亚高山森林凋落叶腐殖化是联系植物与土壤碳库和养分库的重要通道, 在冬季可能受到雪被斑块的影响。该文采用凋落物网袋法, 于2012年11月-2013年4月研究了川西亚高山森林不同厚度雪被斑块(厚雪被、中雪被、薄雪被和无雪被)下优势树种岷江冷杉(Abies faxoniana)、方枝柏(Sabina saltuaria)、四川红杉(Larix mastersiana)、红桦(Betula albo-sinensis)、康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)凋落叶在不同雪被关键期(雪被形成期、雪被覆盖期和雪被融化期)的腐殖化特征。结果表明: 亚高山森林冬季不同厚度雪被斑块下6种凋落叶均保持一定程度的腐殖化, 其中红桦凋落叶腐殖化度最大, 达4.45%-5.67%; 岷江冷杉、高山杜鹃、康定柳、四川红杉和方枝柏凋落叶腐殖化度分别为1.91%-2.15%、1.14%-2.03%、1.06%-1.97%、0.01%-1.25%和0.39%-1.21%。凋落叶腐殖质在雪被形成期、融化期和整个冬季累积, 且累积量随雪被厚度减小而增加, 但在雪被覆盖期降解, 且降解量随雪被厚度减小而增大。相关分析结果表明, 亚高山森林凋落叶前期腐殖化主要受凋落叶质量影响, 且与氮和酸不溶性组分呈极显著正相关, 而与碳、磷、水溶性和有机溶性组分呈极显著负相关。表明冬季变暖情景下雪被厚度的减小可能促进亚高山森林凋落叶腐殖化, 但凋落叶腐殖化在不同雪被关键期受雪被斑块和凋落叶质量的调控。
Aims Foliar litter humification is an important ecological process relating to soil carbon and nutrient budget in subalpine forest ecosystems, and the process of foliar litter humification can be affected by various snowpacks with different thicknesses in winter. However, little is known on the effects of snowpack on foliar litter humification. The objective of this study is to explore the effects of snowpack on early foliar litter humification during the first winter in subalpine forest. Methods A field litterbag experiment was conducted in a subalpine forest in southwestern China from November 2012 to April 2013. Air-dried foliar litter of fir (Abies faxoniana), cypress (Sabina saltuaria), larch (Larix mastersiana), birch (Betula albo-sinensis), willow (Salix paraplesia), and azalea (Rhododendron lapponicum) were incubated under snowpacks with varying thicknesses (deep snowpack, medium snowpack, thin snowpack, and no snowpack) due to variations in the canopy openness. Net accumulation of humus carbon, humification degrees, and humification rates were measured at snow formation, snow cover, and snow melt stage as foliar litter humification proceeded. Important findings Significant humification was observed in the six foliar litter types during the first winter regardless of the condition of snowpacks. The highest humification degree was observed in birch foliar litter (4.45%-5.67%), and the humification degrees were 1.91%-2.15%, 1.14%-2.03%, 1.06%-1.97%, 0.01%-1.25%, and 0.39%-1.21%, respectively, for fir, azalea, willow, larch, and cypress foliar litter under varying snowpacks. The net accumulation of humus carbon of all foliar litters increased at the snow formation, snow melt stage, and the whole winter, which exhibited an increasing tendency with the decrease of snow cover thickness. In contrast, net accumulation of humus carbon showed a declining trend at the snow cover stage, and significantly increased with the decrease of snow cover thickness. In addition, correlation analysis results indicated that the humification degree was positively correlated with total nitrogen and acid-insoluble residues and negatively related to the organic carbon, total phosphorus, and water- and organic-soluble components. These results clearly suggest that foliar litter humification in subalpine forest can be enhanced by reduced snow cover in a scenario of climate warming, although the humification degree is controlled by snowpack and litter qualities at different stages of snow cover in winter.
全 文 :植物生态学报 2014, 38 (6): 540–549 doi: 10.3724/SP.J.1258.2014.00050
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-12-19 接受日期Accepted: 2014-04-01
* 通讯作者Author for correspondence (E-mail: wufzchina@163.com)
雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化
的影响
倪祥银 杨万勤 李 晗 徐李亚 何 洁 吴福忠*
四川农业大学生态林业研究所, 林业生态工程四川省重点实验室, 成都 611130
摘 要 亚高山森林凋落叶腐殖化是联系植物与土壤碳库和养分库的重要通道, 在冬季可能受到雪被斑块的影响。该文采用
凋落物网袋法, 于2012年11月–2013年4月研究了川西亚高山森林不同厚度雪被斑块(厚雪被、中雪被、薄雪被和无雪被)下优
势树种岷江冷杉(Abies faxoniana)、方枝柏(Sabina saltuaria)、四川红杉(Larix mastersiana)、红桦(Betula albo-sinensis)、康定
柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)凋落叶在不同雪被关键期(雪被形成期、雪被覆盖期和雪被融化期)
的腐殖化特征。结果表明: 亚高山森林冬季不同厚度雪被斑块下6种凋落叶均保持一定程度的腐殖化, 其中红桦凋落叶腐殖化
度最大 , 达4.45%–5.67%; 岷江冷杉、高山杜鹃、康定柳、四川红杉和方枝柏凋落叶腐殖化度分别为1.91%–2.15%、
1.14%–2.03%、1.06%–1.97%、0.01%–1.25%和0.39%–1.21%。凋落叶腐殖质在雪被形成期、融化期和整个冬季累积, 且累积
量随雪被厚度减小而增加, 但在雪被覆盖期降解, 且降解量随雪被厚度减小而增大。相关分析结果表明, 亚高山森林凋落叶
前期腐殖化主要受凋落叶质量影响, 且与氮和酸不溶性组分呈极显著正相关, 而与碳、磷、水溶性和有机溶性组分呈极显著
负相关。表明冬季变暖情景下雪被厚度的减小可能促进亚高山森林凋落叶腐殖化, 但凋落叶腐殖化在不同雪被关键期受雪被
斑块和凋落叶质量的调控。
关键词 凋落叶, 腐殖化, 腐殖质碳, 雪被
Effects of snowpack on early foliar litter humification during winter in a subalpine forest of
western Sichuan
NI Xiang-Yin, YANG Wan-Qin, LI Han, XU Li-Ya, HE Jie, and WU Fu-Zhong*
Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
Abstract
Aims Foliar litter humification is an important ecological process relating to soil carbon and nutrient budget in
subalpine forest ecosystems, and the process of foliar litter humification can be affected by various snowpacks
with different thicknesses in winter. However, little is known on the effects of snowpack on foliar litter humifica-
tion. The objective of this study is to explore the effects of snowpack on early foliar litter humification during the
first winter in subalpine forest.
Methods A field litterbag experiment was conducted in a subalpine forest in southwestern China from Novem-
ber 2012 to April 2013. Air-dried foliar litter of fir (Abies faxoniana), cypress (Sabina saltuaria), larch (Larix
mastersiana), birch (Betula albo-sinensis), willow (Salix paraplesia), and azalea (Rhododendron lapponicum)
were incubated under snowpacks with varying thicknesses (deep snowpack, medium snowpack, thin snowpack,
and no snowpack) due to variations in the canopy openness. Net accumulation of humus carbon, humification de-
grees, and humification rates were measured at snow formation, snow cover, and snow melt stage as foliar litter
humification proceeded.
Important findings Significant humification was observed in the six foliar litter types during the first winter
regardless of the condition of snowpacks. The highest humification degree was observed in birch foliar litter
(4.45%–5.67%), and the humification degrees were 1.91%–2.15%, 1.14%–2.03%, 1.06%–1.97%, 0.01%–1.25%,
and 0.39%–1.21%, respectively, for fir, azalea, willow, larch, and cypress foliar litter under varying snowpacks.
The net accumulation of humus carbon of all foliar litters increased at the snow formation, snow melt stage, and
the whole winter, which exhibited an increasing tendency with the decrease of snow cover thickness. In contrast,
net accumulation of humus carbon showed a declining trend at the snow cover stage, and significantly increased
倪祥银等: 雪被斑块对川西亚高山森林 6种凋落叶冬季腐殖化的影响 541
doi: 10.3724/SP.J.1258.2014.00050
with the decrease of snow cover thickness. In addition, correlation analysis results indicated that the humification
degree was positively correlated with total nitrogen and acid-insoluble residues and negatively related to the or-
ganic carbon, total phosphorus, and water- and organic-soluble components. These results clearly suggest that fo-
liar litter humification in subalpine forest can be enhanced by reduced snow cover in a scenario of climate warm-
ing, although the humification degree is controlled by snowpack and litter qualities at different stages of snow
cover in winter.
Key words foliar litter, humification, humus carbon, snowpack
凋落叶腐殖化(foliar litter humification)是森林
生态系统碳因持的重要途径(Cotrufo et al., 2013;
Berg & McClaugherty, 2014), 但可能受到气候和凋
落叶质量(quality)的影响(Prescott et al., 2000)。亚高
山森林常年低温且地质灾害频繁, 导致土壤发育缓
慢(Yang et al., 2005), 因此凋落叶腐殖化对于维持
亚高山森林生态系统“自肥”机制尤其重要。受树木
遮挡、集流和林窗的影响, 亚高山森林在冬季形成
天然的雪被斑块(snowpack), 不同雪被厚度和持续
时间均可能影响凋落叶腐殖化过程。一方面, 不同
厚度的雪被斑块驱动异质的局域微环境水热条件
(吴彦和Onipchenko, 2007; Saccone et al., 2013), 改
变凋落叶质量(Kreyling et al., 2013)。厚雪被斑块的
隔热、保温作用维持相对较高的微生物活性
(Campbell et al., 2005), 而薄雪被或无雪被斑块的
低温和冻融作用抑制微生物活动 (Shibata et al.,
2013), 因此难降解物质在薄雪被或无雪被斑块下
累积更多(Kreyling et al., 2013), 这有利于形成腐殖
质(Ponge, 2013)。另一方面, 雪被斑块在形成、覆盖
和融化的不同阶段, 可能改变凋落叶质量并影响后
续的腐殖化进程。厚雪被斑块在雪被形成期相对较
弱的冻融作用(Groffman et al., 2001), 在雪被覆盖期
相对较高的微生物活性(Bokhorst et al., 2012, 2013),
以及在雪被融化期相对较强的淋溶作用(Hardy et
al., 2001), 均可能不同程度地作用于凋落叶腐殖化。
但有限的研究仅关注到了均一条件下的凋落叶腐殖
化过程(Ono et al., 2009, 2011), 尚缺乏对冬季雪被
斑块影响高山森林凋落叶腐殖化的认识。
川西亚高山森林在调节局域气候、涵养水源等
方面发挥着重要作用(Yang et al., 2005)。前期的研究
表明, 该地区冬季冻融时间长达120天以上(Wu et al.,
2010), 且在林窗中心、林冠林窗、扩展林窗和郁闭林
下形成的雪被斑块(何伟等, 2013; 武启骞等, 2013)
显著地影响凋落叶分解和土壤生态过程(谭波等,
2011; 杨玉莲等, 2012a, 2012b)。本研究在前期工作
的基础上, 研究冬季雪被形成期、覆盖期和融化期
不同厚度雪被斑块下4种优势乔木和2种优势灌木凋
落叶腐殖化特征, 以期为气候变化情境下川西高山
/亚高山森林生态系统植物-土壤互作过程与区域响
应研究提供一定的基础数据。
1 材料和方法
1.1 研究区域概况
研究区域位于四川省阿坝藏族羌族自治州理
县毕棚沟风景区(31.23°–31.32° N, 102.88°–102.95°
E, 海拔2 458–4 619 m), 地处青藏高原东缘与四川
盆地过渡的高山峡谷地带。该区域年平均气温
2–4 ℃, 最高气温23 ℃ (7月), 最低气温–18 ℃ (1
月), 年降水量850 mm; 土壤季节性冻融期为每年
11月至次年4月, 且每年11月下旬开始形成雪被斑
块, 12月下旬至次年3月初形成完全雪被覆盖, 直至
4月开始融化(谭波等, 2011)。区域内优势乔木为红
桦(Betula albo-sinensis)、岷江冷杉(Abies faxoniana)、
川西云杉(Picea balfouriana)等, 灌木为康定柳(Salix
paraplesia)、高山杜鹃(Rhododendra lapponicum)、
华西箭竹(Fargesia nitida)等(Yang et al., 2005)。土壤
浅薄 , 为发育于坡积物上的暗棕壤 (Wu et al.,
2010)。土壤有机层有机碳、全氮和全磷含量分别为
(160.24 ± 15.70)、(58.02 ± 0.88)和(1.70 ± 0.01)
g·kg–1, 腐殖质碳和腐殖化度分别为(97.25 ± 0.88)
g·kg–1和(61.10 ± 6.21) %。
1.2 样地设置与雪被处理
基于前期的调查结果(吴庆贵等, 2013), 研究样
地设在坡向、坡度相似的130年成熟原始岷江冷杉林
内(31.23° N, 102.88° E, 3 579–3 582 m), 并在其中
选取3个大小约25 m × 25 m的林窗, 每个林窗间隔
大于500 m。自然状态下沿同一坡向从林窗中心、
林冠林窗、扩展林窗至郁闭林下(130年成熟岷江冷
杉树干周围)的雪被厚度梯度为依据(何伟等, 2013;
武启骞等, 2013), 每间隔3–4 m设置天然形成的厚
542 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 540–549
www.plant-ecology.com
雪被斑块(deep snowpack, DS)、中雪被斑块(medium
snowpack, MS)、薄雪被斑块(thin snowpack, TS)和无
雪被斑块(no snowpack, NS)处理。在各雪被斑块下
均设置6个2 m × 2 m的样方放置不同物种凋落物袋,
共72个样方(6物种×4斑块×3样地)。雪被厚度(snow
cover thickness, SCT)于每次采样用直尺在每个样地
随机选取各雪被斑块的多个点测量(图1)。根据前期
研究结果(谭波等, 2011; 何伟等, 2013; 武启骞等,
2013)及长期温度和雪被监测数据, 结合Olsson等
(2003)对高寒区冬季不同雪被覆盖时期的划分, 将
每两次采样日期之间的时期定义为一个雪被关键
期 , 即雪被形成期 (snow formation stage, SFS,
2012-11-15至2012-12-26)、雪被覆盖期(snow cover
stage, SCS, 2012-12-27至2013-03-08)和雪被融化期
(snow melt stage, SMS, 2013-03-09至2013-04-24)。
图1 各采样日期不同雪被斑块的雪被厚度(平均值±标准偏
差, n = 9)。SCS, 雪被覆盖期; SFS, 雪被形成期; SMS, 雪被
融化期。DS, 厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪
被。相邻采样日期之间的时期定义为一个雪被关键期。不同
小写字母表示雪被厚度在相同日期、不同雪被斑块之间差异
显著(p < 0.05)。
Fig. 1 The thickness of snow cover at each sampling date
(mean ± SD, n = 9). SCS, snow cover stage; SFS, snow for-
mation stage; SMS, snow melt stage. DS, deep snowpack; MS,
medium snowpack; TS, thin snowpack; NS, no snowpack. The
time periods between successive sampling dates were identified
with critical stages of snow cover according to our previous
studies. Different lowercase letters indicate significant differ-
ences in snow cover thickness among snowpack types at each
sampling date separately (p < 0.05).
同时, 在每个雪被斑块的其中一个凋落物袋内
和空气(距地面2 m)中各放置1枚纽扣式温度记录器
(iButton DS1923-F5, Maxim/Dallas Semiconductor,
Sunnyvale, USA), 设定每2 h记录一次温度数据。由
此计算各雪被关键期不同雪被斑块下的日平均温度
(daily average temperature, AT) (图2)、昼平均温度
(daytime average temperature, DAT, 7:00–19:00)、夜
平 均 温 度 (nighttime average temperature, NAT,
19:00–次日 7:00)、正积温 (positive accumulated
temperature, PAT)、负积温 (negative accumulated
temperature, NAT)和冻融循环次数 (number of
freeze-thaw cycles, NFTC, 温度高于或低于0 ℃持
续3 h及以上直至其低于或高于0 ℃记为1次冻融循
环) (Konestabo et al., 2007)。
图2 各雪被斑块和空气的日平均温度。SCS, 雪被覆盖期;
SFS, 雪被形成期; SMS, 雪被融化期。DS, 厚雪被; MS, 中
雪被; TS, 薄雪被; NS, 无雪被。
Fig. 2 The daily average temperature of snowpack and air.
SCS, snow cover stage; SFS, snow formation stage; SMS, snow
melt stage. DS, deep snowpack; MS, medium snowpack; TS,
thin snowpack; NS, no snowpack.
1.3 样品处理与分析
根据邓仁菊等(2007)对该区域新鲜凋落物层划
分标准, 于2012年10月初在样地地表收集岷江冷
杉、方枝柏(Sabina saltuaria)、四川红杉(Larix mas-
tersiana)、红桦、康定柳和高山杜鹃新鲜凋落叶, 带
倪祥银等: 雪被斑块对川西亚高山森林 6种凋落叶冬季腐殖化的影响 543
doi: 10.3724/SP.J.1258.2014.00050
回实验室自然风干2周。称取风干凋落叶10 g置于大
小为10 cm × 20 cm, 孔径为上表面1.0 mm、下表面
0.5 mm的凋落物袋中(Hobbie et al., 2012), 共708袋
(3袋×3样地×4雪被×6物种×3次+10袋×6物种), 并于
2012年11月15日平铺(下表面贴地)在对应样方土壤
表面, 袋间距为10 cm, 以排除彼此干扰。样品埋设
前分别测定6种风干凋落叶的含水量; 埋设后随机
取回各物种凋落叶10袋于60 ℃烘至恒重, 测定运
输损失量和初始组分含量(表1), 二者共同计算凋落
叶埋设时的初始干质量。
基于前期研究结果(谭波等, 2011; 何伟等, 2013;
武启骞等, 2013), 分别于2012年12月26日、2013年3
月8日和2013年4月24日从各样地的不同雪被斑块随
机采集6种凋落叶各3袋, 带回实验室风干, 粉碎, 过
0.25 mm筛。腐殖质的提取参考《中华人民共和国林
业行业标准LY/T 1238-1999》。称取风干样品1.00 g置
于150 mL锥形瓶, 加0.1 mol·L–1 NaOH + 0.1 mol·L–1
Na4P2O7·10 H2O混合提取液100 mL, 加塞振荡10
min, 沸水浴1 h, 待冷却后过滤, 于3000 r·min–1离心
10 min, 再过0.45 μm滤膜, 滤液即为浸提液(Wang et
al., 2010)。使用TOC (multi N/C 2100, Analytic Jena,
Thüringen, Germany)测定腐殖质碳(有机碳)含量。
1.4 数据统计与分析
腐殖质碳 (humus carbon, HC)、腐殖化度
(humification degree, HD)、腐殖化率(humification
rate, HR)的计算公式(Gigliotti et al., 1999)如下:
HC (g) = 0.001 × (TCHC – ICHC) × Mt
ΔHC (g) = HCt – HCt–1
HD (%) = CHC /COC
HR (%·d–1) = HD /Dt
式中, HC为腐殖质碳累积量, ΔHC为腐殖质碳净累
积量, TCHC为腐殖质全碳含量, ICHC为腐殖质无机
碳含量, HCt、HCt–1分别为t、t–1时腐殖质碳累积量,
CHC为腐殖质碳含量, COC为有机碳含量, Mt为t时质
量(mass)残留量, Dt为各雪被关键期的天数。
数据采用SPSS 20.0 (IBM SPSS Statistics, Chi-
cago, IL, USA)进行方差分析、相关分析, 用Origin
Pro 9.0 (OriginLab, Northampton, MA, USA)绘图。用
单因素方差分析(one-way ANOVA)检验不同物种凋
落叶初始组分含量的差异显著性; 用最小显著差异
法(LSD)检验雪被厚度和同种凋落叶腐殖质碳净累
积量、腐殖化度和腐殖化率在不同雪被斑块之间的
差异显著性 ; 用重复测量方差分析 (repeated
measures ANOVA)检验不同关键期(time)、凋落叶
(litter)和雪被斑块(snow)对腐殖质碳净累积量、腐殖
化度和腐殖化率的影响(Bokhorst et al., 2013)。用
Pearson相关分析比较各雪被关键期的腐殖质碳、腐
殖化度与环境因子、凋落叶质量(quality)的相关关
系。显著性水平设为p = 0.05。数值以平均值±标准
偏差(mean ± SD)表示。
2 结果和分析
2.1 雪被斑块对凋落叶腐殖质碳净累积量的影响
川西亚高山森林6种凋落叶腐殖质碳均表现出
表1 6种凋落叶初始组分含量(平均值±标准偏差, n = 3)
Table 1 Initial concentrations of organic carbon (OC), total nitrogen (TN), total phosphorus (TP), water-soluble components
(WSC), organic-soluble components (OSC), and acid-soluble components (ASC) and acid-insoluble residues (AIR) of six foliar litter
types (mean ± SD, n = 3)
物种
Species
有机碳
OC (g·kg–1)
全氮
TN (g·kg–1)
全磷
TP (g·kg–1)
水溶性组分
WSC (g·kg–1)
有机溶性组分
OSC (g·kg–1)
酸溶性组分
ASC (g·kg–1)
酸不溶性组分
AIR (g·kg–1)
岷江冷杉
Abies faxoniana
505.60 ± 29.61a 8.75 ± 0.60c 1.14 ± 0.10b 40.83 ± 0.54ab 27.62 ± 2.28ab 27.36 ± 1.33b 23.92 ± 2.54b
方枝柏
Sabina saltuaria
516.36 ± 17.67a 8.77 ± 0.09c 1.24 ± 0.05ab 35.74 ± 0.69c 33.16 ± 3.43a 32.43 ± 1.29a 20.60 ± 3.41b
四川红杉
Larix mastersiana
543.49 ± 6.29a 8.60 ± 0.41c 1.33 ± 0.02a 40.08 ± 1.08b 19.11 ± 0.68c 29.24 ± 0.87ab 21.46 ± 0.94b
红桦
Betula albo-sinensis
496.86 ± 14.51ab 13.34 ± 0.22a 0.91 ± 0.04c 25.06 ± 1.96d 11.43 ± 0.75d 27.74 ± 0.94b 50.96 ± 0.96a
康定柳
Salix paraplesia
452.27 ± 16.51b 11.46 ± 0.89b 1.11 ± 0.02b 41.71 ± 0.32ab 18.48 ± 1.57c 28.56 ± 1.88b 26.15 ± 3.29b
高山杜鹃
Rhododendron lapponicum
502.91 ± 15.98a 6.66 ± 0.21d 1.07 ± 0.09bc 43.14 ± 1.16a 25.84 ± 2.29b 27.00 ± 0.59b 21.84 ± 3.42b
同列不同小写字母表示各物种之间差异显著(p < 0.05)。
Different lowercase letters indicate significant differences among species (p < 0.05).
544 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 540–549
www.plant-ecology.com
在雪被形成期和融化期累积而在雪被覆盖期降解的
趋势(图3)。除康定柳外的其他5种凋落叶腐殖质碳
净累积量在雪被形成期和融化期均随雪被厚度减小
而显著(p < 0.05)增加, 且除岷江冷杉和红桦外的4
种凋落叶在雪被融化期均出现不同程度的降解。而
在雪被覆盖期, 岷江冷杉、四川红杉、红桦和高山
杜鹃凋落叶腐殖质碳在各雪被斑块下均降解, 且降
解量随雪被厚度减小而显著(p < 0.05)增大; 但康定
柳凋落叶表现出相反趋势。整个冬季, 6种凋落叶腐
殖质碳净累积量均随雪被厚度减小而增加, 且岷江
冷杉和红桦凋落叶腐殖质碳在各雪被斑块下均净累
积。经过一个冬季, 红桦凋落叶腐殖质碳净累积量
最多, 岷江冷杉次之, 康定柳和高山杜鹃凋落叶腐
殖质碳净累积量最少。
图3 川西亚高山森林不同雪被斑块下6种凋落叶在各雪被
关键期的腐殖质碳净累积量(平均值±标准偏差, n = 9)。SCS,
雪被覆盖期; SFS, 雪被形成期; SMS, 雪被融化期; W, 冬
季。DS, 厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪被。不
同小写字母表示腐殖质碳净累积量在相同关键期、不同雪被
斑块之间差异显著(p < 0.05)。
Fig. 3 Net accumulation of humus carbon of six foliar litter
types under snowpack at each critical stage in the subalpine
forest of western Sichuan (mean ± SD, n = 9). AF, Abies foxo-
niana; BA, Betula albo-sinensis; LM, Larix mastersiana; RL,
Rhododendron lapponicum; SP, Salix paraplesia; SS, Sabina
saltuaria. SCS, snow cover stage; SFS, snow formation stage;
SMS, snow melt stage; W, winter. DS, deep snowpack; MS,
medium snowpack; TS, thin snowpack; NS, no snowpack; Dif-
ferent lowercase letters indicate significant differences in hu-
mus carbon among snowpack types at each stage separately (p
< 0.05).
2.2 雪被斑块对凋落叶腐殖化度的影响
川西高山森林6种凋落叶腐殖化度均在雪被形
成期和融化期较高而在雪被覆盖期较低(图4)。除康
定柳外的其他5种凋落叶腐殖化度在雪被形成期和
融化期均随雪被厚度减小而显著(p < 0.05)升高, 而
在雪被覆盖期均随雪被厚度减小而显著(p < 0.05)降
低且在雪被斑块下均出现不同程度的降解。就整个
冬季而言, 6种凋落叶均保持较高的腐殖化度, 且表
现出随雪被厚度减小而升高的趋势。经过一个冬季,
红桦凋落叶腐殖化度最高(4.45%–5.67%), 岷江冷杉
(1.91%–2.15%)、高山杜鹃(1.14%–2.03%)和康定柳凋
落叶(1.06%–1.97%)次之, 四川红杉(0.01%– 1.25%)
和方枝柏凋落叶(0.39%–1.21%)腐殖化度最低。
图4 川西亚高山森林不同雪被斑块下6种凋落叶在各雪被
关键期的腐殖化度(平均值±标准偏差, n = 9)。SCS, 雪被覆
盖期; SFS, 雪被形成期; SMS, 雪被融化期; W, 冬季。DS,
厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪被。不同小写字
母表示腐殖化度在相同关键期、不同雪被斑块之间差异显著
(p < 0.05)。
Fig. 4 The humification degrees of six foliar litter types under
snowpack at each critical stage in the subalpine forest of west-
ern Sichuan (mean ± SD, n = 9). AF, Abies foxoniana; BA,
Betula albo-sinensis; LM, Larix mastersiana; RL, Rhododen-
dron lapponicum; SP, Salix paraplesia; SS, Sabina saltuaria.
SCS, snow cover stage; SFS, snow formation stage; SMS, snow
melt stage; W, winter. DS, deep snowpack; MS, medium snow-
pack; TS, thin snowpack; NS, no snowpack. Different lower-
case letters indicate significant differences in humification de-
grees among snowpack types at each stage separately (p <
0.05).
2.3 雪被斑块对凋落叶腐殖化率的影响
与腐殖化度的变化规律相似, 川西高山森林6
种凋落叶腐殖化率均在雪被形成期和融化期较快而
在雪被覆盖期较慢(图5)。除康定柳外的其他5种凋
落叶腐殖化率在雪被形成期和融化期均随雪被厚度
减小而显著(p < 0.05)增快, 而在雪被覆盖期均随雪
倪祥银等: 雪被斑块对川西亚高山森林 6种凋落叶冬季腐殖化的影响 545
doi: 10.3724/SP.J.1258.2014.00050
被厚度减小而显著(p < 0.05)减慢, 且在雪被斑块下
均出现不同程度的降解。整个冬季, 6种凋落叶均保
持较快的腐殖化率, 且方枝柏、四川红杉和红桦凋
落叶腐殖化率随雪被厚度减小而显著(p < 0.05)增
快, 而岷江冷杉、康定柳和高山杜鹃凋落叶在各雪
被斑块之间无显著差异(p > 0.05)。
图5 川西亚高山森林不同雪被斑块下6种凋落叶在各雪被
关键期的腐殖化速率(平均值±标准偏差, n = 9)。SCS, 雪被
覆盖期; SFS, 雪被形成期; SMS, 雪被融化期; W, 冬季。DS,
厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪被。不同小写字
母表示腐殖化速率在相同关键期、不同雪被斑块之间差异显
著(p < 0.05)。
Fig. 5 The humification rates of six foliar litter types under
snowpack at each critical stage in the subalpine forest of west-
ern Sichuan (mean ± SD, n = 9). AF, Abies foxoniana; BA,
Betula albo-sinensis; LM, Larix mastersiana; RL, Rhododen-
dron lapponicum; SP, Salix paraplesia; SS, Sabina saltuaria.
SCS, snow cover stage; SFS, snow formation stage; SMS, snow
melt stage; W, winter. DS, deep snowpack; MS, medium snow-
pack; TS, thin snowpack; NS, no snowpack. Different lower-
case letters indicate significant differences in humification rates
among snowpack types at each stage separately (p < 0.05).
2.4 凋落叶腐殖化与环境、质量(quality)的相关
关系
雪被斑块对川西亚高山森林凋落叶腐殖质碳净
累积量、腐殖化度和腐殖化率影响均极显著(p <
0.01), 但凋落叶腐殖化存在物种差异(p < 0.01; 表
2)。凋落叶腐殖化度与雪被厚度在雪被形成期(p <
0.01)、融化期(p < 0.01)和整个冬季(p < 0.05)呈显著
或极显著负相关, 而在雪被覆盖期呈极显著(p <
0.01)正相关(表3)。相关分析表明, 凋落叶腐殖化度
在雪被覆盖期与正积温和冻融循环次数呈显著(p <
0.05)负相关, 与负积温呈显著(p < 0.05)正相关, 而
在其他关键期无显著(p > 0.05)相关关系。同时, 凋
落叶腐殖化度在雪被形成期、融化期和整个冬季均
与氮和酸不溶性组分呈极显著(p < 0.01)正相关, 而
与碳、碳氮比、磷、水溶性组分和有机溶性组分呈
显著(p < 0.05)负相关。
表2 不同雪被关键期(time)、凋落叶(litter)、雪被斑块(snow)
对腐殖质碳(HC)、腐殖化度(HD)、腐殖化速率(HR)的重复
测量方差分析
Table 2 Repeated measures ANOVA results for the effects of
time, litter, snow, and their interactions on litter humus carbon
(HC), humification degree (HD) and humification rate (HR)
**, p < 0.01. n = 72.
3 讨论和结论
亚高山森林生态系统常年低温且地质灾害频
繁, 导致土壤形成和发育缓慢(Yang et al., 2005), 因
此地上部分凋落叶腐殖化对于地下部分碳库的输入
和维持生态系统养分循环极其重要。本研究结果表
明, 亚高山森林凋落叶在冬季仍维持一定程度的腐
殖化, 但不同基质质量(quality)的凋落叶存在物种
差异(表1), 红桦、岷江冷杉、高山杜鹃、康定柳、
四川红杉和方枝柏新鲜凋落叶经过一个冬季后, 其
腐殖化度分别为 4.45%–5.67%、 1.91%–2.15%、
1.14%–2.03% 、 1.06%–1.97% 、 0.01%–1.25% 和
0.39%–1.21%。总体上看, 凋落叶腐殖质在雪被形成
期、融化期和整个冬季累积, 且累积量随雪被厚度
减小而增加, 而在雪被覆盖期降解, 且降解量随雪
被厚度减小而增大。这表明亚高山森林不同厚度的
雪被斑块驱动的异质的微环境对不同质量凋落叶腐
殖化的影响在雪被形成期、覆盖期和融化期可能存
在不同机制。
在雪被形成期, 正是秋末冬初衰老叶片凋落高
峰期, 大量凋落叶残存于地表; 同时气温急剧下降,
df FHC FHD FHR
Time 2 738.973** 2475.411** 1578.775**
Litter 5 491.873** 721.283** 757.425**
Snow 3 51.422** 35.570** 89.808**
Time × Litter 10 276.287** 468.349** 381.989**
Time × Snow 6 60.320** 161.962** 152.321**
Litter × Snow 15 3.764** 7.741** 8.867**
Time × Litter × Snow 30 15.752** 21.699** 23.618**
546 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 540–549
www.plant-ecology.com
并伴随少量降雪的发生, 局域微环境发生剧烈变化
(Wu et al., 2010)。本研究发现, 除方枝柏外的5种凋
落叶均在雪被形成期雪被斑块覆盖下累积大量腐殖
质并保持较高的腐殖化度和较快的腐殖化率, 且凋
落叶腐殖化随雪被厚度减小而增强(图3–5)。这表明
新鲜凋落叶中大量可溶性组分为微生物提供了良好
的底物有效性(Wu et al., 2010), 而腐殖质的形成主
要是微生物的聚合作用(Cotrufo et al., 2013), 所以
凋落叶在雪被形成期保持较高的腐殖化度。同时厚
雪被斑块覆盖在新鲜凋落叶表面, 维持凋落叶分解
和腐殖化微环境的相对稳定并相对提高土壤动物的
取食和微生物活性(Allison, 2006), 进而促进新鲜凋
落叶分解, 特别是大量可溶性组分的降解; 而无雪
被斑块下低温(负积温)限制土壤无脊椎动物和微生
物活动(Bokhorst et al., 2013), 凋落叶分解缓慢(何
伟等, 2013; 武启骞等, 2013), 木质素、酚等难降解
物质残留于凋落叶(Austin & Ballaré, 2010; Kreyling
et al., 2013)并络合为腐殖质高聚物(Ponge, 2013)。相
关分析也表明, 凋落叶腐殖化度与雪被厚度和可溶
性组分(Cleveland et al., 2004)呈极显著负相关, 而
与酸不溶性组分(Hilli et al., 2012; Talbot & Treseder,
2012)呈极显著正相关(表3)。
新鲜凋落叶在雪被形成期经过快速腐殖化之
后, 雪被覆盖期低温和强烈的冻融作用显著抑制了
凋落叶腐殖化(表3), 甚至使前期已形成的腐殖质降
解(Wetterstedt et al., 2010), 且降解程度随雪被厚度
减小而增大(图3)。这表明高山森林凋落叶腐殖化过
程在雪被覆盖期(土壤深冻期)可能存在更为复杂的
机制。一方面, 低温强烈抑制土壤微生物参与形成
腐殖质的生理代谢途径(Cotrufo et al., 2013), 使新
形成的腐殖质累积减少; 另一方面, 频繁的冻融作
用可能破坏新形成的不稳定的腐殖质结构(窦森,
2010), 同时已形成的腐殖质可能被矿化(Zeng et al.,
2010; Shibata et al., 2013), 最终导致该时期凋落叶
表3 不同雪被关键期腐殖质碳、腐殖化度与环境因子、基质质量的相关分析
Table 3 Correlation analyses between humus carbon, humification degrees and environmental factors and litter qualities at each
stage
雪被形成期
Snow formation stage
雪被覆盖期
Snow cover stage
雪被融化期
Snow melt stage
整个冬季
Whole winter
腐殖质碳
Humus
carbon
腐殖化度
Humification
degree
腐殖质碳
Humus
carbon
腐殖化度
Humification
degree
腐殖质碳
Humus
carbon
腐殖化度
Humification
degree
腐殖质碳
Humus
carbon
腐殖化度
Humification
degree
雪被厚度
Snow cover thickness
–0.484** –0.536** 0.395** 0.562** –0.169* –0.196** –0.234** –0.155*
日平均温度
Daily average temperature
–0.057 0.020 –0.153* –0.102 –0.070 –0.054 –0.018 –0.053
昼平均温度
Daytime average temperature
0.100 0.068 –0.062 –0.071 –0.060 –0.063 –0.007 –0.042
夜平均温度
Nighttime average temperature
0.163* 0.107 0.012 0.099 0.054 0.093 0.074 0.030
正积温
Positive accumulated temperature
0.018 0.006 –0.112 –0.173* –0.037 0.013 –0.019 0.028
负积温
Negative accumulated temperature
–0.107 –0.137* 0.049 0.150* 0.037 0.025 –0.006 –0.041
冻融循环次数
Number of freeze-thaw cycles
0.085 0.063 –0.216** –0.149* –0.009 0.044 0.052 0.047
有机碳
Organic carbon
–0.068 –0.247** 0.110 –0.352** –0.129 –0.158* –0.324** –0.459**
全氮
Total nitrogen
0.238** 0.186** –0.123 0.011 0.315** 0.280** 0.488** 0.524**
碳氮比
C to N ratio
–0.191** –0.135* 0.104 –0.147* –0.335** –0.328** –0.512** –0.539**
全磷
Total phosphorus
–0.395** –0.305** 0.365** 0.146* –0.654** –0.619** –0.727** –0.725**
水溶性组分
Water soluble components
–0.339** –0.256** 0.251** 0.218** –0.409** –0.423** –0.639** –0.554**
有机溶性组分
Organic soluble components
–0.195** –0.517** 0.333** 0.313** –0.415** –0.458** –0.417** –0.552**
酸溶性组分
Acid soluble components
–0.080 0.165* –0.202** –0.297** –0.145* –0.132 –0.040 –0.096
酸不溶性组分
Acid insoluble residue
0.373** 0.455** –0.220** –0.157* 0.404** 0.457** 0.581** 0.698**
*, p < 0.05; **, p <0.01. n = 72.
倪祥银等: 雪被斑块对川西亚高山森林 6种凋落叶冬季腐殖化的影响 547
doi: 10.3724/SP.J.1258.2014.00050
腐殖质分解量大于累积量而无净累积(窦森, 2010)。
显然这两者的作用无雪被斑块下比厚雪被斑块下更
加强烈, 因此雪被覆盖期凋落叶腐殖质的降解程度
在无雪被斑块下更大。但具体机制还亟待深入研究。
随着雪被融化期温度的回升(图2), 分解者活动
更加活跃(Bokhorst et al., 2013)。同时, 雪融水的淋
洗和降水的增加, 可促进凋落叶中溶解性组分甚至
酸溶性的腐殖物质流失(Cleveland et al., 2004; 窦
森, 2010; Elliot, 2013), 因此雪被融化期可能深刻影
响亚高山森林凋落叶腐殖质累积格局。一方面, 厚
雪被斑块形成得更早而融化得更晚, 相对延长了冬
季耐寒性分解者的活动时间, 促进凋落叶质量的改
变(Baptist et al., 2010); 同时厚雪被斑块积雪更多,
雪融水的淋洗作用加快凋落叶组分的流失。另一方
面, 无雪被或薄雪被斑块下凋落叶分解尤其是难分
解物质降解较慢(Kreyling et al., 2013), 而这些难降
解物质又是合成腐殖质的主要原料(Ponge, 2013);
同时无雪被斑块下凋落叶受淋溶作用较弱, 残留更
多的溶解性组分, 这增加了作为合成腐殖质主要贡
献者的微生物(Cotrufo et al., 2013)底物有效性, 因
此微生物在无雪被斑块下可络合更多的难降解物质
为腐殖质高聚物(Ponge & Chevalier, 2006; Klot-
zbücher et al., 2011)。相关分析也表明, 凋落叶腐殖
质碳的累积与酸不溶性组分呈极显著正相关(表3;
Stevenson, 1994; Prescott et al., 2000)。因此, 凋落叶
腐殖质在无雪被斑块下累积更多且随雪被厚度减小
而增加(图3)。
在整个冬季, 不同厚度的雪被斑块通过对水热
条件的再分配而改变土壤微环境特征和微生物活动
(吴彦和Onipchenko, 2007), 间接影响亚高山森林凋
落叶腐殖化。雪被的隔热、保温作用维持了厚雪被
斑块下相对较高的分解者活性 (Campbell et al.,
2005; Saccone et al., 2013), 促进新鲜凋落叶分解,
尤其是大量溶解性小分子物质的快速降解(Baptist
et al., 2010); 而无雪被或薄雪被斑块下, 低温和频
繁的冻融循环抑制了微生物活性(Bokhorst et al.,
2013), 木质素等难降解物质累积更多(Kreyling et
al., 2013), 并经过微生物酶解、络合形成腐殖质高
聚物(Ponge, 2013)。因此, 凋落叶腐殖质在无雪被斑
块下累积更多, 并随雪被厚度减小而增加。相关分
析表明, 亚高山森林冬季凋落叶腐殖化主要受质量
影响, 且与氮和酸不溶性组分呈极显著正相关而与
碳、磷、水溶性和有机溶性组分呈极显著负相关, 与
温度并无显著相关关系(表3)。另外, 凋落叶腐殖化
与碳氮比呈极显著负相关, 这表明高质量(低碳氮
比)的凋落叶腐殖化度更高, 因此红桦凋落叶腐殖
化度最高, 而方枝柏和四川红杉凋落叶腐殖化度最
低(图3; 表1)。
综上所述, 亚高山森林凋落叶在冬季仍保持较
高的腐殖化度, 但不同基质质量的凋落叶存在物种
差异, 高质量的阔叶树种红桦凋落叶腐殖化度最高,
而低质量的针叶树种四川红杉和方枝柏凋落叶腐殖
化度最低。同时, 不同雪被斑块所驱动的异质的微
环境在不同雪被关键期也存在差异, 凋落叶腐殖质
在雪被形成期、融化期和整个冬季累积, 且净累积
量随雪被厚度减小而增加, 但在雪被覆盖期降解,
且降解量随雪被厚度减小而增大。总之, 冬季变暖
情景下雪被厚度的减小可能促进亚高山森林凋落叶
腐殖化, 但在不同雪被关键期受雪被斑块和凋落叶
质量调控。本研究结果为深入研究气候变化背景下
亚高山森林生态系统植物-土壤互作过程研究提供
了一定的基础数据。
基金项目 国家自然科学基金(31270498和31170-
423)、国家“十二五”科技支撑计划 (2011BAC09-
B05)、中国博士后科学基金特别资助项目(2012-
T50782)和四川省青年基金 (2012JQ0008和 2012-
JQ0059)。
致谢 感谢四川农业大学生态林业研究所谭波博
士、何伟博士、刘瑞龙和苟小林先生在野外采样工
作中给予的帮助。
参考文献
Allison SD (2006). Soil minerals and humic acids alter enzyme
stability: implications for ecosystem processes. Biogeo-
chemistry, 81, 361–373.
Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter
decomposition in terrestrial ecosystems. Proceedings of
the National Academy of Sciences of the United States of
America, 107, 4618–4622.
Baptist F, Yoccoz NG, Choler P (2010). Direct and indirect
control by snow cover decomposition in alpine tundra
along a snowmelt gradient. Plant and Soil, 328, 397–410.
Berg B, McClaugherty C (2014). Plant Litter: Decomposition,
Humus Formation, Carbon Sequestration. 3rd edn.
Springer-Verlag, Berlin. 11–15.
Bokhorst S, Metcalfe DB, Wardle DA (2013). Reduction in
snow depth negatively affects decomposers but impact on
decomposition rates is substrate dependent. Soil Biology
548 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 540–549
www.plant-ecology.com
and Biochemistry, 62, 157–164.
Bokhorst S, Phoenix GK, Bjerke JW, Callaghan TV, Huy-
er-Brugman F, Berg MP (2012). Extreme winter warming
events more negatively impact small rather than large soil
fauna: shift in community composition explained by traits
not taxa. Global Change Biology, 18, 1152–1162.
Campbell JL, Mitchell MJ, Groffman PM, Christenson LM,
Hardy JP (2005). Winter in northeastern North America: a
critical stage for ecological processes. Frontiers in Ecolo-
gy and the Environment, 3, 314–322.
Cleveland CC, Neff JC, Townsend AR, Hood E (2004). Com-
position, dynamics, and fate of leached dissolved organic
matter in terrestrial ecosystems: results from a decomposi-
tion experiment. Ecosystems, 7, 275–285.
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E
(2013). The microbial efficiency-matrix stabilization
(MEMS) framework integrates plant litter decomposition
with soil organic matter stabilization: Do labile plant in-
puts form stable soil organic matter? Global Change Biol-
ogy, 19, 988–995.
Deng RJ, Yang WQ, Zhang J, Hu JL, Feng RF, Jian Y, Lin J
(2007). Carbon, nitrogen and phosphorus storage in soil
organic layer of the subalpine forest in western Sichuan.
Chinese Journal of Applied and Environmental Biology,
13, 492–496. (in Chinese with English abstract) [邓仁菊,
杨万勤, 张健, 胡建利, 冯瑞芳, 简毅, 林静 (2007). 川
西亚高山森林土壤有机层碳、氮、磷储量特征. 应用与
环境生物学报, 13, 492–496.]
Dou S (2010). Soil Organic Matter. Science Press, Beijing. 84.
(in Chinese) [窦森 (2010). 土壤有机质. 科学出版社,
北京. 84.]
Elliott J (2013). Evaluating the potential contribution of vegeta-
tion as a nutrient source in snowmelt runoff. Canadian
Journal of Soil Science, 93, 435–443.
Gigliotti G, Businelli D, Giusquiani PL (1999). Composition
changes of soil humus after massive application of urban
waste compost: a comparison between FT-IR spectroscopy
and humification parameters. Nutrient Cycling in Agroe-
cosystems, 55, 23–28.
Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD,
Tierney GL (2001). Colder soils in a warmer world: a
snow manipulation study in a northern hardwood forest
ecosystem. Biogeochemistry, 56, 135–150.
Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman
AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, No-
lan S (2001). Snow depth manipulation and its influence
on soil frost and water dynamics in a northern hardwood
forest. Biogeochemistry, 56, 151–174.
He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013).
Effects of snow patches on leaf litter mass loss of two
shrubs in an alpine forest. Chinese Journal of Plant Ecol-
ogy, 37, 306–316. (in Chinese with English abstract) [何
伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪
被斑块对高山森林两种灌木凋落叶质量损失的影响.
植物生态学报, 37, 306–316.]
Hilli S, Stark S, Willför S, Smeds A, Reunanen M, Hautajärvi
R (2012). What is the composition of AIR? Pyrolysis-GC-MS
characterization of acid-insoluble residue from fresh litter
and organic horizons under boreal forests in southern Fin-
land. Geoderma, 179–180, 63–72.
Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML,
Weisenhorn P (2012). Response of decomposing litter and
its microbial community to multiple forms of nitrogen en-
richment. Ecological Monographs, 82, 389–405.
Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz
K (2011). A new conceptual model for the fate of lignin in
decomposing plant litter. Ecology, 92, 1052–1062.
Konestabo HS, Michelsen A, Holmstrup M (2007). Responses
of springtail and mite populations to prolonged periods of
soil freeze-thaw cycles in a sub-artic ecosystem. Applied
Soil Ecology, 36, 136–146.
Kreyling J, Haei M, Laudon H (2013). Snow removal reduces
annual cellulose decomposition in a riparian boreal forest.
Canadian Journal of Soil Science, 93, 427–433.
Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE
(2003). Five stages of the Alaskan arctic cold season with
ecosystem implications. Arctic, Antarctic, and Alpine Re-
search, 35, 74–81.
Ono K, Hiradate S, Morita S, Ohse K, Hirai K (2011). Humifi-
cation processes of needle litters on forest floors in Japa-
nese cedar (Cryptomeria japonica) and Hinoki cypress
(Chamaecyparis obtusa) plantations in Japan. Plant and
Soil, 338, 171–181.
Ono K, Hirai K, Morita S, Ohse K, Hiradate S (2009). Organic
carbon accumulation processes on a forest floor during an
early humification stage in a temperate deciduous forest in
Japan: evaluations of chemical compositional changes by
13C NMR and their decomposition rates from litterbag ex-
periment. Geoderma, 151, 351–356.
Ponge JF (2013). Plant-soil feedbacks mediated by humus
forms: a review. Soil Biology and Biochemistry, 57,
1048–1060.
Ponge JF, Chevalier R (2006). Humus index as an indicator of
forest stand and soil properties. Forest Ecology and Man-
agement, 233, 165–175.
Prescott CE, Maynard DG, Laihl R (2000). Humus in northern
forests: friend or for? Forest Ecology and Management,
133, 23–36.
Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP,
Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel
S, Clément JC (2013). The effects of snowpack properties
and plant strategies on litter decomposition during winter
in subalpine meadows. Plant and Soil, 363, 215–229.
Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K (2013).
倪祥银等: 雪被斑块对川西亚高山森林 6种凋落叶冬季腐殖化的影响 549
doi: 10.3724/SP.J.1258.2014.00050
Impact of snowpack decrease on net nitrogen mineraliza-
tion and nitrification in forest soil of northern Japan. Bio-
geochemistry, 116, 69–82.
Stevenson FJ (1994). Humus Chemistry: Genesis, Composition,
Reactions. 2nd edn. John Wiley & Sons, New York. 17.
Talbot JM, Treseder KK (2012). Interactions among lignin,
cellulose, and nitrogen drive litter chemistry-decay rela-
tionships. Ecology, 93, 345–354.
Tan B, Wu FZ, Yang WQ, Yang YL, Wang A, Kang LN
(2011). Effects of snow pack removal on the dynamics of
winter-time soil temperature, carbon, nitrogen, and phos-
phorus in alpine forests of west Sichuan. Chinese Journal
of Applied Ecology, 22, 2553–2559. (in Chinese with Eng-
lish abstract) [谭波, 吴福忠, 杨万勤, 杨玉莲, 王奥, 康
丽娜 (2011). 雪被去除对川西高山森林冬季土壤温度
及碳、氮、磷动态的影响. 应用生态学报, 22, 2553–
2559.]
Wang H, Hong YT, Lin QH, Hong B, Zhu YX, Wang Y, Xu H
(2010). Response of humification degree to monsoon cli-
mate during the Holocene from the Hongyuan peat bog,
eastern Tibetan Plateau. Palaeogeography, Palaeoclima-
tology, Palaeoecology, 286, 171–177.
Wetterstedt JÅM, Persson T, Ågren GI (2010). Temperature
sensitivity and substrate quality in soil organic matter de-
composition: results of an incubation study with three sub-
strates. Global Change Biology, 16, 1806–1819.
Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decompo-
sition in two subalpine forests during the freeze-thaw sea-
son. Acta Oecologica, 36, 135–140.
Wu QG, Wu FZ, Yang WQ, Tan B, Yang YL, Ni XY, He J
(2013). Characteristics of gap and disturbance regimes of
the alpine fir forest in western Sichuan. Chinese Journal of
Applied and Environmental Biology, 19, 922–928. (in
Chinese with English abstract) [吴庆贵, 吴福忠, 杨万勤,
谭波, 杨玉莲, 倪祥银, 何洁 (2013). 川西高山森林林
隙特征及干扰状况 . 应用与环境生物学报 , 19,
922–928.]
Wu QQ, Wu FZ, Yang WQ, Xu ZF, He W, He M, Zhao YY,
Zhu JX (2013). Effect of seasonal snow cover on litter de-
composition in alpine forest. Chinese Journal of Plant
Ecology, 37, 296–305. (in Chinese with English abstract)
[武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野
逸, 朱剑霄 (2013). 季节性雪被对高山森林凋落物分解
的影响. 植物生态学报, 37, 296–305.]
Wu Y, Onipchenko VG (2007). The impact of snow-cover on
alpine vegetation type of different aspects in the west of
Sichuan Province. Acta Ecologica Sinica, 27, 5120–5129.
(in Chinese with English Abstract) [吴彦, Onipchenko VG
(2007). 雪被对川西高山植被坡向性分异的影响. 生态
学报, 27, 5120–5129.]
Yang WQ, Wang KY, Kellomäki S, Gong HD (2005). Litter
dynamics of three subalpine forests in western Sichuan.
Pedosphere, 15, 653–659.
Yang YL, Wu FZ, He ZH, Xu ZF, Liu Y, Yang WQ, Tan B
(2012a). Effects of snow pack removal on soil microbial
biomass carbon and nitrogen and the number of soil cul-
turable microorganisms during wintertime in alpine Abies
faxoniana forest of western Sichuan, southwest China.
Chinese Journal of Applied Ecology, 23, 1809–1816. (in
Chinese with English Abstract) [杨玉莲, 吴福忠, 何振
华, 徐振锋, 刘洋, 杨万勤, 谭波 (2012a). 雪被去除对
川西高山冷杉林冬季土壤微生物生物量碳氮和可培养
微生物数量的影响. 应用生态学报, 23, 1809–1816.]
Yang YL, Wu FZ, Yang WQ, Tan B, Xu ZF, Liu Y, Kang LN
(2012b). Effects of snow pack removal on soil hydrolase
enzyme activities in an alpine Abies faxoniana forest of
western Sichuan. Acta Ecologica Sinica, 32, 7045–7052.
(in Chinese with English abstract) [杨玉莲, 吴福忠, 杨万
勤, 谭波, 徐振锋, 刘洋, 康丽娜 (2012b). 雪被去除对
川西高山冷杉林冬季土壤水解酶活性的影响. 生态学
报, 32, 7045–7052.]
Zeng DH, Mao R, Chang SX, Li LJ, Yang D (2010). Carbon
mineralization of tree leaf litter and crop residues from
poplar-based agroforestry systems in northern China: a
laboratory study. Applied Soil Ecology, 44, 133–137.
责任编委: 李俊清 责任编辑: 李 敏