免费文献传递   相关文献

Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China

氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响


为了解氮素沉降对草地群落的影响, 通过人工氮肥添加模拟试验, 研究了黄土高原天然草地优势植物长芒草(Stipa bungeana)在不同施氮水平下叶片和立枯物碳(C)、氮(N)、磷(P)元素含量的变化特征, 探讨了N素增加对N、P重吸收率和C : N : P化学计量比的影响及其内在联系。结果表明: 氮素添加显著增加了长芒草叶片的C、N和立枯物的N、P含量, 对叶片P和立枯物C含量无显著影响; 氮素添加显著降低了长芒草的N、P重吸收率, 对照处理的N、P重吸收率最高, 分别为60.35%和
71.75%, 并且, 在相同氮素处理条件下P的重吸收率显著大于N重吸收率; 随着氮素添加量的增大, 叶片的C : N降低, N : P和C : P增加, N : P为18.25-29.01。研究表明, 黄土高原天然草地群落主要受P限制, 随氮素沉降增加, P限制进一步加剧; 长芒草较高的N、P重吸收率是保证其在贫瘠的土壤中生存的重要机制。

Aims Our purpose was to study the effects of deposition of nitrogen (N) on plant carbon (C), N, phosphorus (P), N and P nutrient resorption efficiencies, C : N : P stoichiometry and their internal relations on Stipa bungeana of Loess Plateau natural grassland.
Methods Deposition of N was simulated by N fertilization at four levels. Changes of C, N and P contents were detected, and C : N : P and the N and P nutrient resorption efficiencies were estimated for S. bungeana.
Important findings The C and N contents of leaves and N and P contents of standing litter increased significantly with N addition. However, the P content of leaves and C content of standing litter did not response to N addition. The N and P resorption efficiencies of S. bungeana decreased significantly with N addition. When there was no N addition, N and P resorption efficiencies were highest (60.35% and 71.75%, respectively). Meanwhile, the P resorption efficiency was greater than that of N in same treatment. The C : N of S. bungeana decreased gradually with N addition, but the N : P and C : P increased with N addition. Values of the N : P were 18.25-29.01. The results showed the Loess Plateau natural grassland was mainly limited by P, and the strength of P limitation was enhanced with N deposition. Higher N and P resorption efficiencies were an important strategy for S. bungeana to survive soil infertility.


全 文 :植物生态学报 2011, 35 (8): 801–807 doi: 10.3724/SP.J.1258.2011.00801
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2011-03-24 接受日期Accepted: 2011-06-03
* 通讯作者Author for correspondence (E-mail: fuhua@lzu.edu.cn)
氮素添加对黄土高原典型草原长芒草氮磷重吸收
率及C:N:P化学计量特征的影响
安 卓 牛得草 文海燕 杨 益 张洪荣 傅 华*
兰州大学草地农业科技学院, 农业部草地农业生态系统学重点实验室 兰州 730000
摘 要 为了解氮素沉降对草地群落的影响, 通过人工氮肥添加模拟试验, 研究了黄土高原天然草地优势植物长芒草(Stipa
bungeana)在不同施氮水平下叶片和立枯物碳(C)、氮(N)、磷(P)元素含量的变化特征, 探讨了N素增加对N、P重吸收率和C : N :
P化学计量比的影响及其内在联系。结果表明: 氮素添加显著增加了长芒草叶片的C、N和立枯物的N、P含量, 对叶片P和立
枯物C含量无显著影响; 氮素添加显著降低了长芒草的N、P重吸收率, 对照处理的N、P重吸收率最高, 分别为60.35%和
71.75%, 并且, 在相同氮素处理条件下P的重吸收率显著大于N重吸收率; 随着氮素添加量的增大, 叶片的C : N降低, N : P和
C : P增加, N : P为18.25–29.01。研究表明, 黄土高原天然草地群落主要受P限制, 随氮素沉降增加, P限制进一步加剧; 长芒草
较高的N、P重吸收率是保证其在贫瘠的土壤中生存的重要机制。
关键词 生态化学计量学, 黄土高原, 氮素添加,养分限制, 养分重吸收率
Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric
characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China
AN Zhuo, NIU De-Cao, WEN Hai-Yan, YANG Yi, ZHANG Hong-Rong, and FU Hua*
Key Laboratory of Grassland Agro-ecosystem Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou
730000, China
Abstract
Aims Our purpose was to study the effects of deposition of nitrogen (N) on plant carbon (C), N, phosphorus (P),
N and P nutrient resorption efficiencies, C : N : P stoichiometry and their internal relations on Stipa bungeana of
Loess Plateau natural grassland.
Methods Deposition of N was simulated by N fertilization at four levels. Changes of C, N and P contents were
detected, and C : N : P and the N and P nutrient resorption efficiencies were estimated for S. bungeana.
Important findings The C and N contents of leaves and N and P contents of standing litter increased
significantly with N addition. However, the P content of leaves and C content of standing litter did not response to
N addition. The N and P resorption efficiencies of S. bungeana decreased significantly with N addition. When
there was no N addition, N and P resorption efficiencies were highest (60.35% and 71.75%, respectively).
Meanwhile, the P resorption efficiency was greater than that of N in same treatment. The C : N of S. bungeana
decreased gradually with N addition, but the N : P and C : P increased with N addition. Values of the N : P were
18.25–29.01. The results showed the Loess Plateau natural grassland was mainly limited by P, and the strength of
P limitation was enhanced with N deposition. Higher N and P resorption efficiencies were an important strategy
for S. bungeana to survive soil infertility.
Key words ecological stoichiometry, Loess Plateau, nitrogen addition, nutrient limitation, nutrient resorption
efficiency

养分重吸收是养分从衰老的叶片迁移、运输、
储存到其他组织中的过程, 它能延长养分在植物体
内的贮存时间, 为新生的、存活的植物体提供新的
营养和能量(Aerts, 1996; Killingbeck, 1996; 邢雪荣
等, 2000), 是在养分供应有限的环境中保持和重新
利用养分的一种机制。养分重吸收能加强养分的循
802 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (8): 801–807

www.plant-ecology.com
环利用, 从而减少养分损失(Freschet et al., 2010; Li
et al., 2010), 提高养分的利用效率, 且较强的养分
重吸收率和养分利用效率能够保证植物在群落中
的优势地位(Lü et al., 2011)。不同生境条件下植物
养分重吸收的变化不仅与植物养分需求有关, 还与
环境中养分的供应有关(陈伏生等, 2007)。氮(N)和
磷(P)是陆地生态系统植物生长的主要限制性元素
(蔡艳等, 2009), 它们在植物的各种生理代谢中发挥
着重要的作用, 彼此独立而又相互影响(韩文轩等,
2009), 最终影响到植物叶片碳(C)的固定。植物C、
N、P生态化学计量特征的研究为研究植物的养分利
用状况提供了重要的手段(曾德慧和陈广生, 2005)。
为了适应环境的变化, 植物能够主动地调整养分需
求, 从而调整体内元素的相对丰度(曾德慧和陈广
生, 2005)。环境中N、P的缺乏或过量将导致植物体
内C : N和C : P的上升或下降(阎恩荣等, 2010), 另
外, 植物N : P的波动可反映植物受N或P的相对限
制情况(银晓瑞等, 2010)。因此, 充分认识天然草地
植物的养分重吸收率和C、N、P生态化学计量特征,
将为草地生态系统植被限制性元素的判断及其对
环境的适应策略提供参考(庚强, 2005; Hall et al.,
2005), 也将进一步加深我们对植物生理学、种群生
存对策、群落以及生态系统结构稳定性方面的理解
(Koerselman & Meuleman, 1996)。
20世纪中叶以来, 矿物燃料燃烧、化学氮肥的
广泛使用以及畜牧业的迅猛发展等人类活动使得
大气中排放的活性氮化合物激增, 大气氮沉降也迅
速增加, 成为全球关注的热点(Holland et al., 1999)。
人为干扰下的大气氮沉降是全球氮素生物化学循
环的一个重要组成部分, 作为氮素营养源, 大气氮
沉降数量的急剧增加将严重影响陆地生态系统营
养元素的供应状况(王绍强和于贵瑞, 2008), 也影响
植物的养分重吸收率 (van Heerwaarden et al.,
2003)。另外, 生态系统中的磷素为沉积型循环, 由
于人类不平衡施肥以及人类对自然资源的不合理
利用, 使得土壤磷素逐渐缺乏(黄国勤等, 2004), 进
一步加剧了氮沉降的危害(黄菊莹等, 2009), 最终会
明显提高土壤中的N : P, 影响植物群落的养分利用
策略、稳定性和生产力水平。近年来, 采用氮添加
试验模拟大气氮沉降来研究群落结构和生产力响
应特征的报道已有很多(李禄军等, 2009), 但是氮素
添加对植物个体养分利用策略的研究较少(Zhang et
al., 2004; 陈伏生等, 2007), 尤其在生态环境脆弱、
养分匮乏的黄土高原地区, 关于氮素添加对天然草
地植物N、P重吸收率及C : N : P化学计量特征的影
响方面的研究还未见报道。群落优势种通常对群落
的结构和环境的形成有明显的控制性作用, 氮素添
加直接影响植物的养分循环(赵琼等, 2010), 改变群
落组成(Huang et al., 2008; Lü et al., 2011)。因此, 本
文通过研究黄土高原天然草地优势种长芒草(Stipa
bungeana)叶片与立枯物中C、N、P含量随不同氮素
施入量的变化特征, 以检验氮沉降对植物N、P重吸
收率的影响, 探索C : N : P化学计量特征与N、P养
分重吸收特征的内在联系, 进一步探讨土壤N、P养
分格局对植物生长的相对限制性作用, 为科学管理
草地提供依据。
1 材料和方法
1.1 研究地概况
研究样地位于甘肃省榆中县兰州大学黄土高
原国际地面气候与环境监测站围封草地(35°57′ N,
104°09′ E)内, 海拔1 965.8 m。该地区地貌为黄土高
原残塬梁峁沟壑, 属大陆性半干旱气候, 年降水量
382 mm, 年平均气温6.7 ℃, 年蒸发量1 343 mm,
无霜期90–140天。年日照时数约2 600 h。样地植被
属于半干旱典型草原, 主要由长芒草、阿尔泰狗娃
花(Heteropappus altaicus)和赖草(Leymus secalinus)
等组成, 各物种的重要值见表1。土壤类型为灰钙
土, 施氮肥处理前试验地的土壤养分状况见表2。试
验样地原为农田, 1986年撂荒, 已基本恢复到天然
植被, 2005年10月设置围栏对草地进行围封(Li et
al., 2008)。


表1 试验地群落的物种组成及其重要值
Table 1 Species composition and its importance value of
community in experimental site
物种
Species
重要值
Importance value
长芒草 Stipa bungeana 0.401
赖草 Leymus secalinus 0.181
阿尔泰狗娃花 Heteropappus altaicus 0.196
米口袋 Gueldenstaedtia verna 0.069
黄花蒿 Artemisia annua 0.073
重要值= (相对密度+相对高度+相对盖度)/3
Importance value = (relative density + relative height + relative
coverage)/3

安卓等: 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及 C:N:P 化学计量特征的影响 803

doi: 10.3724/SP.J.1258.2011.00801
表2 氮素添加前土壤的养分状况
Table 2 Soil nutrient status before N addition
土层
Soil layer (cm)
有机碳
Organic carbon (%)
全氮
Total nitrogen (%)
全磷
Total phosphorus (%)
全钾
Total potassium (%) pH
0–10 0.791 0.094 0.066 1.907 8.39
10–20 0.727 0.089 0.066 1.882 8.44
20–40 0.679 0.081 0.068 1.835 8.42


1.2 试验设计和样品采集
在地势平缓、坡向一致的地段, 设置4个氮肥处
理, 分别为N0 (0 g N·m–2·a–1)、N1 (4.6 g N·m–2·a–1)、
N2 (9.2 g N·m–2·a–1)和N3 (13.8 g N·m–2·a–1), 小区面
积4 m × 5 m, 每一处理5个重复, 共计20个小区, 完
全随机排列。氮肥选用尿素, 施加时间为2009年6月
初。尿素溶解于5 L自来水中, 用洒水壶均匀地喷洒
在小区内, N0处理只浇水。于2009年8月下旬和9月中
旬, 在每个小区内选择生长均一的长芒草植株, 收
获地上组织, 实验室内分离活体和立枯物后于105
℃杀青30 min, 65 ℃烘干至恒重(Lü & Han, 2010)。
1.3 室内测定
烘干植物样品粉碎后过0.5 cm筛, 装入棕色磨
口瓶, 用于养分分析。样品经开氏法消化(0.200 0 g
样品, 98%的H2SO4 10 mL, 催化剂(K2SO4 : CuSO4 =
10 : 1) 3 g)后, 用FIAstar 5000流动注射分析仪
(FOSS, Sweden)测定N和P含量; K2Cr2O7容量法测
定C含量(董鸣, 1997)。
1.4 数据处理
C、N、P含量以及C : N、C : P、N : P化学计量
比中的C、N、P采用质量百分比表示。植物N、P
养分重吸收率的计算方法如下:
N (P)重吸收率(%) = (植物生长旺季活体叶片N
(P)含量–立枯物N (P)含量)/植物生长旺季活体叶片
N (P)含量× 100 (Yuan et al., 2005a; 陈伏生等, 2007;
Huang et al., 2008; 阎恩荣等, 2010)
数据采用SPSS 16.0软件进行统计分析, 选用
单因素方差分析判断处理间各指标的差异, 选用配
对 t检验判断叶片和立枯物各指标的差异。用
Microsoft Excel 2003制图。
2 结果和分析
2.1 长芒草叶片和立枯物的C、N、P含量
氮素添加显著增加了长芒草叶片的C、N含量(p
< 0.05) (图1), C含量变幅为45.06%–48.35%, N3处


图1 氮素添加对长芒草叶片和立枯物碳、氮(N)、磷含量的
影响(平均值±标准误差)。N0、N1、N2和N3指氮素添加量
分别为0、4.6、9.2、13.8 g N·m–2·a–1。不同小写字母表示不
同处理间差异显著(p < 0.05)。*表示叶片与立枯物间差异显
著(p < 0.05)。
Fig. 1 Effects of nitrogen (N) addition on carbon (C), N and
phosphorus (P) contents of leaves and standing litter of Stipa
bungeana (mean ± SE). N0, N1, N2 and N3 indicate that
nitrogen addition were 0, 4.6, 9.2 and 13.8 g N·m–2·a–1,
respectively. Different small letters indicate significant
difference between treatments at p < 0.05. * indicates
significant difference between leaves and standing litter at p <
0.05.

理的最高, N0处理的最低; N含量变幅为2.80%–
4.13%, 高N (N3)处理的是N0的1.47倍; 氮素添加
对长芒草叶片P含量没有显著影响(图1)。氮素添加
对立枯物C含量没有显著影响, N和P含量都显著增
804 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (8): 801–807

www.plant-ecology.com


图2 氮素添加对长芒草氮、磷重吸收率的影响(平均值±标
准误差)。N0、N1、N2和N3指氮素添加量分别为0、4.6、9.2、
13.8 g N·m–2·a–1。不同小写字母表示不同处理间差异显著(p
< 0.05)。*表示N与P重吸收率间差异显著(p < 0.05)。
Fig. 2 Effects of nitrogen (N) addition on N, P resorption
efficiencies of Stipa bungeana (mean ± SE). N0, N1, N2 and N3
indicate that nitrogen addition were 0, 4.6, 9.2 and 13.8 g
N·m–2·a–1, respectively. Different small letters indicate significant
difference between treatments at p < 0.05. * indicate significant
difference between N and P resorption efficiencies at p < 0.05.


加, N3和N2处理的N和P含量都显著高于N0处理
(p < 0.05), N3处理的N和P含量分别是N0处理的1.68
和1.43倍, N1和N0以及N2和N3处理间差异不显著。
2.2 长芒草的N、P养分重吸收特征
从图2可以看出, N2和N3处理的长芒草N重吸
收率显著低于N1和N0处理, 但N1和N0处理间没有
显著差异, N0处理的N重吸收率(60.35%)是N3处理
(52.69%)的1.15倍; P重吸收率与N重吸收率具有相
同的变化趋势, 随氮素添加量的增大而逐渐降低。P
重吸收率显著大于N重吸收率。
2.3 长芒草叶片的C : N : P化学计量比
从图3可以看出, 随着氮素添加量的增大, 长
芒草叶片的C : N逐渐降低, N0处理的C : N (16.10 :
1)最高, 显著高于N3 (11.73 : 1)和N2 (12.08 : 1)处理
(p < 0.05); C : P随氮素添加量的增加而升高; N3
(29.01 : 1)、N2 (26.58 : 1)和N1 (22.02 : 1)处理的N :
P都显著高于N0处理(18.25 : 1) ( p < 0.05)。
3 讨论
3.1 氮素添加对植物养分重吸收率的影响
植物的养分重吸收率能反映植物对养分保存、
利用以及对养分贫瘠环境的适应能力(Aerts, 1996;
Yuan et al., 2005b; 李荣华等, 2008)。在阿尔卑斯山
脉地区, 无脉薹草(Carex enervis)的N重吸收利用率
达68% (Schäppi & Körner, 1997), 莎草科植物中P的


图3 氮素添加对长芒草叶片C : N、C : P、N : P的影响(平均
值±标准误差)。N0、N1、N2和N3指氮素添加量分别为0、
4.6、9.2、13.8 g N·m–2·a–1。不同小写字母表示不同处理间差
异显著(p < 0.05)。
Fig. 3 Effects of nitrogen (N) addition on C : N, C : P and N :
P of Stipa bungeana leaves (mean ± SE). N0, N1, N2 and N3
indicate that nitrogen addition were 0, 4.6, 9.2 and 13.8 g
N·m–2·a–1, respectively. Different small letters indicate
significant difference between treatments at p < 0.05.


重吸收利用率高达80% (Smeets, 1980)。本研究中黄
土高原典型草原长芒草的N和P重吸收率分别为
60.35%和71.75%, 略低于上述结果, 明显高于全球
水平的N和P重吸收率(约50%) (黄菊莹等, 2010; Lü
& Han, 2010), 表明长芒草较高的N和P的重吸收率
是保证其在贫瘠的土壤中生存的重要机制。另外,
植物加强对短缺营养元素的吸收能力也是适应养
分贫瘠环境的一种主要策略 (齐泽民和王开运 ,
2007)。本研究中, 随氮素添加量的增大, 长芒草的
叶片N含量显著增加, 与黄菊莹等(2009)研究的氮
添加对羊草N含量影响的结果一致。但是, 随氮素
添加量的增大, 长芒草的N重吸收率逐渐减小, 表
明植物可能存在以下养分利用策略: 环境中养分供
应短缺的情况下, 植物以提高养分重吸收率为其养
安卓等: 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及 C:N:P 化学计量特征的影响 805

doi: 10.3724/SP.J.1258.2011.00801
分利用的主导方式适应环境, 相反, 土壤养分供应
相对富足的情况下, 植物主要以提高养分吸收能力
的方式适应环境。
随着对单个元素研究的深入, 元素之间的耦合
效应也越来越受到重视(陈伏生等, 2007)。陈伏生等
(2007)对城市绿化植物麦冬(Ophiopogon japonicus)
的研究结果表明, 氮素添加(5 g N·m–2)对植物体的P
含量没有影响, 但显著降低了P的重吸收率。本研究
结果与上述报道一致, 随氮素添加量的增加(9.2–
13.8 g N·m–2), 长芒草的P含量无显著变化, 而N、P
重吸收率显著降低, 但具体原因还有待研究。
通常情况下 , 枯落物的N和P含量分别小于
0.70%和0.05%时, 认为N和P被完全重吸收, 分别大
于1.00%和0.08%为被不完全吸收(Killingbeck, 1996),
Kozovits等(2007)发现南非热带P限制的生境中, N
为不完全吸收, P为完全吸收。本研究中长芒草立枯
物的N含量大于1.00% (1.11%–1.87%), P含量小于
0.08% (0.04%–0.06%), 表明长芒草在枯黄前体内的N
没有被完全重吸收, 而P几乎被完全吸收, 这进一步
说明, 黄土高原植物的生长受到的P限制比N强烈。
3.2 氮素添加对植物C、N、P生态化学计量特征的
影响
在长期的进化过程中, 植物逐渐发育了较强的
生理生化调节能力(可塑性), 以适应环境因子的波
动(翁恩生和周广胜, 2005)。土壤养分供应状况的改
变, 明显影响植物的光合作用和矿质代谢等过程。
另外, 由于植物体内光合代谢和矿质代谢间的内在
联系, 植物体内C的固定需要大量蛋白酶(N库)的参
与 , 而蛋白酶的装配需要大量核酸的复制(P库)
(Sterner & Elser, 2002), 植物体的C与N, C与P含量
具有明显的相关性, 因此, 植物体的C : N和C : P通
常能反映植物N和P的利用效率, 一定程度上也反
映了土壤中N和P的供应状况。植物在营养元素供应
缺乏的情况下往往具有较高的养分利用效率, 反
之, 营养元素供应充足, 元素利用效率较低(邢雪荣
等, 2000)。本研究结果表明, 长芒草的C : N随氮素
添加量的增加而逐渐降低, 而C : P逐渐升高, 表明
氮素添加改变了土壤的N、P供应状况, 随氮素添加
量的增加, 土壤的N供应相对充足, 而P逐渐表现为
短缺。另外, 植物组织的N : P被广泛应用于植物N、
P相对限制性的诊断 (赵琼和曾德慧 , 2009)。
Koerselman和Meuleman (1996)的研究表明, 植物组
织的N : P小于14时, 植物生长受N限制; 大于16时,
受P限制; 当植物组织的N : P介于14和16之间时,
植物生长受N和P共同限制。本试验中各处理的长芒
草N : P为18.25–29.01, 且随着氮素添加量的增加,
N : P逐渐升高, 表明研究区域土壤磷素供应短缺,
且氮素添加进一步加强了磷素对植物生长的限制。
本研究中没有定量、准确地反映叶片的N : P和养分
限制之间的关系, 要想深入地探索化学计量比值与
N、P的重吸收率之间的可能联系, 还需要进行大量
的研究工作。
致谢 国家重点基础研究发展计划 (2007CB-
108903)、国家科技支撑计划项目(2008BAD95B03)、
国家自然科学基金(31070412)和兰州大学中央高校
基本科研业务费专项资金(lzujbky-2010-154)资助。
参考文献
Aerts R (1996). Nutrient resorption from senescing leaves of
perennials: Are there general patterns? Journal of
Ecology, 84, 597–608.
Cai Y (蔡艳), Zhang Y (张毅), Liu H (刘辉), Zhang XZ (张锡
洲) (2009). Study on C, N, P content in leaf of evergreen
and deciduous trees in evergreen broad-leaved forest at
E’mei Mountain. Journal of Zhejiang Forestry Science
and Technology (浙江林业科技), 29(3), 9–13. (in Chinese
with English abstract)
Chen FS (陈伏生), Hu XF (胡小飞), Ge G (葛刚) (2007). Leaf
N : P stoichiometry and nutrient resorption efficiency of
Ophiopogon japonicus in Nanchang City. Acta
Prataculturae Sinica (草业学报 ), 16(4), 47–54. (in
Chinese with English abstract)
Dong M (董鸣) (1997). Terrestrial Biomes Observation and
Analysis of Survey (陆地生物群落调查观测与分析).
Standards Press of China, Beijing. 152–153. (in Chinese)
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R
(2010). Substantial nutrient resorption from leaves, stems
and roots in a subarctic flora: What is the link with other
resource economics traits? New Phytologist, 186,
879–889.
Geng Q (庚强) (2005). The Study on the Homeostasis and
Growth Rate of a Higher Plant and Their Mechanism (高
等植物内稳性和生长率机理的研究). PhD dissertation,
Gansu Agricultural University, Lanzhou. 2–10. (in
Chinese)
Hall SR, Smith VH, Lytle DA, Leibold MA (2005). Constraints
on primary producer N : P stoichiometry along N : P
supply ratio gradients. Ecology, 86, 1894–1904.
Han WX (韩文轩), Wu Y (吴漪), Tang LY (汤璐瑛), Chen
YH (陈雅涵), Li LP (李利平), He JS (贺金生), Fang JY
806 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (8): 801–807

www.plant-ecology.com
(方精云) (2009). Leaf carbon, nitrogen and phosphorus
stoichiometry across plant species in Beijing and its pe-
riphery. Acta Scientiarum Naturalium Universitatis Pe-
kinensis (北京大学学报(自然科学版)), 45, 855–860. (in
Chinese with English abstract)
Holland EA, Dentene FJR, Braswell BH (1999). Contemporary
and pre-industrial global reactive nitrogen budgets.
Biogeochemistry, 46, 7–43.
Huang GQ (黄国勤), Wang XX (王兴祥), Qian HY (钱海燕),
Zhang TL (张桃林), Zhao QG (赵其国) (2004). Negative
impact of inorganic fertilizes application on agricultural
environment and its countermeasures. Ecology and
Environment (生态环境), 13, 656–660. (in Chinese with
English abstract)
Huang JY (黄菊莹), Yu HL (余海龙), Zhang SX (张硕新), Li
LH (李凌浩) (2010). Study on nutrient resorption trait of
perennial species and its parameters. Journal of Northwest
Forestry University (西北林学院学报), 25, 62–66. (in
Chinese with English abstract)
Huang JY (黄菊莹), Yuan ZY (袁志友), Li LH (李凌浩)
(2009). Changes in [N], [P] and specific leaf area of green
leaves of Leymus chinensis along nitrogen, phosphorus
and water gradients. Chinese Journal of Plant Ecology (植
物生态学报), 33, 442–448. (in Chinese with English
abstract)
Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH (2008).
Changes in nitrogen resorption traits of six temperate
grassland species along a multi-level N addition gradient.
Plant and Soil, 306, 149–158.
Killingbeck KT (1996). Nutrients in senesced leaves: keys to
the search for potential resorption and resorption
proficiency. Ecology, 77, 1716–1727.
Koerselman W, Meuleman AFM (1996). The vegetation N : P
ratio: a new tool to detect the nature of nutrient limitation.
Journal of Applied Ecology, 33, 1441–1450.
Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S,
Franco AC, Goldstein G, Meinzer FC (2007). Nutrient
resorption and patterns of litter production and
decomposition in a Neotropical Savanna. Functional
Ecology, 21, 1034–1043.
Li LJ (李禄军), Zeng DH (曾德慧), Yu ZY (于占源), Ai GY
(艾桂艳), Yang D (杨丹), Mao R (毛瑢) (2009). Effects
of nitrogen addition on grassland species diversity and
productivity in Keerqin Sandy Land. Chinese Journal of
Applied Ecology (应用生态学报), 20, 1838–1844. (in
Chinese with English abstract)
Li RH (李荣华), Wang SL (汪思龙), Wang QK (王清奎)
(2008). Nutrient contents and resorption characteristics in
needles of different age Pinus massoniana (Lamb.) before
and after withering. Chinese Journal of Applied Ecology
(应用生态学报), 19, 1443–1447. (in Chinese with English
abstract).
Li XD, Fu H, Li XD, Guo D, Dong XY, Wan CG (2008).
Effects of land-use regimes on carbon sequestration in the
Loess Plateau, northern China. New Zealand Journal of
Agricultural Research, 51, 45–52.
Li XF, Zheng XB, Han SJ, Zheng JQ, Li TH (2010). Effects of
nitrogen additions on nitrogen resorption and use
efficiencies and foliar litterfall of six tree species in a
mixed birch and poplar forest, northeastern China.
Canadian Journal of Forest Research, 40, 2256–2261.
Lü XT, Cui Q, Wang QB, Han XG (2011). Nutrient resorption
response to fire and nitrogen addition in a semi-arid
grassland. Ecological Engineering, 37, 534–538.
Lü XT, Han XG (2010). Nutrient resorption responses to water
and nitrogen amendment in semi-arid grassland of Inner
Mongolia, China. Plant and Soil, 327, 481–491.
Qi ZM (齐泽民), Wang KY (王开运) (2007). Effects of
Fargesia denudata density on its litterfall production,
nutrient return, and nutrient use efficiency. Chinese
Journal of Applied Ecology ( 应用生态学报 ), 18,
2025–2029. (in Chinese with English abstract)
Schäppi B, Körner CH (1997). In situ effects of elevated CO2
on the carbon and nitrogen status of alpine plants.
Functional Ecology, 11, 290–299.
Smeets N (1980). Mineralstoffverhäiltnisse in einem
Krummseggenrasen (Caricetum curvulae) im
Glocknergebiet. Flora, 170, 51–67.
Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the
Biology of Elements from Molecules to the Biosphere.
Princeton University Press, Princeton.
van Heerwaarden LM, Toet S, Aerts R (2003). Nitrogen and
phosphorus resorption efficiency and proficiency in six
sub-arctic bog species after 4 years of nitrogen
fertilization. Journal of Ecology, 91, 1060–1070.
Wang SQ (王绍强), Yu GR (于贵瑞) (2008). Ecological
stoichiometry characteristics of ecosystem carbon,
nitrogen and phosphorus elements. Acta Ecologica Sinica
(生态学报), 28, 3937–3947. (in Chinese with English
abstract)
Weng ES (翁恩生), Zhou GS (周广胜) (2005). Defining plant
functional types in China for global change studies. Acta
Phytoecologica Sinica (植物生态学报), 29, 81–97. (in
Chinese with English abstract)
Xing XR (邢雪荣), Han XG (韩兴国), Chen LZ (陈灵芝)
(2000). A review on research of plant nutrient use
efficiency. Chinese Journal of Applied Ecology (应用生态
学报), 11, 785–790. (in Chinese with English abstract)
Yan ER (阎恩荣), Wang XH (王希华), Guo M (郭明), Zhong
Q (仲强), Zhou W (周武) (2010). C : N : P stoichiometry
across evergreen broad-leaved forests, evergreen
coniferous forests and deciduous broad-leaved forests in
安卓等: 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及 C:N:P 化学计量特征的影响 807

doi: 10.3724/SP.J.1258.2011.00801
the Tiantong region, Zhejiang Province, eastern China.
Chinese Journal of Plant Ecology (植物生态学报), 34,
48–57. (in Chinese with English abstract)
Yin XR (银晓瑞), Liang CZ (梁存柱), Wang LX (王立新),
Wang W (王炜), Liu ZL (刘钟龄), Liu XP (刘小平)
(2010). Ecological stoichiometry of plant nutrients at
different restoration succession stages in typical steppe of
Inner Mongolia, China. Chinese Journal of Plant Ecology
(植物生态学报), 34, 39–47. (in Chinese with English
abstract)
Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ
(2005a). Soil characteristics and nitrogen resorption in
Stipa krylovii native to northern China. Plant and Soil,
273, 257–268.
Yuan ZY, Li LH, Han XG, Huang JH, Wan SQ (2005b). Foliar
nitrogen dynamics and nitrogen resorption of a sandy
shrub Salix gordejevii in northern China. Plant and Soil,
278, 183–193.
Zeng DH (曾德慧), Chen GS (陈广生) (2005). Ecological
stoichiometry: a science to explore the complexity of
living systems. Acta Phytoecologica Sinica (植物生态学
报), 29, 1007–1019. (in Chinese with English abstract)
Zhang LX, Bai YF, Han XG (2004). Differential responses of
N : P stoichiometry of Leymus chinensis and Carex
korshinskyi to N additions in a steppe ecosystem in Nei
Mongol. Acta Botanica Sinica, 46, 259–270.
Zhao Q (赵琼), Liu XY (刘兴宇), Hu YL (胡亚林), Zeng DH
(曾德慧) (2010). Effects of nitrogen addition on nutrient
allocation and nutrient resorption efficiency in Larix
gmelinii. Scientia Silvae Sinicae (林业科学 ), 46(5),
14–19. (in Chinese with English abstract)
Zhao Q (赵琼), Zeng DH (曾德慧) (2009). Diagnosis methods
of N and P limitation to tree growth: a review. Chinese
Journal of Applied Ecology ( 应用生态学报 ), 28,
122–128. (in Chinese with English abstract)

责任编委: 杨 劼 实习编辑: 黄祥忠