植物碳利用效率(CUE)指净初级生产力与总初级生产力的比率, 它不仅反映了植被生态系统将大气中CO2转化为生物量的能力和固碳潜力, 而且可确定呼吸对植被生产力的影响。CUE是比较不同生态系统碳循环差异的重要参数, 了解生态系统CUE有助于分析陆地生态系统是碳源还是碳汇, 对于预测全球变化和人类干扰对森林碳收支的影响具有重要意义。我国在森林CUE研究方面还十分欠缺。该文在介绍森林CUE计算方法和测定技术的基础上, 综述了植被、气象、森林经营等因子对森林CUE的影响, 得出主要结论: (1)关于不同森林植被类型CUE变化有两种截然相反的观点, 即: 恒定CUE和变量CUE。越来越多的研究支持第二种观点, 不同生态系统、不同森林类型、不同物种和植物发育阶段的CUE存在较大差异, 森林CUE较灌丛和草地低, 落叶林比混交林和常绿林具有较高的CUE, 热带森林CUE通常低于温带森林, CUE与植被演替和林龄相关, 森林地上、地下部分和不同组织的CUE不同, 以树干为最高; (2)植被的CUE与气温相关, 全球尺度上, 森林植被年平均CUE与年平均气温呈抛物线关系, 温带、寒带、干旱地区植物呼吸的温度适应驱动其较高的CUE; CUE随着降水量的增加而减少, 在水分充足或过剩的地区保持不变; 光照减弱降低维持呼吸系数, 增加生长呼吸系数, 导致植物CUE降低, 生长在高光照下的植物CUE高于低光照下的植物; (3) CO2浓度升高引起植物CUE的升高或降低, 也有人认为CO2浓度升高对森林CUE没有影响, CO2浓度升高对CUE的影响可能取决于树木年龄或基因型; (4)生长在土壤瘠薄、低温、干旱等胁迫环境下的植物CUE通常比生长在适宜环境下的植物具有较大的可塑性, 施肥、灌溉和择伐等管理措施影响森林CUE; (5)植物CUE具有明显的季节变化, 温带森林以春季CUE为最高。建议今后森林CUE研究应着重围绕以下3个关键问题: (1)从不同空间尺度和生态系统层次, 探讨森林CUE的变异特征及其驱动机制; (2)从不同时间尺度, 探讨森林CUE动态过程与机制; (3)森林CUE对气候变化的响应与适应。
Carbon use efficiency (CUE), which is defined as the ratio of net carbon gain to gross carbon assimilation, can be used to assess not only the capacity of forests to transfer carbon from the atmosphere to the terrestrial biomass but also to determine the impact of respiration on productivity in forests. CUE is an important parameter for comparing carbon cycle variability among ecosystems. Understanding such controls on CUE can be helpful in determining whether the terrestrial ecosystem is a carbon source or sink. Forest CUE under different environmental regimes and global change scenarios has recently received increasing attention. This paper introduces the calculation methods of plant CUE and the corresponding measurement techniques, and reviews the research progress in the effects of important factors on forest CUE. The main findings are as follows: (1) Some studies proposed that CUE is constant among forests with a possible appropriate universal value of 0.50. However, it is doubtful whether this conservative CUE assumption regardless of ecosystem types is globally applicable. CUE can vary with ecosystems, forest types, species, and ontogeny of plant development. Forest ecosystems have a lower CUE than shrub and herbaceous ecosystems. CUE is significantly higher in deciduous than in mixed and evergreen forests. Tropical forests often have lower CUE than temperate forests. CUE is known to depend on successional stage and stand age. (2) Forest CUE is related to temperature, precipitation, and geographical factors. A parabolic relationship between CUE and annual mean temperature is founded at a global scale. Acclimation of the respiration to temperature contributes to high carbon-use efficiency in seasonally dry vegetation. The CUE decreases with enhanced precipitation and remains unchanged in areas where water availability is in surplus. CUE of plants grown at low light level is low. (3) The elevated CO2 may increase whole- plant respiration, causing CUE to decline. The potential for elevated CO2 to affect CUE may depend on tree age or genotype. (4) Plants grown on the barren soil, and under low temperature and drought conditions, may have larger changes in CUE than plants grown under near-optimal conditions. Forest managements such as irrigation, fertilization, and selective logging can affect ecosystem CUE. (5) CUE varies widely with the changing seasons within a year. The maximum of CUE in temperate forests usually occurs in spring. The future research should be focused on: (1) exploring the spatial variations in forest CUE and their driving mechanism from tissues, individual plant, community, to ecosystem scales; (2) analyzing the processes and mechanism in CUE of different vegetation types at temporal scales by combining the plant eco-physiology and biology with eddy covariance technique and modeling approaches; and (3) evaluating the response and adaption of forest CUE to climate change by synergistic experiments of multi-factors.
全 文 :植物生态学报 2013, 37 (11): 1043–1058 doi: 10.3724/SP.J.1258.2013.00108
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-05-27 接受日期Accepted: 2013-10-05
* 通讯作者Author for correspondence (E-mail: wzzhu@imde.ac.cn)
森林碳利用效率研究进展
朱万泽*
中国科学院水利部成都山地灾害与环境研究所, 成都 610041
摘 要 植物碳利用效率(CUE)指净初级生产力与总初级生产力的比率, 它不仅反映了植被生态系统将大气中CO2转化为生
物量的能力和固碳潜力, 而且可确定呼吸对植被生产力的影响。CUE是比较不同生态系统碳循环差异的重要参数, 了解生态
系统CUE有助于分析陆地生态系统是碳源还是碳汇, 对于预测全球变化和人类干扰对森林碳收支的影响具有重要意义。我国
在森林CUE研究方面还十分欠缺。该文在介绍森林CUE计算方法和测定技术的基础上, 综述了植被、气象、森林经营等因子
对森林CUE的影响, 得出主要结论: (1)关于不同森林植被类型CUE变化有两种截然相反的观点, 即: 恒定CUE和变量CUE。越
来越多的研究支持第二种观点, 不同生态系统、不同森林类型、不同物种和植物发育阶段的CUE存在较大差异, 森林CUE较
灌丛和草地低, 落叶林比混交林和常绿林具有较高的CUE, 热带森林CUE通常低于温带森林, CUE与植被演替和林龄相关,
森林地上、地下部分和不同组织的CUE不同, 以树干为最高; (2)植被的CUE与气温相关, 全球尺度上, 森林植被年平均CUE
与年平均气温呈抛物线关系, 温带、寒带、干旱地区植物呼吸的温度适应驱动其较高的CUE; CUE随着降水量的增加而减少,
在水分充足或过剩的地区保持不变; 光照减弱降低维持呼吸系数, 增加生长呼吸系数, 导致植物CUE降低, 生长在高光照下
的植物CUE高于低光照下的植物; (3) CO2浓度升高引起植物CUE的升高或降低, 也有人认为CO2浓度升高对森林CUE没有影
响, CO2浓度升高对CUE的影响可能取决于树木年龄或基因型; (4)生长在土壤瘠薄、低温、干旱等胁迫环境下的植物CUE通常
比生长在适宜环境下的植物具有较大的可塑性, 施肥、灌溉和择伐等管理措施影响森林CUE; (5)植物CUE具有明显的季节变
化, 温带森林以春季CUE为最高。建议今后森林CUE研究应着重围绕以下3个关键问题: (1)从不同空间尺度和生态系统层次,
探讨森林CUE的变异特征及其驱动机制; (2)从不同时间尺度, 探讨森林CUE动态过程与机制; (3)森林CUE对气候变化的响应
与适应。
关键词 碳利用效率, 气候因子, 森林经营, 森林植被, 测定方法, 土壤营养
Advances in the carbon use efficiency of forest
ZHU Wan-Ze*
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Abstract
Carbon use efficiency (CUE), which is defined as the ratio of net carbon gain to gross carbon assimilation, can be
used to assess not only the capacity of forests to transfer carbon from the atmosphere to the terrestrial biomass but
also to determine the impact of respiration on productivity in forests. CUE is an important parameter for compar-
ing carbon cycle variability among ecosystems. Understanding such controls on CUE can be helpful in determin-
ing whether the terrestrial ecosystem is a carbon source or sink. Forest CUE under different environmental re-
gimes and global change scenarios has recently received increasing attention. This paper introduces the calcula-
tion methods of plant CUE and the corresponding measurement techniques, and reviews the research progress in
the effects of important factors on forest CUE. The main findings are as follows: (1) Some studies proposed that
CUE is constant among forests with a possible appropriate universal value of 0.50. However, it is doubtful
whether this conservative CUE assumption regardless of ecosystem types is globally applicable. CUE can vary
with ecosystems, forest types, species, and ontogeny of plant development. Forest ecosystems have a lower CUE
than shrub and herbaceous ecosystems. CUE is significantly higher in deciduous than in mixed and evergreen
forests. Tropical forests often have lower CUE than temperate forests. CUE is known to depend on successional
stage and stand age. (2) Forest CUE is related to temperature, precipitation, and geographical factors. A parabolic
relationship between CUE and annual mean temperature is founded at a global scale. Acclimation of the respira-
tion to temperature contributes to high carbon-use efficiency in seasonally dry vegetation. The CUE decreases
1044 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (11): 1043–1058
www.plant-ecology.com
with enhanced precipitation and remains unchanged in areas where water availability is in surplus. CUE of plants
grown at low light level is low. (3) The elevated CO2 may increase whole-plant respiration, causing CUE to de-
cline. The potential for elevated CO2 to affect CUE may depend on tree age or genotype. (4) Plants grown on the
barren soil, and under low temperature and drought conditions, may have larger changes in CUE than plants
grown under near-optimal conditions. Forest managements such as irrigation, fertilization, and selective logging
can affect ecosystem CUE. (5) CUE varies widely with the changing seasons within a year. The maximum of
CUE in temperate forests usually occurs in spring. The future research should be focused on: (1) exploring the
spatial variations in forest CUE and their driving mechanism from tissues, individual plant, community, to eco-
system scales; (2) analyzing the processes and mechanism in CUE of different vegetation types at temporal scales
by combining the plant eco-physiology and biology with eddy covariance technique and modeling approaches;
and (3) evaluating the response and adaption of forest CUE to climate change by synergistic experiments of
multi-factors.
Key words carbon use efficiency, climatic factor, forest management, forest vegetation, measurement tech-
nique, soil nutrition
植物碳利用效率(carbon use efficiency, CUE)指
净初级生产力(net primary production, NPP)与总初
级生产力(gross primary production, GPP)的比率
(Chambers et al., 2004), 它不仅反映了植被生态系
统将大气中的CO2转化为生物量的能力和固碳潜力
(Gifford, 2003; Chambers et al., 2004; DeLucia et al.,
2007; Ise et al., 2010; Manzoni et al., 2012), 而且可
确定呼吸对植被生产力的影响(Kira & Shidei, 1967;
Ryan et al., 1997)。CUE是植被生态系统的一个重要
功能参数, 是比较不同生态系统碳循环差异的重要
参数(Ryan et al., 1997; Amthor, 2000), 也是分析生
态系统碳通量和碳分配模式的一个重要指标
(DeLucia et al., 2007), 是影响陆地生态系统碳储存
的一个关键控制因素(Allison et al., 2010; Ise et al.,
2010; Manzoni et al., 2012), 能够将生态系统总初级
生产力与生态系统净交换的预测联系起来
(Zanotelli et al., 2012)。该指标具有直观性, 不同森
林类型间容易比较, 适用于器官、个体、群落不同
层次和不同时间尺度, 且常用于植被模型参数中
(Campioli et al., 2011)。高的CUE表示单位固碳的生
长转移较高, 生物固碳潜力较大。了解生态系统
CUE对于全球变化研究有着重要意义(DeLucia et
al., 2007), 有助于分析陆地生态系统是碳源还是碳
汇(Lindroth et al., 1998), 也有助于理解和预测全球
变化和人类干扰下生态系统的响应和功能变化
(Mooney, 1991), 已引起生态系统碳循环和全球变
化研究者的广泛关注(Malhi et al., 2009)。
近年来, 国外学者开展了大量的森林CUE研
究, 涉及区域、群落、种群、组织等不同空间尺度,
以及季节、年、生长发育阶段等不同时间尺度。但
是总体来讲, 目前森林CUE研究的深度和广度还有
待于进一步扩展, 我国这方面的研究还十分缺乏。
本文综述了国内外森林CUE的计算方法、测定方法
及其影响因子, 并提出了未来研究有待解决的关键
问题, 以期为今后森林CUE研究提供参考和借鉴。
1 森林CUE的计算方法
森林CUE主要是根据生物计量法、涡度相关法
观测结果进行计算, 也可结合森林呼吸构成(生长
呼吸和维持呼吸)及其与树木生长速率、生物量的关
系进行估算。根据研究尺度, CUE可划分为组织(器
官)、个体、群落或生态系统等不同层次的CUE。根
据生物计量方法测定结果, 可以计算组织(器官)
CUE (CUEi)、树木个体和群落的CUE (Curtis et al.,
2005)。
NPP = NPPw + NPPb + NPPl + NPPfr
Ra = Rr + Rb + Rl + Rw
i
i
i i
NPPCUE
NPP R
= +
a
NPPCUE
NPP R
= +
式中: NPPw、NPPb、NPPl、NPPfr分别为干木材、
枝条、叶片和细根的净初级生产力; Rr、Rw、Rb、
Rl分别为根系、干木材、枝条和叶片的呼吸碳消耗,
Ra为自养呼吸。NPPi和Ri分别为组织(器官)的净初
级生产力和呼吸消耗。
根据涡度相关微气象观测结果, 生态系统CUE
(CUEe)(Curtis et al., 2005)为:
朱万泽: 森林碳利用效率研究进展 1045
doi: 10.3724/SP.J.1258.2013.00108
( )e cd cn
NEECUE
F F
= +∑
式中: NEE为净生态系统碳交换量(net ecosystem
exchange), ( )cd cnF F+∑ 为涡度相关白天测定的每
0.5 h生态系统CO2通量(Fcd)的年合计与基于夜间
CO2通量(Fcn)估算的生态系统年呼吸量之和。
CUE描述了光合作用和呼吸作用之间的关系,
森林总初级生产力(GPP)包括净初级生产力和自养
呼吸Ra (包括生长呼吸和维持呼吸)(Ogawa & Ta-
kano, 1997; Waring et al., 1998)。
aGPP NPP R= +
1 aRNPPCUE
GPP GPP
= = −
Ra可表示为特殊呼吸速率r和地上生物量Wa的
函数, 而GPP可表示为总光合速率a和叶片生物量
Wl的函数, CUE (Ogawa, 2009, 2011)可以表示为:
11 1
/
a
l l a
rW rCUE
aW a W W
= − = −
因此, CUE主要取决于r/a和1/(Wl/Wa)两个比率,
主要与树木生理特性和生物量相关, Wl/Wa 即为林
分叶片生物量比, CUE主要与林分地上生物量相关,
而地上生物量与林龄相关(Ogawa, 2009, 2011)。
植物自养呼吸(Ra)通常分为生长呼吸(growth
respiration, Rg)和维持呼吸(maintenance respiration,
Rm)两部分(Amthor, 1989, 2000; Ryan, 1991)。植物维
持呼吸主要用于维持植物现存结构和细胞活性的
代谢反应, 以使现存植物生物量保持在健康状态;
植物生长呼吸又叫结构呼吸, 主要用于驱动植物新
生物量的生物合成, 在季节性生长的森林中, 通常
认为生长季以外的Rg为0 (Jarvis & Leverenz, 1983;
Ryan, 1991; Amthor, 2000; Mäkelä & Valentine,
2001; Malhi et al., 2009; Niinemets & Anten, 2009;
Clark et al., 2011; Landsberg & Sands, 2011)。Rg与分
配用于生长的固碳如净光合(PSNnet)和生长呼吸系
数rg (Cox, 2001; Clark et al., 2011)相关, PSNnet =
GPP–Rm (Ryan, 1991; Cox, 2001; Piao et al., 2010;
van Oijen et al., 2010; Clark et al., 2011)。
mm
g
net
g
g RGPP
NPP
RGPP
R
PSN
R
r −−=−== 1
( )
g
g
m
g
g
gmm
g
g
gm
r
r
R
r
R
RRR
r
R
GPP
RRGPP
GPP
NPPCUE +
−=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +
−−⎟⎟⎠
⎞
⎜⎜⎝
⎛ +
=−−== γ
γ 1
γ = Rg/Rm, 为生长呼吸与维持呼吸的比率。
g
g
rCUE
CUEr
−−= 1γ
生长呼吸(Rg)也被认为取决于合成转化的生物
量(组织)类型和生长速率, 而维持呼吸(Rm)主要受
温度、化学组成和植物个体大小的影响(Amthor,
2000)。
Ra = Rm + Rg = rm W + rg G
式中, rm为维持呼吸系数, 系维持单位数量现存生
物量所需要的光合产物(碳水化合物)数量; rg为生长
呼吸系数, 系生产单位数量的新生物量所需要的光
合产物(碳水化合物)数量; W为植物现存生物量; G
为一定时期(日、月、季、年等)的生长量(或碳获得)。
为此, 许多研究也将CUE表示为维持呼吸系数(rm)、
生长呼吸系数 (rg)和相对生长速率 (RGR)的函数
(Thornley & Johnson, 1990; van Iersel, 2003; Nemali
& van Iersel, 2004)。
a m g
G GCUE
G R G r W r G
= =+ + +
1 11 1g m m g
Wr r r r
CUE G RGR
= + + = + + ×
GRGR
W
=
2 森林CUE的测定方法
生态系统的碳积累和碳损失速率, 在很大程度
上代表着初级生产力(GPP)和通过自养呼吸(Ra)与
异养呼吸(Rh)释放CO2之间的差异。根据CUE的定
义, 测定森林生态系统的CUE实际上是测定其光合
固碳(如GPP、NPP)和呼吸碳消耗(如Ri、土壤呼吸、
生态系统呼吸)两个组分, 而这两项指标的测定方
法随着生态学、植物生理学等的发展而不断进步。
长期以来, 森林生态系统生产力的测定基于传
统的生物计量法, 通过测定不同时期植物地上、地
下器官生物量, 建立各器官生物量的异速生长方程
式, 估算生态系统的净初级生产力。另外一个估算
森林生态系统净初级生产力的有效方法就是涡度
相关法, 它是唯一可以获取生态系统-大气界面净
1046 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (11): 1043–1058
www.plant-ecology.com
碳通量的方法(Baldocchi et al., 1988, 2001), 通过净
生态系统碳交换(NEE), 可以估算总GPP和生态系
统总呼吸(Re) (Grace et al., 1995; Reichstein et al.,
2005), 该方法的缺点是不能区分森林生态系统碳
平衡的各个组分, 如光合碳分配、组织呼吸和土壤
CO2释放等(Rayment & Jarvis, 1997)。同涡度相关法
比较, 生物计量方法的一个优势就是可以分析生态
系统碳组分构成(Tan et al., 2010), 但是该方法的最
大不确定性是地下根系碳分配, 以及根系生长呼吸
和维持呼吸的预测。采用不同的方法估算的森林生
产力也可能存在较大的变异。例如, Falge等(2002)
常用微气候法估算的北美森林的GPP为900–1 500 g
C·m−2·a−1), 显著低于White等(1999)的模型估算结
果(2 000–2 900 g C·m−2·a −1)。
生态系统呼吸(Re)包括自养呼吸与异养呼吸两
大部分。野外直接测定整株树木的呼吸量十分困难,
由于生态系统内各组分如叶片、干、根系、土壤动
物和微生物之间CO2呼吸释放的空间复杂性和相互
依赖性 , 生态系统呼吸的测定尤为困难(Gifford,
2003)。树木呼吸通常利用个体组织测定数据外推到
群落或生态系统层次(Waring et al., 1998; Curtis et
al., 2005; Kerkhoff et al., 2005)。森林生态系统呼吸
估算的方法主要有: (1)生物计量法, 通过野外测定
不同季节叶片、干、根系等各组分呼吸, 直接估算
森林生态系统呼吸量(Lavigne & Ryan, 1997; War-
ing et al., 1998; Curtis et al., 2005; Kerkhoff et al.,
2005; Cavaleri et al., 2008); (2)基于生物量和生产力
测定结果, 通过GPP和NPP之间的差异进行估算;
(3)微气候法, 基于涡度相关夜间CO2通量(Fcn)测定
估算生态系统呼吸量; (4)模型估算法, 利用一些生
理参数和经验关系进行估算(Mäkelä et al., 2000),
例如, 通过建立不同植物、不同器官(组织)、不同季
节呼吸的温度敏感性Q10值 (Frantz et al., 2004;
Tjoelker et al., 2008, 2009)或呼吸与组织氮含量的
模型关系(Ryan et al., 1996; Lavigne & Ryan, 1997;
Vose & Ryan, 2002; Reich et al., 2006)来预测不同生
长发育阶段森林的呼吸量。尽管这4种方法都存在
许多不确定性, 如第一种方法中, 植物呼吸速率随
冠层位置、木本组织、叶片和根系而变化(Ryan et
al., 1994), 但是目前还没有比这4种方法更为准确
的估算方法。Canadell等(2000)建议采用多种估算方
法进行比较, 尤其是对较长时间尺度(>1年)森林呼
吸的估算(Ryan et al., 1997; Law et al., 1999; Bolstad
et al., 2004; Wang et al., 2004)。对于同一样地采用
不同方法估算生态系统呼吸, 与其他生态相似样地
进行比较, 并结合野外长期监测, 有利于提高生态
系统呼吸估算的准确性(Curtis et al., 2005)。
植物呼吸的功能模型通常将植物呼吸分解为
生长呼吸和维持呼吸(Amthor, 1989, 1994), 并成为
估算木质组织呼吸的基础 (Sprugel & Benecke,
1991; Sprugel et al., 1995)。估算树干呼吸最广泛应
用的方法就是成熟组织法(Amthor, 1989, 2000), 该
方法认为, 当生长最慢时(冬季、休眠季)测定的成熟
组织呼吸速率代表植物的基本维持呼吸, 可用于估
算生长组织的维持呼吸速率, 总呼吸与维持呼吸之
差即为生长呼吸(Ryan, 1990; Sprugel & Benecke,
1991; Lavigne, 1996; Lavigne & Ryan, 1997; Stock-
fors & Linder, 1998)。然而, 将总呼吸划分为生长呼
吸和维持呼吸依然面临许多困难, 因为生长器官也
包含成熟组织, 而成熟组织的呼吸仅限于维持呼
吸。许多研究提出采用生长呼吸系数估算方法
(Amthor, 1989, 1994; Griffin, 1994), 并结合生长速
率估算植物生长呼吸量。由于维持呼吸速率和生长
呼吸速率存在相关关系(Penning de Vries et al.,
1979; Lavigne, 1988, 1996), Sprugel和 Benecke
(1991)认为, 成熟组织方法预测的生长呼吸比理论
计算的结果高。Griffin (1994)总结不同树种干木材
生长呼吸系数的理论预测值为0.08–0.50, 而成熟组
织方法的预测值为 0.25–0.76 (Lavigne & Ryan,
1997), 因此需要将两者结合应用。Ryan (1991,
1995)和Ryan等(1996)建议使用组织氮含量作为维
持呼吸预测的基础, 以消除维持呼吸与生长呼吸的
相关关系对预测结果的影响。
不同方法估算的森林CUE存在差异。Curtis等
(2005)采用计量生物学方法和微气候方法, 估算美
国北方阔叶林年平均CUE分别为0.42和0.54。因此,
在森林CUE测定中, 需要采取不同的方法进行比较
分析, 以提高估算精度。
3 森林CUE的影响因子
CUE对环境条件和气候变化十分敏感(Brad-
ford & Crowther, 2013)。CUE是总初级生产力、净
初级生产力、呼吸的函数, 因此影响这些指标变化
的因子, 如温度、降水量、光合有效辐射、土壤营
朱万泽: 森林碳利用效率研究进展 1047
doi: 10.3724/SP.J.1258.2013.00108
养等, 同样会影响森林CUE (Cox, 2001; Clark et al.,
2011; Landsberg & Sands, 2011)。CUE随着生态系统
类型、地理位置和气候不同呈现显著的空间变异
(Zhang et al., 2009)。
3.1 植被因子
一些研究认为, 不同物种、不同类型、不同环
境条件下的植被CUE保持恒定(Running & Cough-
lan, 1988; Gifford, 1994, 1995, 2003; Ryan et al.,
1997; Dewar et al., 1998; Goetz & Prince, 1998;
Monje & Bugbee, 1998; Reich et al., 1998a, 1998b;
Ziska & Bunce, 1998), 且在不同CO2浓度和温度水
平下 , 草本植物和木本植物的CUE保持恒定
(Gifford, 1994, 1995; Dewar et al., 1999; Cheng et al.,
2000)。全球森林生态系统CUE可能的适宜值为0.5
(Waring et al., 1998; Gifford, 2003)。Gifford (1994)
的研究表明, 7个物种尽管干物质生产存在显著差
异, 但植物的CUE却相对恒定(大约0.60)。Dewar等
(1998)使用短期碳动态机械模型发现, 不同光照条
件下植物的CUE基本保持恒定。Zha等(2013)对加拿
大不同林龄的北方和温带森林观测表明, 林分地上
部分CUE相对恒定(0.29 ± 0.06), 与林龄和林分物
种组成无相关关系, 支持在北方和北温带森林生产
力模型中恒定的地上CUE假设。保守的森林CUE观
点认为, 呼吸最终取决于光合同化的糖含量, 呼吸
与GPP成线性的同步变化, 尽管GPP随着气候、物
种组成和年龄而变化, 但在不同环境下森林CUE仍
保持不变。许多森林碳循环模型假定, CUE随空间
和时间而保持恒定 (Running & Coughlan, 1988;
Landsberg & Waring, 1997; Potter et al., 1993; Levy
et al., 2004)。
然而, 由于林分结构和树木生理的动态变化,
森林发育过程中CUE保持恒定的观点可能过于简
单化(Medlyn & Dewar, 1999; Mäkelä & Valentine,
2001)。生态系统CUE保守的假说难以得到更多的验
证, 其全球普适性受到普遍的怀疑和争议(Medlyn
& Dewar, 1999; Chapin et al., 2002; Xiao et al., 2003;
DeLucia et al., 2007), 该观点忽略了物种、环境、年
龄等因子对CUE的影响。
不同生态系统、不同森林类型、不同物种的
CUE有所不同 (Ryan et al., 1997, Amthor, 2000;
Cannell & Thornley, 2000; van Iersel, 2003; Albrizio
& Steduto, 2003; DeLucia et al., 2007; Zhang et al.,
2009)。Zhang等(2009)和Piao等(2010)报道了全球尺
度上森林CUE的区域差异, 北方和北部温带地区差
异性较小, 但在南部温带和热带地区差异较大。
Zhang等(2009)使用2000–2003年MODIS数据分析,
结果表明茂密植被的CUE比稀疏植被低, 森林CUE
较灌丛和草地低, 在南半球, 从南纬30°到10°, CUE
降低; 在北半球 , CUE波动较大。Kwon和Larsen
(2013)利用森林资源野外样地调查资料 , 结合
MODIS遥感, 分析了美国东部森林的CUE, 表明森
林CUE随森林类型、气候和地理位置而显著变化,
落叶林比混交林和常绿林具有显著高的CUE, 高纬
度地区森林CUE较高, 支持森林CUE为变量的观
点。Choudhury (2000)对1987–1990年全球陆地植被
的模拟表明, 森林和灌丛的CUE比作物和牧草低
30%, 部分纬度带植被净生产力和CUE年际间变异
幅度达30%–50%。许多研究报道CUE的变化范围为
0.20–0.80 (Cannell & Thornley, 2000; Gifford, 2003;
DeLucia et al., 2007)。Ryan等(1997)报道了Populus
tremuloides、Picea mariana和Pinus banksiana 3个树
种CUE的显著差异。Amthor (2000)建议CUE理论上
的变化幅度为0.20–0.65, van Iersel (2003)对草本植
物的实验也证实了这一结果。Street等(2013)分析了
欧洲亚北极区(European subarctic)植被CUE对环境
变化的响应发现, 高纬度地区的苔藓植物较维管束
植物具有较高的CUE (Amthor, 2000)。当包括苔藓
植物时, 矮灌丛生态系统的CUE为0.58–0.74; 不包
括苔藓植物时, 其CUE预测值为0.47, 接近陆地生
态系统CUE观测的平均值0.52 (Zhang et al., 2009),
表明苔藓植物对于高寒生态系统固碳的重要性。苔
藓植物较高的CUE可能与其没有菌根或根际微生
物等地下碳消耗有关。不同种类苔藓CUE的差异
与其生长环境有关。相对于自然植被, 人工种植的
农作物一般具有较高的CUE (Amthor, 1989)。
Zanotelli等 (2012)测定苹果园的年平均CUE高达
0.71 ± 0.09, 主要与苹果园适宜的生长气温和土壤
营养条件相关。
许多研究表明, 热带森林CUE低于温带森林
(Zhang et al., 2009), 热带森林的 CUE大多在
0.30–0.40之间(Chambers et al., 2004; Malhi et al.,
2009, 2011; Metcalfe et al., 2010; Malhi, 2012), 温带
森林的CUE为0.50左右(Chambers et al., 2004)。Kira
(1978)报道, 马来西亚Pasoh热带森林的CUE为0.35;
1048 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (11): 1043–1058
www.plant-ecology.com
Chambers等 (2004)估算Amazon老龄热带森林的
CUE为0.32; Amthor (2000)估算热带森林平均CUE
为0.26, 而温带森林平均CUE为0.54 (0.28–0.68);
Tan等(2010)采用生物计量法与涡度相关法相结合
的方法, 估算西双版纳热带季雨林的CUE为0.34;
Malhi等(2009)也观测到热带森林低的CUE可能与
热带森林分配较少的碳同化用于生长(Vicca et al.,
2012), 而呼吸消耗较多的碳有关(Chambers et al.,
2004; Huasco et al., 2014)。Waring等(1998)测定12
个温带森林样地的平均CUE为0.47, 且变异幅度较
小。Delucia等(2007)利用1975年以来发表的文献与
数据分析发现, 不同森林类型的CUE为0.23–0.83,
温带落叶林最高, 成熟北方森林最低, 北方针叶林
低的CUE值可能与其休眠季较高的碳消耗用以维
持其休眠季较大的叶片生物量比重(Goulden et al.,
1997; Ryan et al., 1997)有关。
森林地上、地下部分和不同组织的CUE不同,
地上部分通常大于地下部分, 地上部分中树干木材
组织具有较高的CUE (Chambers et al., 2004; Tan et
al., 2010)。Litton等(2007)计算25个森林样地的地下
部分CUE平均为0.41。Chen等(2011)对57个老龄林
或成熟森林样地的分析表明, 森林地下CUE变化幅
度较大, 为0.10–0.87。Ryan等(1997)对加拿大北部
森林生态系统主要树种的年自养呼吸观测表明, 不
同树种地上CUE存在显著差异, 以Populus tremu-
loides为最高(0.61), Picea mariana为最低(0.34)。
Waring等(1998)和Dewar等(1999)基于森林模型研
究 , 估算温带森林地下部分CUE达0.50。Chen等
(2008)报道了杉木(Cunninghamia lanceolata)地下部
分CUE随林龄的增加而降低, 可能与根系生物量增
加引起根系维持呼吸增加有关。Litton和Giardina
(2008)发现, 地下根系CUE随年平均气温有所不同,
温带森林和热带森林地下根系CUE的变异性较小
(0.43–0.54)(Chen et al., 2011)。Tan等(2010)估算西双
版纳热带季雨林叶片、木材组织和根系的CUE分别
为0.33、0.47和0.30。Chambers等(2004)对Amazon
中部热带森林的观测结果表明, 木材组织的CUE为
0.43, 叶片CUE为0.23, 总的地上部分CUE为0.32,
只有30%左右的碳同化用于构建地上新组织, 地下
部分CUE与地上部分相似。Lavigne和Ryan (1997)
报道了3个北方树种干CUE为0.37–0.59, 而20年生
Pinus radiata林分干的CUE为0.63 (Ryan et al.,
1996)。树干生长是森林生态系统碳循环的重要组
分, 同叶片和细根相比, 树干更能长期地储存碳。
分配到木本组织的碳部分用于维持呼吸, 更多的是
转变为新的生物量。分配到树干用于支撑树干生长
和呼吸的碳占森林自养呼吸总量的 10%–42%
(Waring & Schlesinger, 1985; Landsberg & Gower,
1997)。树干CUE表示分配到树干组织、转变为新生
物量的净光合生产部分, 是生态系统有效固碳的重
要指示剂(Ryan et al., 1994, 1996)。气候变化和管理
措施影响树干的CUE, 从而影响树干生物量生产
(Ryan et al., 1994, 1996; Ryan, 1995)。
3.2 温度
植被CUE与气温变化密切相关(Atkin et al.,
2005; Zhang et al., 2009), 温度对森林CUE的影响已
引起广泛的关注(Marthews et al., 2012)。Piao等
(2010)研究表明, 在全球尺度上, 森林植被年平均
CUE与年平均气温呈抛物线关系 (parabolic rela-
tionship)。Zhang等(2009)对全球生态系统NPP/GPP
比率(即CUE)空间模式及其影响因子分析表明, 在
年平均气温–20–10 ℃范围内 , 随着温度的升高 ,
生态系统CUE呈降低趋势; 在全球尺度上, 同一生
态系统CUE随年平均气温和降水量变化显示相似
的变化趋势。温度变化影响光合作用与呼吸作用的
比率, 从而影响森林CUE (Giardina et al., 2003)。植
物呼吸对温度升高的敏感性要高于GPP (Wood-
well, 1990; Curtis et al., 2005)。许多生态系统对气候
变化的响应模型表明, 随着温度的上升, CUE降低
(Ryan et al., 1996)。Piao等(2010)分析表明, 全球尺
度上森林年呼吸量随年平均气温的增加而增加, 在
年平均气温11℃左右的温带地区, 森林呼吸占GPP
的比率最低。在年平均气温低于11℃的区域, 植物
呼吸与GPP的比率随气温的升高而减少; 而在年平
均气温高于11℃的地区, 植物呼吸与GPP的比率随
着温度的升高而增加。寒带地区植物生长受短的生
长季的限制, 温度的升高伴随着生长季的延长, 可
能引起植被GPP的显著增加(Piao et al., 2007), 但由
于呼吸的温度适应, 植物呼吸消耗的增加较为缓慢
(Atkin et al., 2008; Maseyk et al., 2008)。
森林生产力、呼吸和CUE受随海拔变化而变化
的许多因子的影响, 如气候、森林类型、物种组成
和冠层结构等(Friend & Woodward, 1990; Malhi &
Grace, 2000; Raich et al., 2006; Landsberg & Sands,
朱万泽: 森林碳利用效率研究进展 1049
doi: 10.3724/SP.J.1258.2013.00108
2011)。许多研究表明, 区域尺度上, 植被CUE随海
拔的增加而增加(Zhang et al., 2009; Piao et al.,
2010; Zach et al., 2010)。Enquist等(2007)利用全球生
物量和生长数据发现, 植物CUE随着海拔增加而增
加, 从海平面的0.30增加到海拔1 000 m的0.60, 暗
示CUE与气温直接或间接的相关关系。然而 ,
Marthews等(2012)对Andes-Amazon 6个热带森林样
地碳平衡模拟表明, 随着海拔和温度的变化, 森林
CUE并未表现出一致的趋势, 而是均接近中度值
0.5, 主要与森林冠层内生长呼吸和维持呼吸之间
的平衡有关。
植物呼吸的温度适应影响植被CUE变化。许多
研究证实, 生长在温度较低的温带、寒带树种的叶
片呼吸具有温度适应现象(temperature acclimation)
(Atkin et al., 2000; Bolstad et al., 2003; Gifford,
2003), 随着温度的升高叶片呼吸速率快速下降。生
长在高纬度的植物基础呼吸随生长温度的增加而
下降, 而呼吸的温度敏感性指标Q10变化较小或者
没有变化 (Arnone & Körner, 1997; Xiong et al.,
2000; Atkin et al., 2006; Dillaway & Kruger, 2011)。
在寒带地区, 森林生长受短的生长季限制, 年平均
气温的升高伴随着生长季的延长, 可能引起植被
GPP的显著增加(Piao et al., 2007), 但是由于呼吸的
温度适应, 植物呼吸消耗的增加幅度较小(Atkin et
al., 2008; Maseyk et al., 2008)。Frantz等(2004)的研
究表明, 温度升高10 ℃, 生长较快的植物呼吸增
加20%–46%, 从而引起CUE的轻微但是永久的变
化, 增加幅度为2%–12%。随着夜间温度的降低, 植
物CUE增加(Dewar et al., 1998; Frantz et al., 2004)。
极端环境下的植被具有较高的CUE, 与湿润和温暖
环境下的植被相比, 干旱和寒冷地区的植被耗费较
少的能量支撑现存生物量, 因而具有较高的碳储存
效率(Cannell, 1989; Ryan et al., 1994; Teskey et al.,
1995)。热带地区气温较高, 植物的生长季较长, 呼
吸消耗高, CUE降低(Delucia et al., 2007)。Maseyk
等(2008)的研究表明, 季节性干旱的Pinus halepen-
sis人工林低的呼吸温度敏感性导致低的叶片呼吸
和干呼吸, 贡献于较高的森林CUE。呼吸温度适应
引起的夏季呼吸速率减少对于维持干旱森林年碳
平衡十分重要。
3.3 降水量
CUE随着降水量的增加而减少, 在水分充足或
过剩的地区保持不变(Delucia et al., 2007)。Zhang等
(2009)的研究表明, 全球尺度上, 在年降水量低于
2 300 mm的范围内, 随着降水量的增加, CUE呈下
降趋势; 当降水量超过2 300 mm时, CUE趋于稳定。
Metcalfe等(2010)分析干旱试验(排除降水量的50%)
对亚马逊东部热带雨林碳循环的影响发现, 与对照
相比, 降水量减少导致生态系统总呼吸和植物总初
级生产力增加, 叶片和根系呼吸增加, 异养呼吸没
有显著差异, 而净初级生产力降低, 从而引起生态
系统CUE降低(0.24 ± 0.04, 对照为0.32 ± 0.04)。在
干旱和寒冷地区, NPP随年降水量和气温的升高呈
线性增加, 但是在湿润和温暖地区, 这种相关关系
减弱 (Lieth, 1975a, 1975b; Gower, 2002)。Smith
(2012)观测了5种落叶树种苗木CUE对降水量增加
和温度升高的响应, 结果表明暗呼吸不受温度升高
的影响, 但是在干旱条件下降低, 暗呼吸速率与光
合速率的平均比率为0.36, 该比率随降水量的增加
而下降, 这种影响随物种和季节而有所差异, 以
Betula populifolia和Ulmus americana对降水量变化
最为敏感, 苗木CUE不受温度升高的响应, 但是对
降水量变化较为敏感, 随着降水量的增加CUE增
加, 暗示苗木对温度变化的适应能力要强于对降水
量增加的适应能力。
3.4 光照
光照是植物光合作用的驱动力, 植物的光合作
用只能在一定辐射范围内进行。光照或者通过光抑
制降低呼吸速率(Sharp et al., 1984; Atkin et al.,
2000), 或者通过增加碳水化合物供应提高呼吸速
率 (Moser et al., 1982; Azcon-Bieto & Osmond,
1983)。Frantz等(2007)对光照、温度和CO2控制试验
下植物CO2交换的观测表明, 随着光照强度的减弱,
维持呼吸系数降低, 而生长呼吸系数增加, 导致植
物CUE降低(Frantz & Bugbee, 2005)。Nemali和van
Iersel (2004)连续测定了不同光照强度下Begonia
semperflorens-cultorum整株植物的CO2交换速率发
现, 植物生长速率随光照强度的增加呈线性增加,
生长在高光照下的植物CUE高于低光照下的植物,
可能与低光照下光合速率较低, 大部分碳水化合物
用于维持呼吸有关; 生长在低光照条件下的植物产
生较少的碳水化合物, 在满足维持呼吸后, 只有小
部分碳水化合物可用于植物生长, 随着光照强度的
增加, 维持呼吸占总呼吸的比率降低, 因而引起
1050 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (11): 1043–1058
www.plant-ecology.com
CUE的增加。
3.5 CO2浓度
CO2浓度升高影响植物的CUE。CO2浓度升高
导致非结构碳水化合物的积累, 可能增加整株植物
的呼吸, 引起CUE的下降(Amthor, 2000)。相反, 在
CO2浓度升高的情况下, 叶片氮和蛋白质含量减少,
也可能降低维持呼吸, 从而增加CUE (Dewar et al.,
1998)。也有研究表明, 在火炬松(Pinus taeda) FACE
试验中 , CO2浓度升高对火炬松CUE没有影响
(Hamilton et al., 2002; Schäfer et al., 2003)。尽管CO2
浓度升高影响GPP和NPP, 但它似乎并不改变植物
碳的分配(DeLucia et al., 2002), 因而对植物呼吸的
影响较小(Schäfer et al., 2003)。在相似的CO2施肥试
验中, CO2升高引起枫香(Liquidambar styraciflua)新
增固碳产物分配到地下细根中的比例增加(Norby et
al., 2002), 细根呼吸增加28% (DeLucia et al., 2005),
从而导致CUE的轻微减少, 对照的CUE为0.52, CO2
施肥试验为0.49 (Delucia et al., 2007)。Cheng等
(2000)对向日葵(Helianthus annus)的CO2控制实验
也表明, CO2升高导致整株植株日光合同化、净初级
生产力和呼吸消耗的同步增加, 但是对呼吸消耗与
光合同化比率没有影响, 整个实验期的NPP:GPP保
持不变。
CO2浓度升高对CUE的影响可能取决于树木年
龄或基因型(Gielen et al., 2005)。在CO2浓度升高的
条件下, 115年生的Picea mariana林分CUE为0.22,
而5年生Populus nigra幼树CUE为0.83 (Delucia et
al., 2007)。CO2浓度升高显著增加Populus ponderosa
幼苗的CUE (Delucia et al., 2007), CO2浓度升高环
境下3年后, 杨属(Populus)的3个模式种(P. alba、P.
nigra和P. euramericana)幼苗的NPP增加21%–36%,
而GPP仅增加5%–19%, 表明CO2浓度升高的条件
下叶片N含量显著减少, 导致自养呼吸的减少, 植
物呼吸占GPP的比重降低(Gielen et al., 2005), 从而
增加CUE (Dewar et al., 1998)。
3.6 土壤营养和管理措施
生长在土壤瘠薄、低温、干旱等胁迫环境下的
植物, CUE通常比生长在适宜环境下的植物具有较
大的可塑性(van Iersel, 2003)。Chambers等(2004)认
为, 生长在营养缺乏地区的森林生物量固碳比重较
大, 而用于生长和功能呼吸的碳相对较少, 因而具
有较高的CUE, 表明CUE受土壤因子如营养和相对
湿度的影响, 其他许多研究也支持该观点(Malhi et
al., 2009; Aragão et al., 2009; Lloyd et al., 2010;
Vicca et al., 2012)。CUE亦受植物功能特性的影响
(Enquist et al., 2007), 而植物功能特性本身受气候
和土壤因子的控制。在N限制下, 生态系统CUE减
少(Fisher et al., 2010)。Vicca等(2012)认为, 营养状
况和光合产物的分配是影响CUE变化的重要驱动
因子。
施肥和灌溉影响森林CUE。Ryan等(1996)对20
年生Pinus radiata人工林的灌溉和施肥试验表明,
灌溉和施肥引起细根生物量和细根呼吸的减少, 森
林CUE从0.31增加到0.47。土壤营养利用效率的增
加可能减少细根的生长, 促进干木材的生产, 增加
地上部分CUE (Valentine & Mäkelä, 2012), 暗示人
为干扰和管理措施增加土壤N或叶片N含量, 至少
可引起地上部分CUE的短暂增加。与此相似, 施肥
降低Eucalyptus saligna林分GPP分配到地下部分的
比例, 引起CUE的轻微增加(Giardina et al., 2003)。
Bown (2007)对土壤氮、磷营养供应对Pinus radiate
无性系碳分配模式影响的观测表明, CUE随营养供
应的增加而增加, 在低营养供应下CUE为0.42, 高
营养供应下为0.51, 表明贫瘠的土壤环境下植物呼
吸将消耗较大比例的碳同化产物。Giardina等(2003)
也观测到施肥的Eucalyptus saligna人工林CUE为
0.53, 比不施肥样地(0.51)略高, 表明CUE随土壤肥
力的增加而增加。也有研究表明, 不同施肥和灌溉
处理均引起火炬松幼龄林GPP和呼吸的同步增加,
因而对CUE没有影响(Lai et al., 2002; Maier et al.,
2004)。相似地, Ryan等(1996)对20年生Pinus radiata
的测定结果表明, 灌溉和施肥等管理措施对地上组
织CUE没有显著影响, 组织CUE为0.43–0.50。
择伐影响森林的CUE。Figueira等(2008)观测了
15%择伐对巴西亚马逊流域热带森林生长的影响,
择伐3年后, 木材的CUE显著增加, 择伐前木材月
CUE为0.04, 择伐后19个月增加为0.09, 可能与大
径级树木(DBH >35 cm)被择伐后, 小树较高的生长
速率和CUE有关, 而热带地区生长的大树可能遭受
碳限制, 其CUE相对较低(Würth et al., 2005)。
4 森林CUE的动态变化
Street等(2013)研究表明, CUE是一个动态参数,
同一群落物种间CUE不同。同一物种, 其CUE随环
朱万泽: 森林碳利用效率研究进展 1051
doi: 10.3724/SP.J.1258.2013.00108
境条件而变化, 同一生态系统种群之间的CUE差异
与其环境适应有关(Zhang et al., 2009; Crowther &
Bradford, 2013; Frey et al., 2013; Zha et al., 2013)。植
物CUE具有明显的季节变化(Arneth et al., 1998)。有
关森林CUE的年际差异及其与环境因子的关系研
究较少(Curtis et al., 2005), 了解CUE的动态变化,
将有助于揭示不同年龄和不同类型森林呼吸的调
节机制。Zhang等(2013)基于MRIS数据和生态系统
生产力模型的研究表明 , 全球陆地生态系统
2000–2009年CUE呈减少趋势, CUE随温度的增加
而降低, 随降水量的增加而增加。在遭受干旱或温
度升高的区域, 植被生态系统呼吸消耗增加, 引起
其净生产力下降。Campioli等(2011)采用生物计量方
法和涡度相关技术, 评价温带山毛榉(Fagus sylva-
tica)林分CUE的时空变化, 以春季CUE为最高, 5月
后快速下降, 叶片、木材CUE的年际差异较大, 上
一年干旱程度、年平均气温可解释年际差异的50%,
木材CUE与上一年平均气温呈负相关关系, 可能由
于在寒冷的年份, 自养呼吸较低引起较高的碳储存
(Ryan, 1991), 碳储存较高的树木有利于次年的生
长, 因而导致较高的CUE; 叶片CUE不受上一年平
均气温的影响, 但随干旱的增强而减小。Zanotelli
等(2012)也观测到人工种植的苹果(Malus domes-
tica)以夏季CUE较高, 可能与夏季果实生物量连续
积累, 而果实等储存器官呼吸消耗较低有关。在短
期尺度如一年内, 碳水化合物储存和植物碳分配的
动态模式可能导致CUE的较大变化(Arneth et al.,
1998)。模拟热带森林的CUE表现出日循环规律, 随
GPP的下降而增加(Marthews et al., 2012)。CUE在生
长季内变化最小 , 但是随着植被演替而变化
(Monteith, 1981; Mäkelä & Valentine, 2001; Malhi et
al., 2009; Landsberg & Sands, 2011), 表明CUE不仅
取决于生长速率, 而且取决于与高生长速率密切相
关的季节性、资源储藏和植物功能特性(如先锋树
种)。森林样地尺度的CUE具有年循环的特征, 一个
季节的碳储存可作为另一个季节的缓冲(Malhi et
al., 1999; Girardin et al., 2014; Huasco et al., 2014;
Malhi et al., 2014)。
森林CUE与植被演替和林龄相关, 随着林龄的
增加而降低(Mäkelä & Valentine, 2001; DeLucia et
al., 2007)。8年生Pinus radiata人工林CUE为0.54
(Arneth et al., 1998), 14年生P. taeda林CUE下降为
0.50 (Kinerson et al., 1977)。Goulden等(2011)发现,
加拿大Picea mariana林地上部分CUE随林龄的增加
而减少。Landsberg和Sands (2011)发现, 干扰后森林
CUE从幼林阶段的0.50下降到成熟森林(>60年)的
0.03。Girardin等(2012)模拟北美原始林1950–2005
年生长变化的结果表明, 森林呼吸变化对净初级生
产力(NPP)具有决定性的影响 , 老龄林的GPP和
NPP较低, 但由于较大的现存生物量, 其呼吸总量
较高, 老龄林GPP的增加不足以补偿呼吸增加的需
要, 因而其CUE较低(0.40), 甚至为负值; 在低到中
等的现存生物量林分中, GPP的增加速率足以补偿
日益增加的呼吸的需要。Kira (1977)报道, 日本富
士山Abies veitchii林分CUE随林分生物量的增加而
连续下降。Ogawa (2011)的研究表明, Chamaecy-
paris obtusa林分生长发育过程中, CUE随着地上生
物量的增加趋于增加, 达到一个峰值后逐渐下降,
幼苗阶段的CUE值为0.28–0.39, 显著低于幼树和成
年树(0.33–0.58), 幼苗阶段低的CUE主要受其较高
的特殊呼吸速率与特殊光合速率的比率影响, 而成
熟林阶段CUE的下降主要受叶片生物量与地上部
分生物量比率降低的影响(Ogawa, 2009)。因此, 在
植被遭受破坏的区域, 种植幼苗对于提高区域的
CUE是一项十分有效的措施。
5 研究展望
越来越多的研究认为, 不同生态系统类型、不
同森林类型、不同物种、不同植物发育阶段的CUE
有所不同(Ryan et al., 1997, Amthor, 2000; Cannell &
Thornley, 2000; Albrizio & Steduto, 2003; van Iersel,
2003; DeLucia et al., 2007; Zhang et al., 2009)。同时,
森林 CUE对环境条件和环境变化十分敏感
(Bradford & Crowther, 2013; Crowther & Bradford,
2013)。森林CUE已受到生态学、碳循环、全球变化
研究的广泛关注和重视, 尤其是近10年来, 国外开
展了大量的不同时空尺度森林CUE变化及其驱动
机制等方面的研究。我国在森林CUE研究上, 仅见
西双版纳热带雨林CUE (Tan et al., 2010)、杉木地下
部分CUE (Chen et al., 2008, 2011)的报道。建议我国
今后从以下几方面加强森林CUE的研究。
5.1 从不同空间尺度和生态系统层次, 探讨森林
CUE的变异特征及其驱动机制。主要包括以下几个
层次: 一是区域尺度。森林CUE受自然(气候和环
1052 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (11): 1043–1058
www.plant-ecology.com
境)和人类活动(森林管理、森林砍伐等)的多重影响,
不同区域各种因子对森林CUE的影响存在很大差
别。采用遥感监测、涡度相关技术、生物计量方法、
长期定位监测等手段相结合, 定量描述寒带、寒温
带、温带、亚热带、热带等不同区域森林CUE的时
空变化特征, 探讨区域尺度森林CUE变化的驱动机
制; 二是生态系统层次。我国森林类型复杂多样,
以气候因子或其交互作用下森林CUE的响应机制
和响应程度为切入点, 比较不同群落结构以及不同
森林类型间CUE时空变异特征; 三是物种层次。从
多时空角度上, 应用多种测定方法, 比较不同区域
主要森林生态系统优势种、建群种的CUE差异, 阐
明不同树种的CUE形成机理, 筛选不同区域适应性
强、CUE高的物种, 为森林植被恢复和林业管理提
供科学依据。植物群落的种间关系、功能群组成, 以
及物种多样性如何影响生态系统CUE, 也是需要进
一步探讨的问题; 四是组织层次。从微观层次探讨
主要森林类型和优势树种地上、地下部分和不同组
织器官的CUE, 及其与森林固碳潜力的关系。
由于不同层次上的CUE涉及不同的生态过程,
不同空间尺度和生态系统层次CUE有何联系? 如
何将个体水平上的CUE通过尺度扩展上推至区域
乃至全球? 也是当前森林CUE面临的重大挑战。
5.2 从不同时间尺度, 探讨森林CUE动态过程与
机制。控制森林CUE的因子往往随时间尺度的变化
而改变, 由于受研究方法和监测技术的限制, 目前
大多数森林CUE研究局限于单站点和短时间范围,
基于长期观测数据分析不同时间尺度(日、月、季节、
年、不同生长阶段等)森林生态系统CUE的变异特
征, 以及对不同气候条件、环境梯度下的森林生态
系统进行对比研究, 是今后森林CUE过程和机制研
究的重点。在不同时间尺度之间, 影响森林CUE的
因子如何转化?其内在机制是什么?都有待于深
入探讨。
5.3 森林CUE对气候变化的响应与适应。全球变化
是综合因素相互作用的结果, 以多因子综合控制试
验为重点, 加强关键气候变化因子交互效应对不同
尺度森林植被CUE的影响研究, 揭示其响应与适应
机理, 为采取相应的对策提供理论依据。在野外条
件下, 有针对性地选择环境因子进行控制试验, 并
长期定位观测, 整合植物CUE对环境变化的响应及
其适应机理, 建立树木组织、森林冠层与生态系统
不同尺度CUE联系机制模型, 了解和预测植物CUE
对全球变化的反馈和适应, 预测未来全球变化对森
林CUE的影响。
基金项目 中国科学院知识创新工程重要方向项
目(KZCX2-EW-309)、国家“十二五”科技支撑计划
专题(2011BAC09B04-02-04)和国家自然科学基金
(30872017)。
参考文献
Albrizio R, Steduto P (2003). Photosynthesis, respiration and
conservative carbon use efficiency of four field grown
crops. Agricultural and Forest Meteorology, 116, 19–36.
Allison SD, Wallenstein MD, Bradford MA (2010).
Soil-carbon response to warming dependent on microbial
physiology. Nature Geoscience, 3, 336–340.
Amthor JS (1989). Respiration and Crop Productivity.
Springer-Verlag, New York.
Amthor JS (1994). Plant respiratory responses to the environ-
ment and their effects on the carbon balance. In: Wilkin-
son RE ed. Plant-Environment Interactions. Marcel Dek-
ker, New York. 501–554.
Amthor JS (2000). The McCree-de Wit-Penning de
Vries-Thornley respiration paradigms: 30 years later. An-
nals of Botany, 86, 1–20.
Aragão LEOC, Malhi Y, Metcalfe DB, Silva-Espejo JE, Jimé-
nez E, Navarrete D, Almeida S, Costa ACL, Salinas N,
Phillips OL, Anderson LO, Alvarez E, Baker TR, Gon-
calvez PH, Huamán-Ovalle J, Mamani-Solórzano M,
Meir1 P, Monteagudo A, Patiño S, Peñuela MC, Prieto A,
Quesada CA, Rozas-Dávila A, Rudas A, Silva JA Jr,
Vásquez R (2009). Above- and below-ground net primary
productivity across ten Amazonian forests on contrasting
soils. Biogeosciences, 6, 2759–2778.
Arneth A, Kelliher FM, McSeveny TM, Byers JN (1998). Net
ecosystem productivity, net primary productivity and
ecosystem carbon sequestration in a Pinus radiata planta-
tion subject to soil water deficit. Tree Physiology, 18,
785–793.
Arnone JA, Körner C (1997). Temperature adaptation and ac-
climation potential of leaf dark respiration in two species
of Ranunculus from warm and cold habitats. Arctic and
Alpine Research, 29, 122–125.
Atkin OK, Atkinson LJ, Fisher RA, Campbell CD, Castells JZ,
Pitchford JW, Woodward FI, Hurry V (2008). Using tem-
perature-dependent changes in leaf scaling relationships to
quantitatively account for thermal acclimation of respira-
tion in a coupled global climate-vegetation model. Global
Change Biology, 14, 2709–2726.
Atkin OK, Bruhn D, Hurry VW, Tjoelker MG (2005). The hot
and the cold: unravelling the variable response of plant
respiration to temperature. Functional Plant Biology, 32,
朱万泽: 森林碳利用效率研究进展 1053
doi: 10.3724/SP.J.1258.2013.00108
87–105.
Atkin OK, Evans JR, Ball MC, Lumbers H, Pons TL (2000).
Leaf respiration of snow gum in the light and dark: inter-
actions between temperature and irradiance. Plant Physi-
ology, 122, 915–923.
Atkin OK, Scheurwater I, Pons TL (2006). High thermal ac-
climation potential of both photosynthesis and respiration
in two lowland Plantago species in contrast to an alpine
congeneric. Global Change Biology, 12, 500–515.
Azcón-Bieto J, Osmond CB (1983). Relationship between
photosynthesis and respiration: the effect of carbohydrate
status on the rate of CO2 production by respiration in
darkened and illuminated wheat leaves. Plant Physiology,
71, 574–581.
Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running
S, Anthoni P, Bernhofer C, Davis KJ, Evans R, Fuentes J,
Goldstein A, Katul G, Law BE, Lee Z, Malhi Y, Meyers
T, Munger WJ, Oechel W, Paw UKT, Pilegaard K,
Schmid HP, Valentini R, Verma S, Vesala T, Wilson KB,
Wofsy S (2001). FLUXNET: a new tool to study the tem-
poral and spatial variability of ecosystem-scale carbon di-
oxide, water vapor, and energy flux densities. Bulletin of
the American Meteorological Society, 82, 2415–2434.
Baldocchi DD, Hincks BB, Meyers TP (1988). Measuring bio-
sphere-atmosphere exchanges of biologically related gases
with micrometeorological methods. Ecology, 69, 1331–
1340.
Bolstad PV, Davis KJ, Martin J, Cook BD, Wang W (2004).
Component and whole-system respiration fluxes in north-
ern deciduous forests. Tree Physiology, 24, 493–504.
Bolstad PV, Reich P, Lee T (2003). Rapid temperature accli-
mation of leaf respiration rates in Quercus alba and
Quercus rubra. Tree Physiology, 23, 969–976.
Bown HE (2007). Representing Nutrition of Pinus radiata in
Physiological Hybrid Productivity Models. PhD disserta-
tion, University of Canterbury, Christchurch, New Zea-
land.
Bradford MA, Crowther TW (2013). Carbon use efficiency and
storage in terrestrial ecosystems. New Phytologist, 199,
7–9.
Campioli M, Gielen B, Göckede M, Papale D, Bouriaud O,
Granier A (2011). Temporal variability of the NPP:GPP
ratio at seasonal and interannual time scales in a temperate
beech forest. Biogeosciences, 8, 2481–2492.
Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer
JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson
RB, Running SW, Shaver GR, Steffen W, Trumbore SE,
Valentini R, Bond BY (2000). Carbon metabolism of the
terrestrial biosphere: a multi-technique approach for im-
proved understanding. Ecosystems, 3, 115–130.
Cannell MGR (1989). Physiological basis of wood production:
a review. Scandinavian Journal of Forest Research, 4,
459–490.
Cannell MGR, Thornley JHM (2000). Modelling the compo-
nents of plant respiration: some guiding principles. Annals
of Botany, 85, 45–54.
Cavaleri MA, Oberbauer SF, Ryan MG (2008). Foliar and
ecosystem respiration in an old-growth tropical rain forest.
Plant, Cell & Environment, 31, 473–483.
Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N,
dos Santos J, Araújo AC, Kruijt B, Nobre AD, Trumbore
SE (2004). Respiration from a tropical forest ecosystem:
partitioning of sources and low carbon use efficiency.
Ecological Applications, 14, 72–88.
Chapin FS III, Matson PA, Vitousek P, Chapin MC (2002).
Principles of Terrestrial Ecosystem Ecology. Springer-
Verlag, New York.
Chen GS, Yang YS, Gao R, Xie JS, Yang ZJ, Mao YL (2008).
Changes in belowground carbon allocation in a Chinese fir
chronosequence in Fujian Province, China. Journal of
Plant Ecology (Chinese Version), 32, 1285–1293. [陈光
水, 杨玉盛¸ 高人, 谢锦升, 杨智杰, 毛艳玲 (2008).
杉木林年龄序列地下碳分配变化. 植物生态学报, 32,
1285– 1293.]
Chen GS, Yang YS, Guo JF, Xie JS, Yang ZJ (2011). Rela-
tionships between carbon allocation and partitioning of
soil respiration across world mature forests. Plant Ecol-
ogy, 212, 195–206.
Cheng WX, Sims DA, Luo YQ, Coleman JS, Johnson DW
(2000). Photosynthesis, respiration, and net primary pro-
duction of sunflower stands in ambient and elevated at-
mospheric CO2 concentrations: an invariant NPP:GPP ra-
tio? Global Change Biology, 6, 931–941.
Choudhury BJ (2000). Carbon use efficiency, and net primary
productivity of terrestrial vegetation. Advances in Space
Research, 26, 1105–1108.
Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best
MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher
O, Harding RJ, Huntingford C, Cox PM (2011). The Joint
UK Land Environment Simulator (JULES), model de-
scription―Part 2: carbon fluxes and vegetation dynamics.
Geoscientific Model Development, 4, 701–722.
Cox PM (2001). Description of the “TRIFFID” dynamic global
vegetation model. Hadley Centre Technical Note, 24,
1–16.
Crowther TW, Bradford MA (2013). Thermal acclimation in
widespread heterotrophic soil microbes. Ecology Letters,
16, 469–477.
Curtis PS, Vogel CS, Gough CM, Schmid HP, Su HB, Bovard
BD (2005). Respiratory carbon losses and the carbon use
efficiency of a northern hardwood forest, 1999–2003. New
Phytologist, 167, 437–456.
DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M
(2007). Forest carbon use efficiency: Is respiration a con-
stant fraction of gross primary production? Global Change
Biology, 13, 1157–1167.
1054 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (11): 1043–1058
www.plant-ecology.com
DeLucia EH, George K, Hamilton JG (2002). Radiation-use
efficiency of a forest exposed to elevated concentrations
of atmospheric carbon dioxide. Tree Physiology, 22,
1003–1010.
DeLucia EH, Moore DJ, Norby RJ (2005). Contrasting re-
sponses of forest ecosystems to rising atmospheric CO2:
implications for the global C cycle. Global Biogeo-
chemical Cycles, 19, GB3006. doi: 10.1029/2004GB-
002346.
Dewar RC, Medlyn BE, McMurtrie RE (1998). A mechanistic
analysis of light and carbon use efficiencies. Plant, Cell &
Environment, 21, 573–588.
Dewar RC, Medlyn BE, McMurtrie RE (1999). Acclimation of
the respiration/photosynthesis ratio to temperature: in-
sights from a model. Global Change Biology, 5, 615– 622.
Dillaway DN, Kruger EL (2011). Leaf respiratory acclimation
to climate: comparisons among boreal and temperate tree
species along a latitudinal transect. Tree Physiology, 31,
1114–1127.
Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy
MC, Price CA (2007). A general integrative model for
scaling plant growth, carbon flux, and functional trait
spectra. Nature, 449, 218–222.
Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Ber-
bigier P, Bernhofer C, Burba G, Clement R, Davis KJ,
Elbers JA, Goldstein AH, Grelle A, Granier A,
Guömundsson J, Hollinger D, Kowalski AS, Katul G, Law
BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel
W, Paw UKT, Pilegaard K, Rannik U, Rebmann C,
Suyker A, Valentini R, Wilson K, Wofsy S (2002). Sea-
sonality of ecosystem respiration and gross primary pro-
duction as derived from FLUXNET measurements. Agri-
cultural and Forest Meteorology, 113, 53–74.
Figueira AMeS, Miller SD, de Sousa CAD, Menton MC, Maia
AR, da Rocha HR, Goulden ML (2008). Effects of selec-
tive logging on tropical forest tree growth. Journal of
Geophysical Research, 113, G00B05. doi: 10.1029/2007
JG000577.
Fisher JB, Sitch S, Malhi Y, Fisher RA, Huntingford C, Tan
SY (2010). Carbon cost of plant nitrogen acquisition: a
mechanistic, globally applicable model of plant nitrogen
uptake, retranslocation, and fixation. Global Biogeochem-
ical Cycles, 24, GB1014. doi: 10.1029/2009GB003621.
Frantz JM, Bugbee B (2005). Acclimation of plant populations
to shade: photosynthesis, respiration, and carbon use
efficiency. Journal of the American Society for Horticul-
tural Science, 130, 918–927.
Frantz JM, Cometti NN, Bugbee B (2004). Night temperature
has a minimal effect on respiration and growth in rapidly
growing plants. Annals of Botany, 94, 155–166.
Frantz JM, Cometti NN, van Iersel MW, Bugbee B (2007).
Rethinking acclimation of growth and maintenance respi-
ration of tomato in elevated CO2: effects of a sudden
change in light at different temperatures. Journal of Plant
Ecology (Chinese Version)(植物生态学报), 31, 695–710.
Frey SD, Lee J, Melillo JM, Six J (2013). The temperature
response of soil microbial efficiency and its feedback to
climate. Nature Climate Change, 3, 395–398.
Friend AD, Woodward FI (1990). Evolutionary and ecophysi-
ological responses of mountain plants to the growing en-
vironment. Advances in Ecological Research, 20, 59–124.
Giardina CP, Ryan MG, Binkley D, Fownes JH (2003). Pri-
mary production and carbon allocation in relation to nu-
trient supply in a tropical experimental forest. Global
Change Biology, 9, 1438–1450.
Gielen B, Calfapietra C, Lukac M, Wittig VE, de Angelis P,
Janssens IA, Moscatelli MC, Grego S, Cotrufo MF, God-
bold DL, Hoosbeek MR, Long SP, Miglietta F, Polle A,
Bernacchi CJ, Davey PA, Ceulemans R, Scarascia-
Mugnozza GE (2005). Net carbon storage in a poplar
plantation (POPFACE) after three years of free-air CO2
enrichment. Tree Physiology, 25, 1399–1408.
Gifford RM (1994). The global carbon cycle: a viewpoint on
the missing sink. Australian Journal of Plant Physiology,
21, 1–15.
Gifford RM (1995). Whole plant respiration and photosynthesis
of wheat under increased CO2 concentration and tempera-
ture: long-term vs. short-term distinctions for modeling.
Global Change Biology, 1, 385–396.
Gifford RM (2003). Plant respiration in productivity models:
conceptualisation, representation and issues for global ter-
restrial carbon-cycle research. Functional Plant Biology,
30, 171–186.
Girardin CAJ, Silva Espejob JE, Doughty CE, Huasco WH,
Metcalfe DB, Durand-Baca L, Marthews TR, Aragao
LEOC, Farfán-Rios W, García-Cabrera K, Halladay K,
Fisher JB, Galiano-Cabrera DF, Huaraca-Quispe LP, Al-
zamora-Taype I, Eguiluz-Mora L, Salinas-Revilla N, Sil-
man MR, Meir P, Malhi Y (2014). Productivity and car-
bon allocation in a tropical montane cloud forest in the
Peruvian Andes. Plant Ecology & Diversity, doi: 10.1080/
17550874.2013.820222.
Girardin MP, Guo XJ, Bernier PY, Raulier F, Gauthier S
(2012). Changes in growth of pristine boreal North
American forests from 1950 to 2005 driven by landscape
demographics and species traits. Biogeosciences, 9, 2523–
2536.
Goetz SJ, Prince SD (1998). Variability in carbon exchange
and light utilization among boreal forest stands: implica-
tions for remote sensing of net primary production. Cana-
dian Journal of Forest Research, 28, 375–389.
Goulden ML, Daube BC, Fan SM, Sutton DJ, Bazzaz A,
Munger JW, Wofsy SC (1997). Physiological responses of
a black spruce forest to weather. Journal of Geophysical
Research, 102, 28987–28996.
Goulden ML, McMillan AMS, Winston GC, Rocha AV, Ma-
朱万泽: 森林碳利用效率研究进展 1055
doi: 10.3724/SP.J.1258.2013.00108
niesw KL, Hardenw JW, Bond-Lamberty BP (2011). Pat-
terns of NPP, GPP, respiration, and NEP during boreal
forest succession. Global Change Biology, 17, 855–871.
Gower ST (2002). Net primary production. In: Mooney HA,
Canadell JG eds. Encyclopedia of Global Environmental
Change: the Earth System: Biological and Ecological
Dimensions of Global Environmental Change. Wiley,
New York.
Grace J, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda
HS, Nobre C, Moncrieff J, Massheder J, Malhi Y, Wright
I, Gash J (1995). Carbon dioxide uptake by an undisturbed
tropical rain forest in Southwest Amazonia, 1992 to 1993.
Science, 270, 778–780.
Griffin KL (1994). Calorimetric estimates of construction cost
and their use in ecological studies. Functional Ecology, 8,
551–562.
Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC,
Schlesinger WH (2002). Forest carbon balance under ele-
vated CO2. Oecologia, 131, 250–260.
Huasco WH, Girardin CAJ, Doughty CE, Metcalfe DB, Baca
LD, Silva-Espejo JE, Cabrera DG, Aragão LEOC, Davila
AR, Marthews TR, Huaraca-Quispe LP, Alzamora-Taype
I, Mora LE, Farfán-Rios W, Cabrera KG, Halladay K,
Salinas-Revilla N, Silman MR, Meir P, Malhi Y (2014).
Seasonal production, allocation and cycling of carbon in
two mid-elevation tropical montane forest plots in the Pe-
ruvian Andes. Plant Ecology & Diversity. doi: 10.1080/
17550874.2013.819042.
Ise T, Litton CM, Giardina CP, Ito A (2010). Comparison of
modeling approaches for carbon partitioning: impact on
estimates of global net primary production and equilib-
rium biomass of woody vegetation from MODIS GPP.
Journal of Geophysical Research, 115, G04025. doi:
10.1029/2010JG001326.
Jarvis PG, Leverenz JW (1983). Productivity of temperate,
deciduous and evergreen forests. Encyclopedia of Plant
Physiology, 12, 233–280.
Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant
allometry, stoichiometry and the temperature-dependence
of primary productivity. Global Ecology and Biogeogra-
phy, 14, 585–598.
Kinerson RS, Ralston CW, Wells CG (1977). Carbon cycling
in a loblolly pine plantation. Oecologia, 29, 1–10.
Kira T (1977). Production rates. In: Shidei T, Kira T eds. Pri-
mary Productivity of Japanese Forests. University of To-
kyo Press, Tokyo. 101–114.
Kira T (1978). Community architecture and organic matter
dynamics in tropical lowland rain forests of Southeast
Asia with special reference to Pasoh Forest, West Malay-
sia. In: Tomlinson PB, Zimmerman MH eds. Tropical
Trees as Living Systems. Cambridge University Press,
New York. 561–590.
Kira T, Shidei T (1967). Primary production and turnover of
organic matter in different forest ecosystems of the west-
ern Pacific. Japanese Journal of Ecology, 17, 70–87.
Kwon Y, Larsen CPS (2013). Effects of forest type and envi-
ronmental factors on forest carbon use efficiency assessed
using MODIS and FIA data across the eastern USA. In-
ternational Journal of Remote Sensing, 34, 8425–8448.
Lai CT, Katul G, Butnor J, Siqueira M, Ellsworth D, Maier C,
Johnsen K, Mckeand S, Oren R (2002). Modelling the
limits on the response of net carbon exchange to fertiliza-
tion in a southeastern pine forest. Plant, Cell & Environ-
ment, 25, 1095–1119.
Landsberg JJ, Gower ST (1997) Applications of Physiological
Ecology to Forest Management. Academic Press, San
Diego, USA.
Landsberg JJ, Sands P (2011). Physiological Ecology of Forest
Production. Academic Press, Amsterdam, The Nether-
lands.
Landsberg JJ, Waring RH (1997). A generalized model of for-
est productivity using simplified concepts of radiation-use
efficiency, carbon balance and partitioning. Forest Ecol-
ogy and Management, 95, 209–228.
Lavigne MB (1988). Stem growth and respiration of young
balsam fir trees in thinned and unthinned stands. Canadian
Journal of Forest Research, 18, 483–489.
Lavigne MB (1996). Comparing stem respiration and growth of
jack pine provenances from southern and northern loca-
tions. Tree Physiology, 16, 847–852.
Lavigne MB, Ryan MG (1997). Growth and maintenance res-
piration rates of aspen, black spruce and jack pine stems at
northern and southern BOREAS sites. Tree Physiology,
17, 543–551.
Law BE, Ryan MG, Anthoni PM (1999). Seasonal and annual
respiration of a ponderosa pine ecosystem. Global Change
Biology, 5, 169–182.
Levy PE, Cannell MGR, Friend AD (2004). Modelling the
impact of future changes in 811 climate, CO2 concentra-
tion and land use on natural ecosystems and the terrestrial
812 carbon sink. Global Environmental Change, 14,
21–30.
Lieth H (1975a). Modeling the primary productivity of the
world. In: Lieth H, Whittaker RH eds. Primary Productiv-
ity of the Biosphere. Springer-Verlag, Berlin. 237–263.
Lieth H (1975b). Primary productivity in ecosystems: compara-
tive analysis of global patterns. In: van Dobben WH,
Lowe-McConnell RH eds. Unifying Concepts in Ecology.
Publishers and Wageningen Center for Agricultural Pub-
lishing and Documentation, The Hague, The Netherlands.
300–321.
Lindroth A, Grelle A, Morén AS (1998). Long-term measure-
ments of boreal forest carbon balance reveal large tem-
perature sensitivity. Global Change Biology, 4, 443–450.
Litton CM, Giardina CP (2008). Below-ground carbon flux and
partitioning: global patterns and response to temperature.
1056 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (11): 1043–1058
www.plant-ecology.com
Functional Ecology, 22, 941–954.
Litton CM, Raich JW, Ryan MG (2007). Carbon allocation in
forest ecosystems. Global Change Biology, 13, 2089–
2109.
Lloyd J, Patiño S, Paiva RQ, Nardoto GB, Quesada CA, Santos
AJB, Baker TR, Brand WA, Hilke I, Gielmann H,
Raessler M, Luizão FJ, Martinelli LA, Mercado LM
(2010). Optimisation of photosynthetic carbon gain and
within-canopy gradients of associated foliar traits for
Amazon forest trees. Biogeosciences, 7, 1833–1859.
Maier CA, Albaugh TJ, Leeallen H, Dougherty PM (2004).
Respiratory carbon use and carbon storage in mid-rotation
loblolly pine (Pinus taeda L.) plantations: the effect of site
resources on the stand carbon balance. Global Change Bi-
ology, 10, 1335–1350.
Mäkelä A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M,
Ågren GI, Oliver CD, Puttonen P (2000). Process-based
models for forest ecosystem management: current state of
the art and challenges for practical implementation. Tree
Physiology, 20, 289 –298.
Mäkelä A, Valentine HT (2001). The ratio of NPP to GPP:
evidence of change over the course of stand development.
Tree Physiology, 21, 1015–1030.
Malhi Y (2012). The productivity, metabolism and carbon cy-
cle of tropical forest vegetation. Journal of Ecology, 100,
65–75.
Malhi Y, Aragão LEOC, Metcalfe DB, Paiva R, Quesada CA,
Almeida S, Anderson L, Brando P, Chambers JQ, da
Costa ACL, Hutyra LR, Oliveira P, Patiño S, Pyle EH,
Robertson AL, Teixeira LM (2009). Comprehensive as-
sessment of carbon productivity, allocation and storage in
three Amazonian forests. Global Change Biology, 15,
1255–1274.
Malhi Y, Baldocchi DD, Jarvis PG (1999). The carbon balance
of tropical, temperate and boreal forests. Plant, Cell &
Environment, 22, 715–740.
Malhi Y, Doughty C, Galbraith D (2011). The allocation of
ecosystem net primary productivity in tropical forests.
Philosophical Transactions of the Royal Society B, 366,
3225–3245.
Malhi Y, Farfán Amézquita F, Doughty CE, Silva-Espejo JE,
Girardin CAJ, Metcalfe DB, Aragao LEOC, Huaraca-
Quispe LP, Alzamora-Taype I, Eguiluz-Mora L, Marthews
TR, Halladay K, Robertson AL, Fisher JB, Zaragoza-
Castells J, Rojas-Villagra CM, Pelaez-Tapia Y, Salinas N,
Meir P, Phillips OL, Malhi Y (2014). The productivity,
metabolism and carbon cycle of two lowland tropical for-
est plots in SW Amazonia, Peru. Plant Ecology and Di-
versity, 7, 85–105.
Malhi Y, Grace J (2000). Tropical forests and atmospheric
carbon dioxide. Tree, 15, 332–337.
Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI
(2012). Environmental and stoichiometric controls on mi-
crobial carbon-use efficiency in soils. New Phytologist,
196, 79–91.
Marthews TR, Malhi Y, Girardin CAJ, Espejo JES, Aragão
LOC, Metcalfe DB, Rapp JM, Mercado LM, Fisher RA,
Galbraith DR, Fisher JB, Salinas-Revilla N, Friend AD,
Restrepo-Coupe N, Williams RJ (2012). Simulating forest
productivity along a neotropical elevational transect: tem-
perature variation and carbon use efficiency. Global
Change Biology, 18, 2882–2898.
Maseyk K, Grunzweig JM, Rotenberg E, Yakir D (2008). Res-
piration acclimation contributes to high carbon-use effi-
ciency in a seasonally dry pine forest. Global Change Bi-
ology, 14, 1553–1567.
Medlyn BE, Dewar RC (1999). Comment on the article by
R.H. Waring, J.J. Landsberg and M. Williams relating net
primary productivity to gross primary productivity. Tree
Physiology, 19, 137–138.
Metcalfe DB, Meir P, Aragão LE, Lobo-do-Vale R, Galbraith
D, Fisher RA, Chaves MM, Maroco JP, da Costa AC, de
Almeida SS, Braga AP, Gonçalves PH, de Athaydes J, da
Costa M, Portela TT, de Oliveira AA, Malhi Y, Williams
M (2010). Shifts in plant respiration and carbon use effi-
ciency at a large-scale drought experiment in the eastern
Amazon. New Phytologist, 187, 608–621.
Monje O, Bugbee B (1998). Adaptation to high CO2 concentra-
tion in an optimal environment: radiation capture, canopy
quantum yield and carbon use efficiency. Plant, Cell &
Environment, 21, 315–324.
Monteith JL (1981). Climatic variation and the growth of crops.
Quarterly Journal of the Royal Meteorological Society,
107, 749–774.
Mooney HA (1991). Biological response to climate change: an
agenda for research. Ecological Applications, 1, 112–117.
Moser LE, Volenec JJ, Nelson CJ (1982). Respiration, carbo-
hydrate content, and leaf growth of tall fescue. Crop Sci-
ence, 22, 781–786.
Nemali KS, van Iersel MW (2004). Light effects on wax bego-
nia: photosynthesis, growth respiration, maintenance res-
piration, and carbon use efficiency. Journal of the Ameri-
can Society for Horticultural Science, 129, 416–424.
Niinemets Ü, Anten N (2009). Packing the photosynthetic ma-
chinery: from leaf to canopy. Advances in Photosynthesis
and Respiration, 29, 363–399.
Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin
JF, Hansen RA, Cheng WX, Wullschleger SD, Gunderson
CA, Edwards NT, Johnson DW (2002). Net primary pro-
ductivity of a CO2-enriched deciduous forest and the im-
plications for carbon storage. Ecological Applications, 12,
1261–1266.
Ogawa K (2009). Mathematical analysis of change in forest
carbon use efficiency with stand development: a case
study on Abies veitchii Lindl. Ecological Modelling, 220,
1419–1424.
朱万泽: 森林碳利用效率研究进展 1057
doi: 10.3724/SP.J.1258.2013.00108
Ogawa K (2011). Theoretical analysis of change in forest car-
bon use efficiency with stand development: a case study
on hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.)
Endl.) plantation from the seedling stage. Ecological
Modelling, 222, 437–441.
Ogawa K, Takano Y (1997). Seasonal courses of CO2 exchange
and carbon balance in fruits of Cinnamomum camphora.
Tree Physiology, 17, 415–420.
Penning de Vries FWT, Witlage JM, Kremer D (1979). Rates
of respiration and of increase in structural dry matter in
young wheat, ryegrass and maize plants in relation to
temperature, to water stress and to their sugar content.
Annals of Botany, 44, 595–609.
Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007).
Growing season extension and its impact on terrestrial
carbon cycle in the Northern Hemisphere over the past 2
decades. Global Biogeochemical Cycles, 21, GB3018. doi:
10.1029/2006GB002888.
Piao SL, Luyssaert S, Ciais P, Janssens IA, Chen AP, Cao C,
Fang JY, Friedlingstein P, Luo YQ, Wang SP (2010).
Forest annual carbon cost: a global-scale analysis of auto-
trophic respiration. Ecology, 91, 652–661.
Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM,
Mooney HA, Klooster SA (1993). Terrestrial ecosystem
production: a process model based on global satellite and
surface data. Global Biogeochemical Cycles, 7, 811–841.
Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM
(2006). Temperature influences carbon accumulation in
moist tropical forests. Ecology, 87, 76–87.
Rayment MB, Jarvis PG (1997). Seasonal variation in carbon
accumulation by a high latitude forest ecosystem.
Phyton-Annales Rei Botanicae, 39, 165–173.
Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006). Uni-
versal scaling of respiratory metabolism, size and nitrogen
in plants. Nature, 439, 457–461.
Reich PB, Walters MB, Ellsworth DS, Vose JM, Violin JC,
Gresham C, Bowman WD (1998a). Relationships of leaf
dark respiration to leaf nitrogen, specific leaf area and leaf
lifespan: a test across biomes and functional groups.
Oecologia, 114, 471–482.
Reich PB, Walters MB, Tjoelker MG, Vanderklein D,
Buschena C (1998b). Photosynthesis and respiration rates
depend on leaf and root morphology and nitrogen concen-
tration in nine boreal tree species differing in relative
growth rate. Functional Ecology, 12, 395–405.
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M,
Berbigier P, Bernhofer C, Buchmann N, Gilmanov T,
Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Ja-
nous D, Knohl A, Laurila T, Lohila A, Loustau D, Mat-
teucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen
J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert
G, Vaccari F, Vesala T, Yakir D, Valentini R (2005). On
the separation of net ecosystem exchange into assimilation
and ecosystem respiration: review and improved algo-
rithm. Global Change Biology, 11, 1424–1439.
Running SW, Coughlan JC (1988). A general-model of forest
ecosystem processes for regional applications: 1. Hydro-
logic balance, canopy gas-exchange and primary produc-
tion processes. Ecological Modelling, 42, 125–154.
Ryan MR (1991). Effects of climate change on plant respira-
tion. Ecological Applications, 1, 157–167.
Ryan MG (1990). Growth and maintenance respiration in stems
of Pinus contorta and Picea engelmannii. Canadian
Journal of Forest Research, 20, 48–57.
Ryan MG (1995). Foliar maintenance respiration of subalpine
and boreal trees and shrubs in relation to nitrogen content.
Plant, Cell & Environment, 18, 765–772.
Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie
RE (1996). Foliage, fine root, woody tissue and stand res-
piration in Pinus radiata in relation to nitrogen status.
Tree Physiology, 16, 333–343.
Ryan MG, Lavigne MB, Gower ST (1997). Annual carbon cost
of autotrophic respiration in boreal forest ecosystems in
relation to species and climate. Journal of Geophysical
Research-Atmospheres, 102, 28871–28883.
Ryan MG, Linder S, Vose JM, Hubbard RM (1994). Dark res-
piration of pines. Ecological Bulletins, 43, 50–63.
Schäfer KVR, Oren R, Ellsworth DS, Lai CT, Herrick JD, Finzi
AC, Richter DD, Katul GG (2003). Exposure to an en-
riched CO2 atmosphere alters carbon assimilation and al-
location in a pine forest ecosystem. Global Change Biol-
ogy, 9, 1378–1400.
Sharp RE, Matthews MA, Boyer JS (1984). Kok effect and the
quantum yield of photosynthesis: light partially inhibits
dark respiration. Plant Physiology, 75, 95–101.
Smith NG (2012). The carbon use efficiency of five deciduous
tree seedlings in response to warming and altered precipi-
tation in a northeastern old-field ecosystem. 97th ESA
(Ecological Society of America) Annual Meeting, Port-
land, USA, August 5–10.
Sprugel DG, Benecke U (1991). Measuring woody tissue res-
piration and photosynthesis. In: Lassoie JP, Hinckley TM
eds. Techniques and Approaches in Forest Tree Ecophysi-
ology. CRC Press, Boca Raton, USA. 329–355.
Sprugel DG, Ryan MG, Brooks JR, Vogt KA, Martin TA
(1995). Respiration from the organ level to the stand. In:
Smith WK, Hinckley TM eds. Resource Physiology of
Conifers: Acquisition, Allocation and Utilization. Aca-
demic Press, San Diego, USA. 255–299.
Stockfors J, Linder S (1998). Effect of nitrogen on the seasonal
course of growth and maintenance respiration in stems of
Norway spruce trees. Tree Physiology, 18, 155–166.
Street LE, Subke JA, Sommerkorn M, Sloan V, Ducrotoy H,
Phoenix GK, Williams M (2013). The role of mosses in
carbon uptake and partitioning in arctic vegetation. New
Phytologist, 199, 163–175.
1058 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (11): 1043–1058
www.plant-ecology.com
Tan Z, Zhang Y, Yu G, Sha L, Tang J, Deng X, Song Q (2010).
Carbon balance of a primary tropical seasonal rain forest.
Journal of Geophysical Research: Atmospheres, 115,
D00H26. doi: 10.1029/2009JD012913.
Teskey RO, Sherff DW, Hollinger DY, Thomas RB (1995).
External and internal factors regulating photosynthesis. In:
Smith WK, Hinckley TM eds. Resource Physiology of
Conifers. Academic Press, New York. 105–140.
Thornley JHM, Johnson IR (1990). Plant and Crop Modelling:
A Mathematical Approach to Plant and Crop Physiology.
Clarendon Press, Oxford.
Tjoelker MG, Oleksyn J, Lorenc-Plucinska G, Reich PB
(2009). Acclimation of respiratory temperature responses
in northern and southern populations of Pinus banksiana.
New Phytologist, 181, 218–229.
Tjoelker MG, Oleksyn J, Reich PB, Zytkowiak R (2008). Cou-
pling of respiration, nitrogen, and sugars underlies con-
vergent temperature acclimation in Pinus banksiana
across wide-ranging sites and populations. Global Change
Biology, 14, 782–797.
Valentine HT, Mäkelä A (2012). Modeling forest stand dy-
namics from optimal balances of carbon and nitrogen.
New Phytologist, 194, 961–971.
van Iersel MW (2003). Carbon use efficiency depends on
growth respiration, maintenance respiration, and relative
growth rate. A case study with lettuce. Plant, Cell & En-
vironment, 26, 1441–1449.
van Oijen M, Shapendonk A, Höglind M (2010). On the rela-
tive magnitudes of photosynthesis, respiration, growth and
carbon storage in vegetation, Annals of Botany, 105,
793–797.
Vicca S, Luyssaert S, Peñuelas J, Campioli M, Chapin FS,
Ciais P, Heinemeyer A, Högberg P, Kutsch WL, Law BE,
Malhi Y, Papale D, Piao SL, Reichstein M, Schulze ED,
Janssens IA (2012). Fertile forests produce biomass more
efficiently. Ecology Letters, 15, 520–526.
Vose JM, Ryan MG (2002). Seasonal respiration of foliage,
fine roots, and woody tissues in relation to growth, tissue
N, and photosynthesis. Global Change Biology, 8, 182–
193.
Wang KY, Kellomaki S, Zha TS, Peltola H (2004). Seasonal
variation in energy and water fluxes in a pine forest: an
analysis based on eddy covariance and an integrated
model. Ecological Modelling, 179, 259–279.
Waring RH, Landsberg JJ, Williams M (1998). Net primary
production of forests: a constant fraction of gross primary
production? Tree Physiology, 18, 129–134.
Waring RH, Schlesinger WH (1985). Forest Ecosystems: Con-
cepts and Management. Academic Press, New York.
White MA, Running SW, Thornton PE (1999). The impact of
growing-season length variability on carbon assimilation
and evapotranspiration over 88 years in the eastern US de-
ciduous forest. International Journal of Biometeorology,
42, 139–145.
Woodwell GM (1990). The effects of global warming. In:
Leggett J ed. Global Warming: The Greenpeace Report.
Cambridge University Press, Cambridge, UK. 116–132.
Würth M, Peláez-Riedl S, Wright S, Körner C (2005).
Non-structural carbohydrate pools in a tropical forest.
Oecologia, 143, 11–24.
Xiao CW, Yuste JC, Janssens IA, Roskams P, Nachtergale L,
Carrara A, Sanchez BY, Ceulemans R (2003). Above- and
below-ground biomass and net primary production in a
73-year old Scots pine forest. Tree Physiology, 23,
505–516.
Xiong FS, Mueller EC, Day TA (2000). Photosynthetic and
respiratory acclimation and growth response of Antarctic
vascular plants to contrasting temperature regimes.
American Journal of Botany, 87, 700–710.
Zach A, Horna V, Leuschner C, Zimmermann R (2010). Pat-
terns of wood carbon dioxide efflux across a 2,000 m ele-
vation transect in an Andean moist forest. Oecologia, 162,
127–137.
Zanotelli D, Montagnani L, Manca G, Tagliavini M (2012). Net
primary productivity, allocation pattern and carbon use
eciency in an apple orchard assessed by integrating
eddy-covariance, biometric and continuous soil chamber
measurements. Biogeosciences Discussions, 9, 14091–
14143.
Zha TS, Barr AG, Bernier PY, Lavigne MB, Trofymow JA,
Amiro BD, Arain MA, Bhatti JS, Black TA, Margolis HA,
McCaughey JH, Xing ZS, van Rees KCJ, Coursolle C
(2013). Gross and aboveground net primary production at
Canadian forest carbon flux sites. Agricultural and Forest
Entomology, 174–175, 54–64.
Zhang YJ, Xu M, Chen H, Adams J (2009). Global pattern of
NPP to GPP ratio derived from MODIS data: effects of
ecosystem type, geographical location and climate. Global
Ecology and Biogeography, 18, 280–290.
Zhang YJ, Yu GR, Yang J, Wimberly MC, Zhang XZ, Tao J,
Jiang YB, Zhu JT (2013). Climate-driven global changes
in carbon use efficiency. Global Ecology and Biogeogra-
phy, doi: 10.1111/geb.12086.
Ziska LH, Bunce JA (1998). The influence of increasing
growth temperature and CO2 concentration on the ratio of
respiration to photosynthesis in soybean seedlings. Global
Change Biology, 4, 637–643.
责任编委: 朴世龙 责任编辑: 王 葳