免费文献传递   相关文献

Influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield.

微灌与播前深松对根际土壤酶活性和夏玉米产量的影响


为探明微灌与播前深松耕作对夏玉米根际土壤酶活性和产量的影响,以大田夏玉米为研究对象,设计微灌灌溉方式(地表滴灌、地下滴灌和微润灌)、灌水量(分别控制土壤含水量下限为田间持水率的50%、65%和80%)和深松深度(20、40、60 cm)3因素、3水平正交田间试验.结果表明: 夏玉米全生育期内,土壤过氧化氢酶和脲酶活性均呈先增加后减小趋势,磷酸酶活性则呈先减小后增加趋势.地下滴灌0~80 cm生育期平均土壤含水率比地表滴灌和微润灌高6.3%和1.8%,且显著提高土壤脲酶活性、夏玉米根系体积和产量;随着灌水量的增加,土壤磷酸酶活性呈先减小后增加趋势,脲酶活性和产量均呈先增加后减小趋势,生育期平均土壤含水率与根系体积均呈增加趋势;深松40 cm比20 cm的产量和根系体积增加量大于深松60 cm比40 cm的增加量,深松40 cm土壤酶活性较高.从提高水资源、氮肥利用率及作物产量角度考虑,该地区夏玉米种植的最优组合应为地下滴灌、灌水下限为田间持水率的65%与播前深松40 cm.

In order to explore the influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out with three factors of micro-irrigation method, irrigation depth, and subsoiling depth. The factor of irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube-irrigation; three levels of irrigation depth were obtained by controlling the lower limit of soil water content to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first and then decreased, while the activity of phosphatase followed an opposite trend in the growth season of summer maize. Compared with surface drip irrigation and moistube-irrigation, subsurface drip irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth season, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity decreased first and then increased, while urease activity and yield increased first and then decreased. The average soil moisture and root volume all increased in the growth season of summer maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of 40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield, the best management strategy of summer maize was the combination of subsurface drip irrigation, controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoiling before planting.


全 文 :微灌与播前深松对根际土壤酶活性
和夏玉米产量的影响
张明智1,2  牛文全1,2,3∗  许  健2,3  李  元2,3
( 1西北农林科技大学水利与建筑工程学院, 陕西杨凌 712100; 2西北农林科技大学中国旱区节水农业研究院, 陕西杨凌
712100; 3西北农林科技大学水土保持研究所, 陕西杨凌 712100)
摘  要  为探明微灌与播前深松耕作对夏玉米根际土壤酶活性和产量的影响,以大田夏玉米
为研究对象,设计微灌灌溉方式(地表滴灌、地下滴灌和微润灌)、灌水量(分别控制土壤含水
量下限为田间持水率的 50%、65%和 80%)和深松深度(20、40、60 cm)3因素、3水平正交田间
试验.结果表明: 夏玉米全生育期内,土壤过氧化氢酶和脲酶活性均呈先增加后减小趋势,磷
酸酶活性则呈先减小后增加趋势.地下滴灌 0~80 cm生育期平均土壤含水率比地表滴灌和微
润灌高 6.3%和 1.8%,且显著提高土壤脲酶活性、夏玉米根系体积和产量;随着灌水量的增加,
土壤磷酸酶活性呈先减小后增加趋势,脲酶活性和产量均呈先增加后减小趋势,生育期平均
土壤含水率与根系体积均呈增加趋势;深松 40 cm比 20 cm 的产量和根系体积增加量大于深
松 60 cm比 40 cm的增加量,深松 40 cm土壤酶活性较高.从提高水资源、氮肥利用率及作物
产量角度考虑,该地区夏玉米种植的最优组合应为地下滴灌、灌水下限为田间持水率的 65%
与播前深松 40 cm.
关键词  微灌; 深松; 夏玉米; 土壤酶活性; 产量
本文由国家高技术研究发展计划项目(2011AA100507)资助 This work was supported by the National High⁃tech Research and Development Project
(2011AA100507).
2015⁃12⁃16 Received, 2016⁃04⁃01 Accepted.
∗通讯作者 Corresponding author. E⁃mail: nwq@ vip.sina.com
Influences of micro⁃irrigation and subsoiling before planting on enzyme activity in soil rhizo⁃
sphere and summer maize yield. ZHANG Ming⁃zhi1,2, NIU Wen⁃quan1,2,3∗, XU Jian2,3, LI
Yuan2,3 (1College of Water Resource and Architectural Engineering, Northwest A&F University, Yang⁃
ling 712100, Shaanxi, China; 2Institute of Water Saving Agriculture in Arid Regions of China, North⁃
west A&F University, Yangling 712100, Shaanxi, China; 3Institute of Soil and Water Conservation,
Northwest A&F University, Yangling 712100, Shaanxi, China) .
Abstract: In order to explore the influences of micro⁃irrigation and subsoiling before planting on en⁃
zyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out
with three factors of micro⁃irrigation method, irrigation depth, and subsoiling depth. The factor of
irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube⁃irriga⁃
tion; three levels of irrigation depth were obtained by controlling the lower limit of soil water content
to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling
were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first
and then decreased, while the activity of phosphatase followed an opposite trend in the growth sea⁃
son of summer maize. Compared with surface drip irrigation and moistube⁃irrigation, subsurface drip
irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth sea⁃
son, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots
volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity
decreased first and then increased, while urease activity and yield increased first and then de⁃
creased. The average soil moisture and root volume all increased in the growth season of summer
maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than
应 用 生 态 学 报  2016年 6月  第 27卷  第 6期                                            http: / / www.cjae.net
Chinese Journal of Applied Ecology, Jun. 2016, 27(6): 1925-1934                  DOI: 10.13287 / j.1001-9332.201606.035
those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of
40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield,
the best management strategy of summer maize was the combination of subsurface drip irrigation,
controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoi⁃
ling before planting.
Key words: micro⁃irrigation; subsoiling; summer maize; soil enzyme activity; yield.
    滴灌、微润灌均为局部灌溉,多次灌水后易出现
土壤容重增大、孔隙度减小等现象;而深松耕作可打
破犁底层,改善土壤结构,促进作物对深层土壤水分
的吸收,具有节水、抗旱、增产等优势.微灌与深松耕
作相结合,势必对土壤水、肥、气环境产生影响.研究
表明,土壤播前深松和补灌可提高蓄水量,有利于小
麦在灌浆中后期保持较高的光合能力,提高作物干
物质积累及产量,但高灌水不利于根系向土层深处
生长[1-4] .土壤酶能快速响应土壤微环境的变化,是
土壤生物学活性的总体现之一,是评价土壤管理措
施的良好的微生物学指标,能够反映土壤中生物代
谢和物质转化状况,在养分循环中起着关键作
用[5-6],如过氧化氢酶、脲酶、磷酸酶的活性水平可
以直接反映土壤氮、磷等养分的转化速率和有效性.
目前,相关研究主要集中于耕作方式、土壤水分
(灌溉)两者结合对作物生长及产量的影响,或者是
单一因素对土壤酶活性的影响,而有关微灌与深松
结合对作物产量、土壤微环境(土壤酶)影响的研究
较少.因此,本研究以大田夏玉米为对象,研究微灌
与播前深松结合对夏玉米根际土壤酶活性和产量的
影响,旨在确定合理的微灌和深松深度,为微灌与深
松耕作相结合改善土壤微环境、提高根际土壤养分
利用提供理论依据.
1  材料与方法
1􀆰 1  试验材料
试验于 2014 年 7—10 月在陕西省杨凌西北农
林科技大学教育部旱区农业水土工程重点实验室灌
溉试验站(34°20′ N,108°24′ E,海拔 521 m)进行.该
地区属暖温带半湿润气候,全年无霜期 221 d,年均
日照时数 2163.8 h,年降水量在 550 ~ 650 mm,降雨
集中在 7—9月.2014年夏玉米整个生育期降雨分布
及温度变化如图 1所示.供试土壤为杨凌塿土,经测
定 80 cm土层内平均田间持水率为 31.7%(体积含
水率),体积饱和含水率为 60. 1%,凋萎含水率为
8.5%,土壤容重为 1.32 g·cm-3 .该试验小区地下水
埋深大于 5 m[7],因此忽略地下水补给.
图 1  研究区玉米生育期内降雨量(P)和温度的变化
Fig.1  Changes of rainfall (P) and temperature during maize
growth period in the study region.
Tmax: 最高气温 Maxminmum temperature; Tmin: 最低气温 Minimum
temperature.
1􀆰 2  试验设计
本试验考虑灌水方式、灌水量和深松深度 3 个
因素,各 3水平,采用正交试验设计,套用 L9(34) 正
交表,共 9个处理(表 1),均 3次重复,计 27 个试验
小区.其中地表和地下滴灌分别采用内镶贴片式地
表与地下滴灌带(甘肃大禹节水股份有限公司),管
径均为 16 mm,布置间距 60 cm,滴头间距 40 cm,工
作压力 100 kPa,滴头流量为 2.2 L·h-1,其中地下
滴灌处理滴灌带埋深 20 cm;微润管(深圳市微润灌
溉有限公司,图 2)的管径 16 cm,埋深 20 cm,工作
压力为 200 kPa时,流量约 4 L·m-1·d-1 .本次试验
工作压力为 40 kPa,流量为 50 mL·m-1·h-1 .
灌水方式为地表滴灌(S)、地下滴灌(B)和微润
灌 (M)3种.灌水量的控制:1)地表与地下滴灌均以
图 2  微润管及湿润土壤
Fig.2  Moistube and moist soil.
6291 应  用  生  态  学  报                                      27卷
图 3  毛管及 Trime管布置示意图
Fig.3  Layout diagram of capillary and Trime pipe (cm).
a) 滴灌带间距 60 cm The space of drip irrigation was 60 cm n; b) 微润
管间距 60 cm The space of moistube was 60 cm. ①滴灌带 Drip tape; ②
滴头 Emitter; ③Trime管 The tube of Trime; ④微润管 Moistube; ⑤随
机选取点 The point of random.
灌水下限控制,分别控制田间持水率(F)的 50%、
65%和 80%,即 50% F (I1)、65% F (I2)和 80% F
(I3),灌水上限统一设置为田间持水率的 90%,与降
雨无关.采用 TRIME⁃PICO(德国)测定全生育期土
壤体积含水率,每隔 3 d 测量 1 次,若遇降雨或灌
溉,则在降雨或灌溉 24 h后加测 1次.每个小区选取
两个监测点,一根埋设在滴头垂直方向 30 cm处(两
滴灌带之间),另一根埋设在滴头水平方向 20 cm处
(图 3a).分别测量 10、20、30、40、60和 80 cm土层深
度的土壤含水率.当土壤含水量分别达到灌水下限
时开始灌溉,如果土壤含水量高于控制上限,则一直
不进行灌溉.灌水量[8]可用下式计算:
M= 100(θF-θi)Hp
式中:M为次灌水量(m3·hm-2);θF为土壤田间持
水率(体积含水率);θi为 H 土层内的平均含水率
(体积含水率);H 为计划湿润层深度( cm);p 为土
壤湿润比(滴灌取 p = 0.9).苗期、拔节期、抽雄期和
灌浆成熟期土壤计划湿润层深度分别取 40、60、60
和 60 cm,根据灌水上限和计划湿润层深度计算出
次灌水量,再根据滴头流量计算出灌水时间.
2)微润灌灌水量以微润管布置间距来控制,分
别为 60 cm(I1)、40 cm(I2) 和 20 cm(I3).微润管的
埋深均为 20 cm.微润灌与降雨量关系密切,遇降雨
或灌水上限达到 90%田间持水率(θF)时,则关闭阀
门停止灌溉,雨后动态监测土壤水分.每个小区选取
两个监测点,在微润管上随机选取一点,类似滴灌滴
头.以该点为依据,一根埋设在该点垂直方向,两条
微润管中间,另一根埋设在该点水平方向 20 cm 处
(图 3b).若土壤水分分别达田间持水率的 50%、
65%和 80%时,开启阀门继续微润灌.每个小区的灌
水量根据微润管条数、长度和实际灌水时间计算.
深松:播前深松深度设 20 cm(R1)、40 cm(R2)、
60 cm(R3).采用卡特 330 BL挖掘机松土器(中国),
播前根据试验设计要求对各小区进行整体均匀
深松.
各处理在全生育期灌水量见表 1.试验小区为
4 m×2.8 m,各小区间距 1 m,小区间埋设 1 m 深建
筑防水膜苯乙烯⁃丁二烯⁃苯乙烯嵌段共聚物(SBS)
隔离,以防止土壤水分横向渗透运移.夏玉米品种为
‘郑丹 958’,种植密度 5万株·hm-2,株距 30 cm,行
距 60 cm,7 月 1 日播种,10 月 12 日收获.在此期间
降雨量及温度见图 1.夏玉米全生育期有效降雨量
325.6 mm.由于试验小区比较集中,各处理降水量认
为完全一致,采用离试验地约 300 m 远的气象站数
据计算农田降水量.播种前施基肥:有机肥 600
kg·hm-2(N、P、K≥5%,有机质≥45%),复合肥 750
kg·hm-2(N、P、K≥15%),拔节期(播种后 37 d)追
施尿素 600 kg·hm-2,施肥方式均为撒施.播种前对
种子进行筛选并灌水至田间持水率的 80%,以保证
出苗.
1􀆰 3  测定指标及方法
在苗期、拔节期、抽雄期及灌浆成熟期分别测定
表 1  正交试验处理方案及各处理在全生育期灌溉定额
Table 1   Orthogonal experiment design and irrigation
amount of each treatment in the whole growth period
序号
No.
灌水方式
Irrigation
way
灌水量
Irrigation
amount
深松深度
Subsoiling
depth
(cm)
处理
Treatment
灌溉定额
Irrigation
quota
(mm)
1 S 50%F (I1) 20 (R1) SI1R1 0
2 S 65%F (I2) 40 (R2) SI2R2 217.00
3 S 80%F (I3) 60 (R3) SI3R3 342.00
4 B 50%F (I1) 40 (R2) BI1R2 0
5 B 65%F (I2) 60 (R3) BI2R3 225.00
6 B 80%F (I3) 20 (R1) BI3R1 345.00
7 M 60 cm (I1) 60 (R3) MI1R3 58.13
8 M 40 cm (I2) 20 (R1) MI2R1 87.20
9 M 20 cm (I3) 40 (R2) MI3R2 116.27
S: 地表滴灌 Surface drip irrigation; B: 地下滴灌 Subsurface drip irri⁃
gation; M: 微润灌 Moistube irrigation.
72916期                      张明智等: 微灌与播前深松对根际土壤酶活性和夏玉米产量的影响         
夏玉米根际土壤过氧化氢酶、脲酶和磷酸酶活性.采
用抖土法:随机选取一株植株,将根系从土壤中整体
挖出,抖掉与根系松散结合的土体,然后将与根系紧
密结合的根表土用软毛刷刷下,作为根际土土样,每
个小区重复取样 3次,将样品立即带回室内.鲜土去
除植物残体,过 2 mm筛后土样保存于 4 ℃冰箱内,
3 d内测定过氧化氢酶、脲酶和磷酸酶活性.过氧化
氢酶活性采用 KMnO4滴定法测定,同时采用烘干法
测定土壤水分含量(质量百分数),以便计算每克干
土中酶活性,使用 1 g 土所消耗的 KMnO4溶液的毫
升数表示,单位为 mL·g-1 .脲酶活性采用苯酚⁃次氯
酸钠比色法测定,用 24 h内 1 g土壤生成的 NH4
+ ⁃N
质量表示,单位为 mg·g-1·d-1;磷酸酶活性采用磷
酸笨二钠比色法测定,用 24 h 内 1 g 土壤稀出的酚
质量表示,单位为 mg·g-1·d-1 [9-10] .
土壤总孔隙度 = (1-容重 /密度) ×100%,土壤
密度值采用 2.65 g·cm-3;土壤通气度 =总孔隙度-
容积湿度.
1􀆰 4  数据处理
利用 SPSS 22.0 软件进行 Duncan 多重比较及
交互作用方差分析,对同一处理获得的数据取均值
后进行极差分析,采用 Origin Pro 9.0软件作图.差异
显著分析采用 F 检验,显著水平设置为 α = 0.05,图
表中数据为平均值±标准差.
2  结果与分析
2􀆰 1  夏玉米根际土壤酶活性
2􀆰 1􀆰 1土壤过氧化氢酶  微灌与深松结合对根际土
壤过氧化氢酶活性的影响见表 2.抽雄期深松深度为
40 cm 时,土壤过氧化氢酶活性显著高于 20 和 60
cm.抽雄期 3种因素两两交互作用均对过氧化氢酶
活性有显著影响,灌浆成熟期的灌水方式与灌水量、
灌水量与深松均对过氧化氢酶活性有显著影响.夏
玉米全生育期内,土壤过氧化氢酶活性呈先增加后
降低趋势,拔节期活性最强,苗期次之,灌浆成熟期
最小;MI2R1土壤过氧化氢酶活性均值最低,SI3R3最
高.灌浆成熟期 BI1R2处理土壤过氧化氢酶活性显著
高于其他处理.极差分析表明(图 4),3 因素对土壤
过氧化氢酶的影响程度由大到小依次为:灌水量、灌
溉方式、深松,SI3R2为提高其活性的最佳处理.滴灌
下土壤过氧化氢酶活性高于微润灌;随灌水量的增
加,土壤过氧化氢酶活性呈先减小后增加趋势.深松
40 cm土壤过氧化氢酶活性高于 20 与 60 cm,说明
在一定范围内增加深松深度可提高土壤过氧化氢酶
活性;深松深度过大会降低土壤过氧化氢酶活性.
2􀆰 1􀆰 2土壤脲酶活性  表 3 为微灌与深松结合对根
际土壤脲酶活性的影响.灌水方式对脲酶活性有显
著影响(拔节期除外);灌水量在苗期与抽雄期对脲
表 2  不同处理对夏玉米不同生育阶段土壤过氧化氢酶活性的影响
Table 2  Influence of different treatments on soil catalase activity in different growth periods of maize (mL·g-1)
处理
Treatment
苗期
Seedling stage
拔节期
Jointing stage
抽雄期
Tasseling stage
灌浆成熟期
Grain filing and maturity stage
平均值
Average
SI1R1 2.830±0.090ab 2.690±0.260a 2.800±0.080ab 2.500±0.080b 2.710
SI2R2 2.760±0.040ab 2.870±0.010a 2.870±0.080ab 2.510±0.010b 2.750
SI3R3 2.810±0.090ab 3.030±0.530a 2.830±0.110ab 2.560±0.030b 2.810
BI1R2 2.760±0.040ab 2.680±0.110a 2.610±0.040bc 3.070±0.530a 2.780
BI2R3 2.870±0.120a 2.650±0.080a 2.650±0.150bc 2.490±0.080b 2.670
BI3R1 2.870±0.060a 2.880±0.150a 2.650±0.150bc 2.610±0.190b 2.750
MI1R3 2.500±0.150c 3.060±0.260a 2.810±0.080ab 2.320±0.230b 2.670
MI2R1 2.770±0.060ab 2.760±0.110a 2.420±0.300c 2.540±0.040b 2.620
MI3R2 2.690±0.110b 2.760±0.040a 2.990±0.260a 2.540±0.060b 2.750
平均值 Average 2.760 2.820 2.740 2.570
F G 10.288ns 0.901ns 3.358ns 3.886∗
I 3.512ns 0.715ns 2.775ns 0.701ns
R 2.883ns 1.090ns 3.628∗ 3.270ns
G×I 2.656ns 1.751ns 3.567∗ 3.478∗
I×R 6.267∗∗ 1.656ns 3.432∗ 3.786∗
R×G 2.879ns 1.563ns 3.140∗ 2.194ns
G: 灌水方式 Irrigation way; I: 灌水量 Irrigation amount; R: 深松 Subsoiling. 同列不同字母表示差异显著(P<0.05) Different letters in the same
column meant significant difference at 0.05 level.∗P<0.05; ∗∗P<0.01; ns: P>0.05. 下同 The same below.
8291 应  用  生  态  学  报                                      27卷
酶活性有显著影响.拔节期与抽雄期 3 因素两两交
互作用均对脲酶活性有显著影响.夏玉米全育期内
土壤脲酶活性呈先增加后减小趋势,与土壤过氧化
氢酶活性变化趋势一致.极差分析表明(图 4),3 因
素对土壤脲酶的影响程度由大到小依次为:灌溉方
式、灌水量、深松,提高其活性的最佳处理为 BI1R3 .
地下滴灌土壤脲酶活性显著高于地表滴灌和微润
灌;在一定范围内,随灌水量的增加,土壤脲酶活性
呈增加趋势;但过高灌溉会抑制脲酶活性的增加.深
松 40 cm土壤脲酶活性高于 20 cm,但小于 60 cm,
说明随深松深度的增加,土壤脲酶活性呈增加趋势.
由于深松 60 cm 工程成本高,且其脲酶活性未显著
高于深松 40 cm,故选择深松 40 cm为宜.
2􀆰 1􀆰 3土壤磷酸酶活性  微灌与深松结合对根际土
壤磷酸酶活性的影响见表 4.灌水量、深松在拔节期、
灌浆成熟期均对磷酸酶活性有显著影响.抽雄期 3
因素两两交互作用均对磷酸酶活性有显著影响.夏
玉米全育期内土壤磷酸酶活性呈先降低后增加趋
势,灌浆成熟期磷酸酶活性最强.拔节期与灌浆成熟
期 BI1R2土壤磷酸酶活性显著高于其他处理.
极差分析表明(图 4),3 因素对土壤磷酸酶活
性的影响程度由大到小依次为:灌水量、灌溉方式、
表 3  不同处理对夏玉米不同生育阶段土壤脲酶活性的影响
Table 3  Influence of different treatments on soil urease activity in different growth periods of maize (mg·g-1·d-1)
处理
Treatment
苗期
Seedling stage
拔节期
Jointing stage
抽雄期
Tasseling stage
灌浆成熟期
Grain filing and maturity stage
平均值
Average
SI1R1 0.076±0.033ab 0.075±0.011b 0.048±0.003bc 0.056±0.002abc 0.064
SI2R2 0.038±0.024c 0.094±0.008ab 0.076±0.012bc 0.053±0.019abc 0.065
SI3R3 0.054±0.033abc 0.069±0.002b 0.079±0.021bc 0.044±0.010c 0.062
BI1R2 0.041±0.016bc 0.077±0.031b 0.102±0.014b 0.058±0.006abc 0.070
BI2R3 0.031±0.008c 0.086±0.006ab 0.160±0.073a 0.046±0.001bc 0.081
BI3R1 0.032±0.008c 0.103±0.012a 0.067±0.020bc 0.066±0.002a 0.067
MI1R3 0.081±0.008a 0.091±0.003ab 0.044±0.024c 0.066±0.007a 0.071
MI2R1 0.057±0.013abc 0.072±0.012b 0.071±0.005bc 0.058±0.004abc 0.065
MI3R2 0.028±0.004c 0.086±0.009ab 0.079±0.012bc 0.060±0.001abc 0.063
平均值 Average 0.049 0.084 0.081 0.056
F G 3.508∗ 1.195ns 7.079∗∗ 4.054∗
I 5.508∗ 0.327ns 4.186∗ 2.310ns
R 3.040ns 0.194ns 3.145ns 2.583ns
G×I 1.645ns 3.690∗ 3.159∗ 2.775ns
I×R 1.915ns 4.191∗ 5.135∗∗ 3.510∗
R×G 2.875ns 3.756∗ 3.679∗ 2.639ns
表 4  不同处理对夏玉米不同生育阶段土壤磷酸酶活性的影响
Table 4  Influence of different treatments on soil phosphatase activity in different growth periods of maize (mg·g-1·d-1)
处理
Treatment
苗期
Seedling stage
拔节期
Jointing stage
抽雄期
Tasseling stage
灌浆成熟期
Grain filing and maturity stage
平均值
Average
SI1R1 0.011±0.010a 0.003±0.001b 0.005±0.002c 0.011±0.003ab 0.008
SI2R2 0.014±0.007a 0.004±0.002b 0.004±0.001c 0.011±0.001ab 0.008
SI3R3 0.014±0.012a 0.003±0.002b 0.010±0.001ab 0.015±0.006a 0.011
BI1R2 0.015±0.010a 0.010±0.005a 0.004±0.001c 0.015±0.006a 0.011
BI2R3 0.002±0.001a 0.003±0.003b 0.005±0.001c 0.008±0.002b 0.005
BI3R1 0.010±0.001a 0.001±0.001b 0.010±0.005a 0.013±0.001ab 0.009
MI1R3 0.013±0.002a 0.005±0.005b 0.010±0.001a 0.009±0.004ab 0.009
MI2R1 0.014±0.009a 0.001±0.001b 0.007±0.001bc 0.013±0.003ab 0.009
MI3R2 0.009±0.002a 0.003±0.001b 0.004±0.002c 0.013±0.001ab 0.007
平均值 Average 0.011 0.004 0.007 0.012
F G 0.633ns 1.139ns 0.419ns 0.073ns
I 0.444ns 5.909∗ 4.479∗ 1.766ns
R 0.364ns 4.429∗ 11.837∗∗ 0.993ns
G×I 1.345ns 2.764ns 10.169∗∗ 2.611ns
I×R 1.479ns 1.119ns 4.460∗ 2.151ns
R×G 1.385ns 3.504∗ 6.490∗∗ 2.998∗
92916期                      张明智等: 微灌与播前深松对根际土壤酶活性和夏玉米产量的影响         
图 4  不同处理对土壤过氧化氢酶、脲酶和磷酸酶活性的极差分析
Fig.4  Range analysis of different treatments on soil catalase, urease and phosphatase activities.
S: 地表滴灌 Surface drip irrigation; B: 地下滴灌 Subsurface drip irrigation; M: 微润灌 Moistube irrigation. I1: 控制下限为田间持水率的 50% The
lower soil water content limit was 50% of the field holding water rate; I2: 控制下限为田间持水率的 65% The lower soil water content limit was 65% of
the field holding water rate; I3: 控制下限为田间持水率的 80% The lower soil water content limit was 80% of the field holding water rate. R1:深松 20
cm Subsoiling depth was 20 cm; R2: 深松 40 cm Subsoiling depth was 40 cm; R3: 深松 60 cm Subsoiling depth was 60 cm.
深松,提高其活性的最佳处理为 SI1R2 .随灌水量的
增加,土壤磷酸酶活性呈先降低后增加趋势;深松深
度 40 cm的土壤磷酸酶活性高于 20 和 60 cm,说明
在一定范围内增加深松深度可提高土壤磷酸酶活
性;深松深度过深则抑制土壤磷酸酶活性的增加.
2􀆰 2  夏玉米生育期平均土壤含水率
在夏玉米生育期,利用 TDR监测 0~80 cm土层
深度土壤含水率,计算获得生育期平均土壤含水率,
对其进行方差分析和极差分析(表 5、图 5).通过单
因素及两两因素交互作用分析发现,灌水方式与灌
水量对生育期平均土壤含水率有显著影响,灌水量
与深松、灌水方式与深松交互作用对生育期平均土
壤含水率有显著影响.BI3R1生育期平均土壤含水率
显著高于其他处理.3 因素对生育期平均土壤含水
率的影响程度由大到小依次为:灌水量、灌溉方式、
深松,提高生育期平均土壤含水率最佳处理为
BI3R3 .与地表滴灌、微润灌相比,地下滴灌生育期平
均土壤含水率分别提高 6.3%和 1.7%;I3灌水处理比
I1和 I2处理生育期平均土壤含水率分别提高 7.8%
和3.6%.随深松深度的增加,生育期平均土壤含水率
呈增加趋势,R3深松处理生育期平均土壤含水率比
R1、R2分别提高 1.9%和 0.7%,深松 60 cm生育期平
均土壤含水率增幅较小,故选用播前深松 40 cm 较
为适宜.
2􀆰 3  夏玉米根系体积
在夏玉米收获期采用液排法测定根系体积[11],
并对其进行方差分析和极差分析(表 5、图 5).3 因
素均对根系体积有显著影响,灌水方式与深松、灌水
方式与灌水量交互作用对根系体积有显著影响.SI1
R1处理根系体积显著低于其他处理.3 因素对根系
体积的影响程度由大到小依次为:灌水量、灌溉方
式、深松,提高根系体积最佳处理为 BI3R2 .与地表滴
灌、微润灌相比,地下滴灌作物根系体积分别提高
23.8%和 12.2%.I3灌水处理比 I1、I2处理作物根系体
积分别提高 31.6%和 11.8%.深松 R3处理根系体积
是 R1、R2处理的 1.35、1.01倍.
2􀆰 4  夏玉米产量
对各处理夏玉米产量平均后进行方差分析和极
差分析(表 5、图 5).灌水量与灌水方式均对产量有
显著影响,3因素下两两交互作用均对产量有显著
表 5  不同处理对夏玉米生育期平均土壤含水率、根系体积
和产量的影响
Table 5   Influence of different treatments on average soil
moisture in growth period, root volume and yield of sum⁃
mer maize
处理
Treatment
生育期平均
土壤含水率
Average soil
moisture in
growth period
(%)
根系体积
Root
volume
(cm3)
产量
Yield
(kg·hm-2)
SI1R1 22.4±1.95c 32.35±5.34c 4157.82±528.33d
SI2R2 24.7±0.88b 71.03±7.79ab 6526.23±289.72a
SI3R3 25.8±0.43ab 76.43±4.32a 5756.3±634.22b
BI1R2 25.3±0.36ab 72.15±18.85ab 4759.22±204.79cd
BI2R3 25.4±0.74ab 75.86±3.89a 6493.17±348.45a
BI3R1 26.9±1.16a 74.51±11.38a 6760.39±208.13a
MI1R3 25.0±0.70b 67.50±4.70ab 5225.89±239.33bc
MI2R1 25.5±0.33ab 55.48±5.11b 5414.83±118.62b
MI3R2 25.7±0.02ab 75.38±9.53a 5796.17±367.57b
F G 6.751∗∗ 5.528∗ 6.308∗
I 9.837∗∗ 8.926∗ 45.529∗∗
R 0.625ns 12.979∗∗ 2.572ns
G×I 2.156ns 7.860∗ 8.414∗
I×R 5.219∗ 4.135ns 10.283∗∗
R×G 6.762∗∗ 5.834∗ 29.925∗∗
0391 应  用  生  态  学  报                                      27卷
图 5  不同处理对夏玉米生育期平均土壤含水率、根系体积和产量的极差分析
Fig.5  Range analysis of different treatments on average soil moisture in growth period, root volume and yield of summer maize.
影响,SI1R1处理夏玉米产量显著低于其他处理.3 因
素对产量的影响程度由大到小依次为:灌水量、灌溉
方式、深松,提高产量最佳处理为 SI2R3 .地下滴灌作
物产量分别是地表滴灌、微润灌的 1.10、1.09 倍. I2
灌水处理比 I1、I3处理的作物产量分别提高 30.4%、
0.7%.随深松深度的增加,产量呈增加趋势.由于深
松 60 cm 工程成本较高,且与深松 40 cm 相比产量
增加量小于深松 40 cm 与 20 cm 相比的产量增加
量,故选用播前深松 40 cm较为适宜.
3  讨    论
灌溉方式、灌水量与播前深松直接或间接影响
土壤微环境,改变作物根际土壤酶活性,从而对作物
的生长及产量产生影响.过氧化氢酶、脲酶和磷酸酶
是土壤中常见的 3 种酶,能够整体反映土壤水肥状
况,体现土壤微生物功能多样性[12],反映土壤养分
转化能力的强弱.土壤过氧化氢酶活性与土壤呼吸
强度、微生物活动有密切关系,能够促进过氧化氢分
解为水和氧气,减少过氧化氢对作物的毒害,是土壤
肥力评价的重要酶[13-14];土壤脲酶能够水解施入土
壤中的尿素,释放出利于作物生长的铵,对土壤氮循
环起重要作用,反映土壤供氮能力与水平[9,15];土壤
磷酸酶可催化磷酸脂类或磷酸酐的水解,其活性的
高低直接影响土壤有机磷的分解转化及其生物有效
性,与土壤微环境密切相关[16] .
3􀆰 1  夏玉米生育期内根际土壤酶活性的变化
根系分泌物向根际土壤提供了含氮的酶促底
物,诱导相关酶的合成[17] .本试验发现,夏玉米全生
育期土壤过氧化氢酶和脲酶活性呈先增加后减小趋
势,而磷酸酶活性呈先减小后增加趋势.可能是由于
随作物的生长,作物根系呈先快速生长增加,再衰老
减小的过程,根系分泌物也随之发生相应变化,导致
土壤酶活性改变.孟庆英等[18]、薛丽华等[19]对大豆、
马铃薯、甜菜、玉米、冬小麦和烤烟根际土壤酶活性
变化趋势研究也表明,微灌与深松同样不改变土壤
磷酸酶活性在作物全生育期的基本变化趋势.余江
敏等[20]在进行局部分根交替灌溉研究时发现,土壤
过氧化氢酶活性在 1.8 ~ 4.0 mL·g-1;颜世磊等[21]
研究发现,土壤脲酶活性在 0.05 ~ 0.08 mg·g-1·
d-1,与本研究范围段类似.低磷胁迫促进植物根系
分泌磷酸酶是植物适应低磷胁迫的机理之一.植物
根系分泌磷酸酶是土壤磷酸酶的重要来源.由于本
试验田播前施加充足的有机肥与无机肥,土壤中作
物生长所需要的磷素充足,降低了根系分泌磷酸
酶[22-23];也有可能是土壤质地等因素影响,导致土
壤磷酸酶活性较低.
3􀆰 2  微灌对夏玉米根际土壤酶活性的影响
脲酶活性与氧密切相关[24],且在一定范围的土
壤含水率内,随土壤含水率的增加,脲酶活性呈先增
加后降低趋势[25] .本研究发现,地下滴灌土壤脲酶
活性显著高于地表滴灌和微润灌.由于地下滴灌是
间歇性灌水,灌溉间歇期间地下管道内充满空气;当
灌水时管道内空气排出,增加土壤空气的流动,提高
土壤通气性.且本试验测定地下滴灌生育期平均土
壤含水率比地表滴灌和微润灌分别高 6.3%和1.8%.
梁菊蓉[26]研究发现,过氧化氢酶活性滴灌最大,其
次是渗灌,沟灌最小.叶德练等[27]研究发现,常规灌
水(150 mm)下,随灌水量的减小,土壤脲酶活性呈
降低趋势.米国全等[28]、Zhang 等[29]认为,高灌水有
助于提高土壤过氧化氢酶和磷酸酶活性.说明灌溉
方式和灌水量不同,不同种类的酶活性也不同.李华
等[30]研究认为,随灌水量的增加,土壤过氧化氢酶
和磷酸酶活性先增加后降低.这与本研究结论不一
致,可能由于作物种类和土壤类型、以及采样深度不
13916期                      张明智等: 微灌与播前深松对根际土壤酶活性和夏玉米产量的影响         
同所致[29] .
3􀆰 3  深松对夏玉米根际土壤酶活性的影响
土壤酶活性与植物根系分泌物密切相关,根系
体积越大,分泌物越多[5] .深松 60 cm根系体积是 20
和 40 cm的 1.35 和 1.01 倍,深松 40 与 60 cm 根系
体积相差较小,深松 60 cm 土壤酶活性较低.经测
定,深松 60 cm的土壤总孔隙度比深松 40 和 20 cm
分别高 1.4%和 1.7%.总孔隙度的增加提高了土壤
气体交换,减小了土壤水分流动阻力,易于淋洗耕作
层(0~40 cm)土壤养分;同时,深松 60 cm打破犁底
层,降低耕作层平均土壤养分,耕作层土壤养分在深
松 40与 15 cm间不存在显著差异,且与土壤酶活性
存在显著相关性[31] .因此,本研究深松 40 cm 土壤
酶活性较高. Pandey 等[32]、Ji 等[33]研究发现,深松
30 cm左右可提高土壤肥力、微生物数量和土壤酶
活性;裴雪霞等[34]研究认为,深松 20 cm 的土壤磷
酸酶活性均低于深松 40 cm,说明深松 35 cm左右可
提高土壤酶活性.
3􀆰 4  灌溉与深松对作物产量的影响
作物产量与土壤含水量在一定范围内呈正相关
关系[35] .本研究发现,与地表滴灌、微润灌相比,地
下滴灌产量较高.这是由于地下滴灌生育期平均土
壤含水率比地表滴灌和微润灌高,且其脲酶活性较
高,而脲酶活性与产量呈显著正相关关系[36] .本研
究还发现,随灌水量的增加,产量呈先增加后减小趋
势,由于灌溉定额较大,土壤水分过多,土壤空气少,
出现低氧胁迫现象,导致产量降低.王洪源等[37]对
冬小麦、甜瓜的研究表明,地下滴灌产量高于地表滴
灌;何玉琴等[38]研究表明,微润灌产量低于地下滴
灌.这说明灌溉方式对作物产量的影响很大.薛万来
等[39]发现,微润灌番茄产量高于滴灌,与本研究结
果不同,可能是由于作物种类或灌溉定额不同引起
的差异[40] .
土壤下层(10 cm)根系质量与作物产量呈正相
关关系[41] .本研究发现,随深松深度的增加作物产
量呈增加趋势.由于深松增加土壤空隙,减小土壤水
分流动阻力,易于淋洗耕作层(0~40 cm)土壤养分,
使得土壤养分向深层运移,作物为了生长迫使根系
向深层生长,增大了深层根系的体积或质量.且本研
究发现,根系体积随深松的增加呈增加趋势.尹宝重
等[42]、李霞等[43]研究表明,深松 30 cm 可提高土壤
水肥利用效率和作物产量.李荣等[44]研究表明,深
松 35 cm 可提高马铃薯产量;王慧杰等[45]研究发
现,微孔深松 80 cm 的棉花产量高于传统耕作 15
cm.这均与本研究结果一致.说明随深松深度的增
加,作物产量呈增加趋势.但关于土壤养分如何分布
与运移还有待进一步研究.
参考文献
[1]  Zheng C⁃Y (郑成岩), Yu Z⁃W (于振文), Zhang Y⁃L
(张永丽), et al. Effects of subsoiling and supplemental
irrigation on dry matter production and water use effi⁃
ciency in wheat. Acta Ecologica Sinica (生态学报),
2013, 33(7): 2260-2271 (in Chinese)
[2]  Chu P⁃F (褚鹏飞), Yu Z⁃W (于振文), Wang D (王
东), et al. Effects of tillage on water consumption char⁃
acteristics and grain yield of wheat. Scientia Agricultura
Sinica (中国农业科学), 2010, 43(19): 3954-3964
(in Chinese)
[3]  Zhao X (赵  鑫), Ren W (任  伟), Wang Y⁃Q (王
云奇), et al. Impact of irrigation modes of winter wheat
season and agronomy managements on soil water content
and WUE of summer maize. Journal of Soil and Water
Conservation (水土保持学报), 2014, 28(2): 100-
104 (in Chinese)
[4]  Wang S⁃F (王淑芬), Zhang X⁃Y (张喜英), Pei D
(裴   冬). Impacts of different water supplied condi⁃
tions on root distribution, yield and water utilization effi⁃
ciency of winter wheat. Transactions of the Chinese Society
of Agricultural Engineering (农业工程学报), 2006, 22
(2): 27-32 (in Chinese)
[5]  Pajares S, Gallardo JF, Masciandaro G, et al. Enzyme
activity as an indicator of soil quality changes in degraded
cultivated Acrisols in the Mexican Trans⁃volcanic Belt.
Land Degradation & Development, 2011, 22: 373-381
[6]  He W (贺   伟). The Effect of Varied Irrigation Me⁃
thods on the Photosynthesis and Soil Biological Activities
of Oat. Master Thesis. Hohhot: Inner Mongolia Agricul⁃
tural University, 2013 (in Chinese)
[7]  Yu K (余  坤), Feng H (冯  浩), Wang Z⁃L (王增
丽), et al. Ammoniated straw improving soil structure
and winter wheat yield. Transactions of the Chinese Society
of Agricultural Engineering (农业工程学报), 2014, 30
(15): 165-173 (in Chinese)
[8]  Yuan Y⁃X (袁宇霞), Zhang F⁃C (张富仓), Zhang Y
(张  燕), et al. Effects of irrigation threshold and fer⁃
tilization on growth, yield and physiological properties of
fertigated tomato in greenhouse. Agricultural Research in
the Arid Areas (干旱地区农业研究), 2013, 31(1):
76-83 (in Chinese)
[9]  Li Y (李  元), Niu W⁃Q (牛文全), Zhang M⁃Z (张
明智), et al. Effects of aeration on rhizosphere soil en⁃
zyme activities and soil microbes for muskmelon in plas⁃
tic greenhouse. Transactions of the Chinese Society for
Agricultural Machinery (农业机械学报), 2015, 46
(8): 121-129 (in Chinese)
[10]   Yao H⁃Y (姚槐应), Huang C⁃Y (黄昌勇). Soil Mi⁃
crobial Ecology and Its Experimental Technology. Bei⁃
jing: Science Press, 2006 (in Chinese)
[11]  Li H (李   洪). The dynamic change of maize roots
2391 应  用  生  态  学  报                                      27卷
bulk under different density treatments. Journal of
Shanxi Agricultural Sciences (山西农业科学), 2010,
38(9): 20-22 (in Chinese)
[12]  Yang J⁃J (杨佳佳), An S⁃S (安韶山), Zhang H (张
宏), et al. Effect of erosion on soil microbial biomass
and enzyme activity in the Loess Hills. Acta Ecologica
Sinica (生态学报), 2015, 35(17): 1- 12 ( in Chi⁃
nese)
[13]  Trasar⁃Cepeda C, Cami AF, Leirós MC, et al. An im⁃
proved method to measure catalase activity in soils. Soil
Biology and Biochemistry, 1999, 31: 483-485
[14]  Guo T⁃C (郭天财), Song X (宋  晓), Ma D⁃Y (马
冬云), et al. Effects of nitrogen application rate on soil
enzyme activities in wheat rhizosphere. Chinese Journal
of Applied Ecology (应用生态学报), 2008, 19(1):
110-114 (in Chinese)
[15]   Hou P (侯   鹏), Wang Y⁃J (王永军), Wang K⁃J
(王空军), et al. Dynamic changes of soil microbial
populations, enzyme activities in super⁃high yielding
summer maize farmland soil. Chinese Journal of Applied
Ecology (应用生态学报), 2008, 19(8): 1741-1746
(in Chinese)
[16]  Xiao X (肖  新), Zhu W (朱  伟), Xiao J (肖  
靓), et al. Suitable water and nitrogen treatment im⁃
proves soil microbial biomass carbon and nitrogen and
enzyme activities of paddy field. Transactions of the Chi⁃
nese Society of Agricultural Engineering (农业工程学
报), 2013, 29(21): 91-98 (in Chinese)
[17]  Dexter RE, Holloway A. Tillage and compaction effects
on soil properties, root growth and yield of wheat during
drought in a semi⁃arid environment. Soil Technology,
1991, 4: 233-253
[18]  Meng Q⁃Y (孟庆英), Zhu F⁃L (朱凤丽), Zhang C⁃F
(张春峰), et al. The effects of the soil layer replace⁃
ment to the rhizosphere soil enzymes and the soil nutri⁃
ents of different crops. Chinese Agricultural Science Bul⁃
letin (中国农学通报), 2014, 30(24): 76- 80 ( in
Chinese)
[19]  Xue L⁃H (薛丽华), Wang Z⁃M (王志敏), Guo Z⁃W
(郭志伟), et al. Effects of different irrigation regimes
on spatial⁃temporal distribution for activity of soil en⁃
zyme. Journal of Soil and Water Conservation (水土保
持学报), 2010, 24(5): 228-232 (in Chinese)
[20]  Yu J⁃M (余江敏), Li F⁃S (李伏生), Nong M⁃L (农
梦玲). Effects of partial root⁃zone irrigation and ratio of
organic to inorganic N on the enzyme activities in maize⁃
planting soil. Plant Nutrition and Fertilizer Science (植
物营养与肥料学报), 2010, 16(2): 334 - 340 ( in
Chinese)
[21]  Yan S⁃L (颜世磊), Zhao L (赵  蕾), Sun H⁃W (孙
红炜), et al. Effects of planting and straw returning of
transgenic BT maize on soil enzyme activities under field
condition. Acta Ecologica Sinica (生态学报), 2011,
31(15): 4244-4250 (in Chinese)
[22]  Vance CP, Uhde⁃Stone C, Allan DL. Phosphorus acqui⁃
sition and use: Critical adaptations by plants for secu⁃
ring a nonrenewable resource. New Phytologist, 2003,
157: 423-447
[23]  Gramss G, Voigt KD, Kirsche B. Oxidoreductase en⁃
zymes liberated by plant roots and their effects on soil
humic material. Chemosphere, 1999, 38: 1481-1494
[24]   Guan S⁃Y (关松荫). Soil Enzymes and Its Research
Method. Beijing: China Agriculture Press, 1986 ( in
Chinese)
[25]  Niu WQ, Zang X, Jia ZX, et al. Effects of rhizosphere
ventilation on soil enzyme activities of potted tomato un⁃
der different soil water stress. Clean: Soil, Air, Water,
2012, 40: 225-232
[26]  Liang J⁃R (梁菊蓉). Effect of irrigation modes on phy⁃
sical and chemical properties and microbial properties on
Xinjing saline soil. Water Saving Irrigation (节水灌
溉), 2012(7): 18-20 (in Chinese)
[27]  Ye D⁃L (叶德练), Qi R⁃J (齐瑞娟),Guan D⁃H (管
大海), et al. Response of soil microbial characteristics
and soil enzyme activity to irrigation method in no⁃till
winter wheat field. Acta Agronomica Sinica (作物学
报), 2015, 41(8): 1212-1219 (in Chinese)
[28]  Mi G⁃Q (米国全), Yuan L⁃P (袁丽萍), Gong Y⁃S
(龚元石), et al. Influences of different water and nitro⁃
gen supplies on soil biological environment in solar
greenhouse. Transactions of the Chinese Society of Agri⁃
cultural Engineering (农业工程学报), 2005, 21(7):
124-127 (in Chinese)
[29]  Zhang YL, Wang YS. Soil enzyme activities with green⁃
house subsurface irrigation. Pedosphere, 2006, 16: 512-
518
[30]  Li H (李   华), He H⁃J (贺洪军), Li T⁃F (李腾
飞), et al. Microbial activity and functional diversity in
rhizosphere of cucumber under different subsurface drip
irrigation scheduling. Chinese Journal of Applied Ecology
(应用生态学报), 2014, 25(8): 2349-2354 (in Chi⁃
nese)
[31]  Jimenez MD, de la Horra AM, Pruzzo L, et al. Soil
quality: A new index based on microbiological and bio⁃
chemical parameters. Biology and Fertility of Soils,
2002, 35: 302-306
[32]  Pandey D, Agrawal M, Bohra JS. Effects of conventional
tillage and no tillage permutations on extracellular soil
enzyme activities and microbial biomass under rice culti⁃
vation. Soil and Tillage Research, 2014, 136: 51-60
[33]  Ji BY, Hu H, Zhao YL, et al. Effects of deep tillage
and straw returning on soil microorganism and enzyme
activities. The Scientific World Journal, 2014, 14: 1-12
[34]  Pei X⁃X (裴雪霞), Dang J⁃Y (党建友), Zhang D⁃Y
(张定一), et al. Effects of different tillage methods on
phospholipid fatty acids and enzyme activities in calcare⁃
ous cinnamon soil. Chinese Journal of Applied Ecology
(应用生态学报), 2014, 25(8): 2275-2280 (in Chi⁃
nese)
[35]  Cai S⁃H (蔡守华), Xu Y (徐  英), Wang J⁃S (王俊
生), et al. Relationship between spatio⁃temporal varia⁃
bility of soil moisture and nutrients and crop yield.
Transactions of the Chinese Society of Agricultural Engi⁃
neering (农业工程学报), 2009, 25(12): 26-31 ( in
33916期                      张明智等: 微灌与播前深松对根际土壤酶活性和夏玉米产量的影响         
Chinese)
[36]  Zhang X⁃Q (张向前), Huang G⁃Q (黄国勤), Bian X⁃
M (卞新民), et al. Effects of intercropping on quality
and yield of maize grain, microorganism quality, and
enzyme activities in soils. Acta Ecologica Sinica (生态
学报), 2012, 32(22): 7082-7090 (in Chinese)
[37]   Wang H⁃Y (王洪源), Li G⁃Y (李光永). Effect of
drip irrigation model and irrigation start point on water
consumption and yield of sweet melon. Transactions of
the Chinese Society for Agricultural Machinery (农业机
械学报), 2010, 41(5): 47-51 (in Chinese)
[38]  He Y⁃Q (何玉琴), Cheng Z⁃Y (成自勇), Zhang R
(张   芮), et al. Effects of different ways of micro⁃
moist irrigation on growth and yield of maize. Journal of
South China Agricultural University (华南农业大学学
报), 2012, 33(4): 566-569 (in Chinese)
[39]  Xue W⁃L (薛万来), Niu W⁃Q (牛文全), Zhang Z⁃Z
(张子卓), et al. Effects of the tomato growth and water
use efficiency in sunlight greenhouse by moisture⁃irriga⁃
tion. Agricultural Research in the Arid Areas (干旱地区
农业研究), 2013, 31(6): 61-66 (in Chinese)
[40]  Wang J⁃D (王建东), Gong S⁃H (龚时宏), Xu D (许
迪), et al. Effects of irrigation models on the space dis⁃
tribution of root system and yield of winter wheat. Jour⁃
nal of Hydraulic Engineering (水利学报), 2011, 42
(10): 1239-1246 (in Chinese)
[41]  Cai K⁃Z (蔡昆争), Luo S⁃M (骆世明), Duan S⁃S
(段舜山). The relationship between spatial distribution
of rice root system and yield. Journal of South China Ag⁃
ricultural University(Natural Science) (华南农业大学
学报: 自然科学版), 2003, 24(3): 1 - 4 ( in Chi⁃
nese)
[42]  Yin B⁃C (尹宝重), Zhang Y⁃S (张永升), Zhen W⁃C
(甄文超). Effects of sub⁃soiling tillage on wheat field
water⁃saving and yield⁃increasing in canal irrigation dis⁃
trict of Haihe Lowland Plain. Scientia Agricultura Sinica
(中国农业科学), 2015, 48(7): 1311-1320 (in Chi⁃
nese)
[43]  Li X (李  霞), Tang M⁃J (汤明军), Zhang D⁃X (张
东兴), et al. Effects of subsoiling on soil physical qua⁃
lity and corn yield. Transactions of the Chinese Society of
Agricultural Engineering (农业工程学报), 2014, 30
(23): 65-69 (in Chinese)
[44]  Li R (李  荣), Hou X⁃Q (侯贤清). Effects of diffe⁃
rent ground surface mulch under subsoiling on potato
yield and water use efficiency. Transactions of the Chi⁃
nese Society of Agricultural Engineering (农业工程学
报), 2015, 31(20): 115-123 (in Chinese)
[45]  Wang H⁃J (王慧杰), Hao J⁃P (郝建平), Feng R⁃Y
(冯瑞云), et al. Microhole subsoiling decreasing soil
compaction, and improving yield and seed quality of cot⁃
ton. Transactions of the Chinese Society of Agricultural
Engineering (农业工程学报), 2015, 31(8): 7- 14
(in Chinese)
作者简介  张明智,男,1989 年生,硕士研究生.主要从事节
水灌溉新技术研究. E⁃mail: mingzhiz@ yeah.net
责任编辑  张凤丽
张明智, 牛文全, 许健, 等. 微灌与播前深松对根际土壤酶活性和夏玉米产量的影响. 应用生态学报, 2016, 27(6): 1925-
1934
Zhang M⁃Z, Niu W⁃Q, Xu J, et al. Influences of micro⁃irrigation and subsoiling before planting on enzyme activity in soil rhizosphere
and summer maize yield. Chinese Journal of Applied Ecology, 2016, 27(6): 1925-1934 (in Chinese)
4391 应  用  生  态  学  报                                      27卷