HD, Chen HJ (2005). Volatile organic
compounds and their roles in bacteriostasis in five conifer
species. Journal of Integrative Plant Biology, 47, 499–507.
Giannopolitis CN, Ries SK (1977). Superoxide dismutases: I.
Occurrence in higher plants. Plant Physiology, 59, 309–
314.
Hatanaka A (1993). The biogeneration of green odour by green
leaves. Phytochemistry, 34, 1201–1218.
Hu ZH, Shen YB, Wang NN, Wang JF, Zhou YC, Zhang ZY
(2009). Activities of POD, PPO and PAL in Poplar
(Populus simonii × P. pyramidalis ‘Opera 8277’) leaves
exposed to different volatiles. Scientia Silvae Sinicae,
45(10), 44–48. (in Chinese with English abstract) [胡增辉,
沈应柏, 王宁宁, 王金凤, 周艳超, 张志毅 (2009). 不
902 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 896–903

www.plant-ecology.com
同挥发物诱导的合作杨叶片中POD, PPO及PAL活性变
化. 林业科学, 45(10), 44–48.]
Kacharava N, Chkhubianishvili E, Badridze G, Chanishvili S,
Mazanishvili L (2013). Antioxidant response of some
Georgian wheat species to simulated acid rain. Australian
Journal of Crop Science, 7, 770–776.
Kännaste A, Copolovici L, Pazouki L, Suhhorutšenko M,
Niinemets Ü (2013). Highly variable chemical signatures
over short spatial distances among Scots pine (Pinus
sylvestris) populations. Tree Physiology, 33, 374–387.
Kask K, Knnaste A, Niinemets Ü (2013). Emission of volatile
organic compounds as a signal of plant stress. Scientific
Bulletin of ESCORENA, 8, 79–92.
Kováčik J, Klejdus B, Bačkor M, Štork F, Hedbavny J (2011).
Physiological responses of root-less epiphytic plants to
acid rain. Ecotoxicology, 20, 348–357.
Liu EU, Liu CP (2011). Effects of simulated acid rain on the
antioxidative system in Cinnamomum philippinense
seedlings. Water, Air, Soil Pollution, 215, 127–135.
Liu F, Zuo ZJ, Xu GP, Wu XB, Zheng J, Gao RF, Zhang RM,
Gao Y (2012). Physiological responses to drought stress
and the emission of induced volatile organic compounds in
Rosmarinus officinalis. Chinese Journal of Plant Ecology,
37, 454–463. (in Chinese with English abstract) [刘芳, 左
照江, 许改平, 吴兴波, 郑洁, 高荣孚, 高岩 (2013). 迷
迭香对干旱胁迫的生理响应及其诱导挥发性有机化合
物的释放. 植物生态学报, 37, 454–463.]
Liu JF, Wang MY, Yang C, Zhu AJ (2013). Effects of exoge-
nous nitric oxide on physiological characteristics of longan
(Dimocarpus longana) seedlings under acid rain stress.
Chinese Journal of Applied Ecology, 24, 2235–2240. (in
Chinese with English abstract) [刘建福, 王明元, 杨晨,
朱爱军 (2013). 外源NO对酸雨胁迫下龙眼幼苗生理特
性的影响. 应用生态学报, 24, 2235–2240.]
Long Y, Liu Y, Zhong ZC (2009). Effects of UV-B irradiation
and acid rain on photosynthetic rate and antioxidant en-
zyme activities of maize seedlings. Acta Ecologica Sinica,
29, 4956–4966. (in Chinese with English abstract) [龙云,
刘芸, 钟章成 (2009). 酸雨和UV-B对玉米幼苗光合速
率和抗氧化酶活性的影响. 生态学报, 29, 4956–4966.]
Loreto F, Schnitzler JP (2010). Abiotic stresses and induced
BVOCs. Trends in Plant Science, 15(3), 154–166.
Malakoff D (2010). Taking the sting out of acid rain. Science,
330, 910–911.
Morfopoulos C, Prentice IC, Keenan TF, Friedlingstein P,
Medlyn BE, Peñuelas J, Possell M (2013). A unifying
conceptual model for the environmental responses of
isoprene emissions from plants. Annals of Botany, 112,
1223– 1238.
Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J,
Staudt M (2010). The emission factor of volatile isopre-
noids: stress, acclimation, and developmental responses.
Biogeosciences, 7, 2203–2223.
Reis S, Grennfelt P, Klimont Z, Amann M, ApSimon H,
Hettelingh JP, Holland M, LeGall AC, Maas R, Posch M,
Spranger T, Sutton MA, Williams M (2012). From acid
rain to climate change. Science, 338, 1153–1154.
Sant’Anna-Santos BF, da Silva LC, Azevedo AA, de Araújo
JM, Alves EF, da Silva EAM, Aguiar R (2006). Effects of
simulated acid rain on the foliar micromorphology and
anatomy of tree tropical species. Environmental and
Experimental Botany, 58, 158–168.
Shi YJ, Liu EB, Zhou GM, Shen ZM, Yu SH (2013). Bamboo
shoot growth model based on the stochastic process and its
application. Scientia Silvae Sinicae, 49(9), 89–93. (in
Chinese with English abstract) [施拥军, 刘恩斌, 周国模,
沈振明, 俞淑红 (2013). 基于随机过程的毛竹笋期生长
模型构建及应用. 林业科学, 49(9), 89–93.]
Shui DJ, Shi Y, Cao LL, Yang T, Wang BL (2012). Effects of
exogenous SA pretreatment on thermotolerance and
photosynthesis in Pakchoi under high temperature stress.
Plant Physiology Journal, 48, 386–392. (in Chinese with
English abstract) [水德聚, 石瑜, 曹亮亮, 杨涛, 汪炳良
(2012). 外源水杨酸预处理对高温胁迫下白菜耐热性和
光合特性的影响. 植物生理学报, 48, 386–392.]
Shukla JB, Sundar S, Naresh R (2013). Modeling and analysis
of the acid rain formation due to precipitation and its effect
on plant species. Natural Resource Modeling, 26, 53–65.
Song LY, Ke ZH, Sun LL, Peng CL (2013). Effect of simulated
acid rain on gas exchanges of three Compositae invasive
plants. Bulletin of Botany, 48, 160–167. (in Chinese with
English abstract) [宋莉英 , 柯展鸿 , 孙兰兰 , 彭长连
(2013). 模拟酸雨对3种菊科入侵植物光合特性的影响.
植物学报, 48, 160–167.]
Sun HF, Li ZY, Wu B, Qin XM (2013). Review of recent
advances on the production and eco-physiological roles of
green leaf volatiles. Chinese Journal of Plant Ecology, 37,
268–275. (in Chinese with English abstract) [孙海峰, 李
震宇, 武滨, 秦雪梅 (2013). 绿叶挥发物产生特征及其
生态生理作用研究进展. 植物生态学报, 37, 268–275.]
Sun YM, Ma L, Li CZ (2012). Comparison on the damage
mechanism of cell membrane and its protective systems in
Picea asperata leaves under different acid stress types.
Scientia Silvae Sinicae, 48(6), 56–62. (in Chinese with
English abstract) [孙业民, 马兰, 李朝周 (2012). 不同
类型酸胁迫对云杉叶细胞膜及其保护系统损伤机制的
比较. 林业科学, 48(6), 56–62.]
Wang LH, Li X, Liu W, Gan YM (2013). A study on resistance
and purifying ability of SO2 on four warm-season
turfgrasses. Acta Prataculturae Sinica, 22, 225–233. (in
Chinese with English abstract) [王丽华, 李西, 刘尉, 干
友民 (2013). 四种暖季型草坪草对SO2的抗性及净化能
郭慧媛等: 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响 903

doi: 10.3724/SP.J.1258.2014.00084
力的比较. 草业学报, 22, 225–233.]
Wang Q, Jin ZX, Peng LQ (2013). Effects of simulated acid
rain on the ecophysiological characteristics of Lindera
aggregate. Journal of Zhejiang University, 40, 447–455.
(in Chinese with English abstract) [王强, 金则新, 彭礼琼
(2013). 模拟酸雨对乌药幼苗生理生态特性的影响. 浙
江大学学报, 40, 447–455.]
Wang R, Rehman SU, Liang X, Song Y, Su Y, Baerson SR,
Zeng R (2012). Effects of simulated acid rain on the
allelopathic potential of invasive weed Wedelia trilobata.
Allelopathy Journal, 30, 23–32.
Yi HS, Yang JW, Ghim SY, Ryu CM (2011). A cry for help
from leaf to root: above ground insect feeding leads to the
recruitment of rhizosphere microbes for plant self-protec-
tion against diverse attacks. Plant Signaling & Behavior,
6, 1192–1194.
Zhang J, Kirkham MB (1994). Drought-stress-induced changes
in activities of superoxide dismutase, catalase, and
peroxidase in wheat species. Plant & Cell Physiology, 35,
785–791.
Zhang XM, Chai FH, Wang SL, Sun XZ, Han M (2010).
Research progress of acid rain precipitation in China.
Research of Environment Sciences, 23, 527–532. (in
Chinese with English abstract) [张新民, 柴发合, 王淑兰,
孙新章, 韩梅 (2010). 中国酸雨研究现状. 环境科学研
究, 23, 527–532.]
Zhao D, Pan YZ, Deng SH, Shang H, Wang F, Chen R (2010).
Effects of simulated acid rain on physiological and eco-
logical characteristics of Camellia sasanqua. Scientia Ag-
ricultura Sinica, 43, 3191–3198. (in Chinese with English
abstract) [赵栋, 潘远智, 邓仕槐 , 尚鹤, 王芳 , 陈睿
(2010). 模拟酸雨对茶梅生理生态特性的影响. 中国农
业科学, 43, 3191–3198.]
Zhou S, Lin FP, Wang YK, Shen YB, Zhang RM, Gao RF, Gao
Y (2012). Effects of mechanical damage of leaves on
volatile organic compounds and chlorophyll fluorescence
parameters in seedlings of Cinnamomum camphora.
Chinese Journal of Plant Ecology, 36, 671–680. (in
Chinese with English abstract) [周帅, 林富平, 王玉魁,
沈应柏, 张汝民, 高荣孚, 高岩 (2012). 樟树幼苗机械
损伤叶片对挥发性有机化合物及叶绿素荧光参数的影
响. 植物生态学报, 36, 671–680.]
Zhu QG, Jin AW, Wang YK, Qiu YH, Li XT, Zhang SH
(2013). Biomass allocation of branches and leaves in
Phyllostachys heterocycla ‘Pubescens’ under different
management modes: allometric scaling analysis. Chinese
Journal of Plant Ecology, 37, 811–819. (in Chinese with
English abstract) [朱强根, 金爱武, 王意锟, 邱永华, 李
雪涛, 张四海 (2013). 不同营林模式下毛竹枝叶的生物
量分配: 异速生长分析. 植物生态学报, 37, 811–819.]
Zuo ZJ, Zhang RM, Wang Y, Hou P, Wen GS, Gao Y (2010).
Analysis of main volatile organic compounds and study of
aboveground structures in Artemisia frigid. Chinese Jour-
nal of Plant Ecology, 34, 462–468. (in Chinese with Eng-
lish abstract) [左照江, 张汝民, 王勇, 侯平, 温国胜, 高
岩 (2010). 冷蒿挥发性有机化合物主要成分分析及其
地上部分结构研究. 植物生态学报, 34, 462–468.]

责任编委: 段昌群 责任编辑: 李 敏