The treering width series and standardized chronologies of Populus davidiana trees in broad-leaved and Korean pine forest in Changbai Mountains were developed separately for male and female trees. Their differential radial growth and their relationship with climatic conditions were analyzed to reveal the effect of gender on radial growth and their climatic responses. It was found that there was a significant differential growth pattern before and after climate change for dioecious trees. The differential responses of the females and males to climate were also observed. The radial increment of female trees before 1980 was significantly higher than that of male trees, and the growth of female was negatively related with the monthly minimum temperature at the end of current growing season and precipitation in the previous and current growing season. The male was significantly positively related with the current growing season temperature. After 1980, the monthly temperature significantly increased, especially the monthly minimum temperature. The increment of dioecious trees decreased. The annual radial growth rate of the female was significantly lower than that of the male. Compared with the male tree, the female was more sensitive to the monthly minimum temperature. The female was significantly positively related with the spring minimum temperature and significantly negatively with the minimum temperature at the end of previous growing season. There was no significant correlation between the male and monthly minimum temperature. The monthly minimum temperature had an important impact on female P. davidiana trees in Changbai Mountains. Under the condition of stable precipitation, the increase of minimum temperature would restrain the growth of females, but lightly influenced the males’ growth.
全 文 :雌雄异株植物山杨的气候响应差异*
高露双摇 赵秀海**摇 王晓明摇 张春雨
(北京林业大学森林资源与生态系统过程北京市重点实验室, 北京 100083)
摘摇 要摇 本文通过建立长白山阔叶红松林内雌雄异株植物山杨树轮宽度序列及标准化年表,
分析不同气候条件下的生长差异及其与气候因子的关系,以期揭示性别因素对植株径向生
长鄄气候因子关系的影响.结果表明: 不同气候条件下雌雄植株年径向生长速率存在显著差
异,对气候因子的响应也有所不同. 1980 年以前,山杨雌株年均生长速率显著高于雄株,雌株
与生长季末低温、上年生长季末和当年生长季降水量呈显著负相关,山杨雄株则与当年生长
季温度呈显著正相关. 1980 年(含)以后,温度明显上升,尤其是最低温度,植株生长速率出现
下降趋势,雌株生长速率显著低于雄株;雌株对低温变化更敏感,与上年生长季末低温呈显著
负相关、与春季低温呈显著正相关,雄株与低温的相关关系均未达到显著水平.低温对长白山
地区山杨雌株生长具有重要影响,在降水基本保持不变的条件下,低温的上升将明显抑制山
杨雌株的生长,而对雄株影响不显著.
关键词摇 山杨摇 雌雄异株摇 生长速率摇 气候响应
文章编号摇 1001-9332(2014)07-1863-07摇 中图分类号摇 Q948摇 文献标识码摇 A
Sexual differences in climatic response of dioecious Populus davidiana tree. GAO Lu鄄shuang,
ZHAO Xiu鄄hai, WANG Xiao鄄ming, ZHANG Chun鄄yu (Beijing Key Laboratory for Forest Resources
& Ecosystem Processes, Beijing Forestry University, Beijing 100083, China) . 鄄Chin. J. Appl. Ecol. ,
2014, 25(7): 1863-1869.
Abstract: The tree鄄ring width series and standardized chronologies of Populus davidiana trees in
broad鄄leaved and Korean pine forest in Changbai Mountains were developed separately for male and
female trees. Their differential radial growth and their relationship with climatic conditions were an鄄
alyzed to reveal the effect of gender on radial growth and their climatic responses. It was found that
there was a significant differential growth pattern before and after climate change for dioecious trees.
The differential responses of the females and males to climate were also observed. The radial incre鄄
ment of female trees before 1980 was significantly higher than that of male trees, and the growth of
female was negatively related with the monthly minimum temperature at the end of current growing
season and precipitation in the previous and current growing season. The male was significantly pos鄄
itively related with the current growing season temperature. After 1980, the monthly temperature
significantly increased, especially the monthly minimum temperature. The increment of dioecious
trees decreased. The annual radial growth rate of the female was significantly lower than that of the
male. Compared with the male tree, the female was more sensitive to the monthly minimum temper鄄
ature. The female was significantly positively related with the spring minimum temperature and sig鄄
nificantly negatively with the minimum temperature at the end of previous growing season. There
was no significant correlation between the male and monthly minimum temperature. The monthly
minimum temperature had an important impact on female P. davidiana trees in Changbai
Mountains. Under the condition of stable precipitation, the increase of minimum temperature would
restrain the growth of females, but lightly influenced the males爷 growth.
Key words: Populus davidiana; dioecy; growth rate; response to climate.
*“十二五冶国家科技支撑计划项目(2012BAC01B03)、教育部新世纪优秀人才支持计划项目(NCET鄄12鄄0781)和北京林业大学青年科技启动基
金项目(blx2011004)资助.
**通讯作者. E鄄mail: zhaoxh@ bjfu. edu. cn
2013鄄11鄄15 收稿,2014鄄04鄄21 接受.
应 用 生 态 学 报摇 2014 年 7 月摇 第 25 卷摇 第 7 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
Chinese Journal of Applied Ecology, Jul. 2014, 25(7): 1863-1869
摇 摇 在植物界 30 多万被子植物中存在 4% ~ 10%
的雌雄异株植物,共计 14620 种[1] . 由于长期的进
化,这类植物的雌雄植株在水分胁迫[2]、水分利用
效率[3]以及生殖对策[3-4]等方面都表现出明显差
异.雌性植物在开花和结实过程中消耗较多的生物
量[5-8],导致生长速率降低[9-10],而雄性植株则具有
生长速率快[11]、死亡率低[12]、繁殖期开始早[13]等特
点.形态学和生态学方面的差异导致雌雄植株的生
长及其对气候的响应有所差异[12,14-16] . 雌株对气候
变化较敏感[17-18],更易受到胁迫环境的影响.然而,
雌雄植株生长与气候的关系也存在一定的不稳定
性[19-20] .研究表明,当温度发生变化后,雌雄异株植
物个体在气孔导度[10]、净同化作用[21]、耐冻性形
成[22]以及叶片中脱落酸(ABA)含量等生理指标方
面出现不同响应.对雌雄异株植物极地柳(Salix arc鄄
tica)的研究发现,在干旱生境中温度上升将显著增
高雌性植株净同化作用,而雄株则受到抑制[23] . 在
湿润生境中,温度上升将抑制雌性植株净同化作用,
而促进雄株有机物的积累[21-22] . IPCC报告[24]指出,
1906—2005 年地球表面温度上升了 0. 74 益 ,到
2050 年预计温度将上升 1. 5 ~ 4. 5 益 . 随着气候变
暖和温室效应的加剧,雌雄个体对环境胁迫的不同
生理、生态和生化的响应势必引起雌雄异株植物性
别间在生长、形态、生殖、分布以及抗逆性等方面逐
步出现明显差异,从而引起其种群的雌雄性比组成
逐渐发生变化、种群繁殖能力下降,并最终导致种群
所在的生态系统的组成、结构和功能发生改变.
本文以长白山阔叶红松林先锋树种雌雄异株植
物山杨(Populus davidiana)为研究对象,采用具有定
年准确和时间序列长等特点的树轮学方法,通过研
究不同气候变化条件下雌雄异株生长差异变化及其
对气候因子的响应关系,以期为气候变化背景下阔
叶红松林的可持续经营提供理论指导.
1摇 研究地区与研究方法
1郾 1摇 研究区概况
采样区位于长白山北坡白河林业局光明林场
(42毅21忆 N,128毅08忆 E),海拔 748 m,森林类型属于
抚育中龄林,主林层由先锋树种山杨、白桦(Betula
platyphylla)与水曲柳(Fraxinus mandschurica)、紫椴
(Tilia amurensis)等树种组成.该区域处于受季风影
响的温带大陆性山地气候区,年均气温 3. 6 益,最热
月(8 月)平均温度 20. 5 益,最冷月(1 月)平均温度
-16. 5 益,极端最高温度 32. 3 益,极端最低气温
-37. 6 益,自 19 世纪以来温度明显上升,尤其是 20
世纪 50 年代后年均气温上升近 1 益,到 21 世纪末,
预计年均气温将上升 3. 8 益 [25] . 年均降水量 770
mm,冬季漫长寒冷,虽然降雪期长,但降水量不大,
不到全年的 10% ;夏季湿润短暂,6—9 月降水量占
全年降水量的 80% . 土壤为山地暗棕色森林土,土
层厚度 20 ~ 100 cm.
1郾 2摇 样本采集及处理方法
在已有的 5. 2 hm2(260 m伊200 m)固定样地(建
立于 2005 年)内,利用双筒望远镜分别于 2006—
2009 年 4—10 月观察繁殖器官(花、种子)来判断所
有胸径>10 cm的雌雄异株树种山杨的性别.确定性
别后,随机选择雌树和雄树各 25 株作为样本,在其
北向的胸径处(距地面 130 cm)钻取树芯 1 个并确
保通过髓心.将树芯带回实验室风干后,按照 Stokes
和 Smiley[26]提出的方法,将树芯进行固定、打磨等
预处理,利用 LinTab5 树轮宽度测量仪在 0. 01 mm
精度下测量各树芯的树轮宽度,采用 COFFECHA软
件对雌株和雄株样本数据进行交叉定年.
1郾 3摇 建立年表
利用软件 ASTAN[27]分别建立统计年表和标准
化年表.鉴于采样地属于湿润地区,样本年龄较小且
主要研究对气候因子的响应关系,所以采用步长为
30 年的样条函数法去除生长趋势,最终得到雌树与
雄树样本的标准化年表(STD)、差值年表(RES)和
自回归年表(ARS). 由于年龄较小的树木在生长过
程中,与年龄相关的生长趋势表现得非常明显,标准
化年表可以很好地去除这种生长趋势,同时也能保
留较多的气候信息,因此,选用标准化年表进行气候
响应部分的分析.
1郾 4摇 气候数据来源
本文选取的气候数据来自二道白河气象站
(42毅43忆 N,128毅12忆 E,海拔 700 m,记录 1960—2010
年间月气候数据)和中国科学院长白山定位站
(42毅41忆 N,128毅11忆 E,海拔 740 m,记录 1982—2010
年间月气候数据),主要包括月平均、最低和最高温
度以及降水量. 1000 次 bootstrap 抽样过程得到两个
气象站气候数据呈显著相关(P<0. 05),同时,采用
Kendall[28]和 Kohler[29]提出的方法对气象站气候资
料进行均一性检验,结果表明气候资料无随机突变
和明显不均匀分布情况,可用来代表自然气候的变
化.鉴于气候数据的时效性,最终采用二道白河气象
站的气候数据.
4681 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷
1郾 5摇 数据处理
通过倾向率来分析长白山地区 1960—2010 年
间气候状况的演变趋势.一般来讲,温度和降水量的
气候变化趋势可以用一次直线方程进行模拟. 本文
采用一次直线方程来定量描述,即 y( t)= a0 +a1 t,则
趋势变化率方程为 dy( t) / dt= a1,把 a1的 10 倍称作
气候倾向率,其单位为益·10 a-1或 mm·10 a-1,方
程中的系数用最小二乘法确定.
在区划气候格局的基础上,结合树木生长特点,
分别计算各气候区间雌雄植株的生长速率,采用单
因素方差分析检验性别对径向生长速率的影响(琢=
0. 05),为满足方差分析数据要求,将生长速率值进
行开方转换( Shapiro鄄Wilk 检验;数据变换前:W =
0郾 918, P<0. 0001;数据开方变换后:W = 0. 9792,
P=0. 1231).
选择前一年 9 月到当年 9 月的月平均、最高和
最低温度以及月降水量作为气候变量,利用相关分
析和响应函数分析不同气候背景下雌雄植株与气候
因子的相关关系,筛选出限制树木生长的重要气候
因子,分析过程由 Dendroclimate 2002[30]软件完成.
2摇 结果与分析
2郾 1摇 研究区气候变化格局
1961—1979 年及 1980—2010 年 2 个时段统计
的气候变化指标值表明,与 1961—1979 年相比,
1980—2010 年各温度因子均呈上升趋势,但变化幅
度存在一定差异.其中,年平均温度和年平均最低温
度倾向率在 1980 年后显著提升,分别达到 0. 5 和
0. 8 益·10 a-1; 年平均最高温度倾向率仅提高 0. 1
益·10 a-1,未达到显著水平;降水量仅表现出小范
围内的盈缩(图 1).
2郾 2摇 雌雄异株植株生长差异及年表特征
气候变化前后雌雄植株年径向生长速率存在显
著差异(图 2),且在不同时期表现不同. 在 1980 年
以前,山杨雌株年均径向生长速率达到 2郾 07
mm·a-1,显著高于雄株,而 1980 年(含)以后,雌株
生长速率下降,仅为 1. 5 mm·a-1显著,低于雄株.
自身(年龄、性别等)和环境(气候条件、土壤条
件等)因素都将导致雌雄异株植物生长差异.山杨雄
株的平均年龄为(49依10)a,雌株年龄为(49依5) a,不
存在年龄因素的差异;因此,不同时期的雌雄异株生
长差异可能由性别以及对不同环境的响应造成.
采用步长为 32 a的样条函数法去除生长趋势,
最终得到雌树与雄树样本的标准化年表( STD)
图 1摇 1960—2010 年研究区年平均和最低气温的变化趋势
Fig. 1摇 Variation of annual mean and minimum temperature of
study area in 1960-2010.
图 2摇 雌雄异株植物山杨的年均径向生长速率
Fig. 2 摇 Annual radial growth rate of female and male Populus
davidiana.
A: 雌株1980 年前 Female before 1980; B:雄株1980 年前Male before
1980; C: 雌株 1980 年后 Female after 1980; D: 雄株 1980 年后 Male
after 1980.
(图 3).由表 1 可以看出,雌树和雄树的样本总体代
表性均 > 85% ,第 1 主成分解释方差量分别为
32郾 0%和 32. 0% ,说明研究样本能够代表该地区雌
雄异株植物山杨的基本特征,且标准化年表包含较
多的气候信息,适用于进行树木年轮气候学分析.雌
树的平均敏感度和标准差均高于雄树,而雄树的信
噪比、一阶自相关系数和序列相关系数等统计量均
高于雌树,说明雌树相邻年轮之间轮宽变化幅度大
于雄树,对外界环境变化较为敏感,但雌树中包含一
定非气候因素造成的噪音,雄树则包含更多的共同
信号.
56817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 高露双等: 雌雄异株植物山杨的气候响应差异摇 摇 摇 摇 摇 摇
图 3摇 山杨雌株(a)和雄株(b)的标准化年表
Fig. 3摇 Standard chronologies of female (a) and male (b) Pop鄄
ulus davidiana.
玉: 轮宽指数 Ring width index; 域: 样芯数量 Number of cores.
表 1摇 标准化年表统计特征值及公共区间(1977—2007 年)
分析
Table 1摇 Characteristics of standard chronologies and com鄄
mon analysis (1977-2007)
年表统计指标
Chronology index
雌树
Female
雄树
Male
标准差
Standard deviation
0. 230 0. 210
一阶自相关系数
Autocorrelation order 1
0. 353 0. 398
平均敏感度
Mean sensitivity
0. 197 0. 184
序列相关系数
Mean correlations between trees
0. 263 0. 266
信噪比
Signal / noise ratio
6. 064 6. 167
样本总体代表性
Expressing population signal
0. 858 0. 860
第一主分解释方差量
Variance in first eigenvector (% )
32. 0 32. 0
2郾 3摇 雌雄植株径向生长对气候要素的响应关系
雌雄异株植物山杨不同性别间对气候因子的响
应存在差异,且随着温度的上升差异增强,山杨雌株
较雄株对低温变化更敏感. 1980 年以前,山杨雌株
和雄株均受到春季温度(当年 4 月的月平均和月最
高温度)和生长季降水量(当年 5 月降水量)的抑
制,但雌株还与生长季末低温(当年 9 月的月最低
温度)和上年生长季末以及当年生长季降水量(上
年 10 月、当年 2 月和当年 9 月降水量)呈显著负相
关,山杨雄株则与当年生长季温度(当年 6 月的月
平均、最低和月最高温度)呈显著正相关(图 4);
1980 年以后,山杨雌株和雄株均与冬季高温(当年 1
月最高温度)和生长季末降水量(当年 9 月降水量)
呈负相关,但雌雄株植物对低温的响应存在显著差
异,雌株与生长季低温呈显著负相关,与春季低温呈
显著正相关,雄株与低温的相关关系均未达到显著
水平.
3摇 讨摇 摇 论
以往的研究多关注雌雄植株在整个生命周期内
的生长差异,而本研究在分析研究区气候变化基础
上,分析气候(主要是温度)变化前后雌雄异株的生
长差异,结果发现,1980 年以前山杨雌株年均生长
速率显著高于雄株,而 1980 年(含)以后,山杨雌株
和雄株生长速率均呈下降趋势,且雌株的生长速率
显著低于雄株.在雌株没有结实前,雄性和雌性在生
物量分配和生物量积累方面均没有显著差异[31],主
要用于营养生长. 有研究表明,在低光条件下,未结
实的雌株叶片光合效率比雄枝叶片高[32],这有可能
是造成前期雌株生长速率快于雄树的原因. 但进入
繁殖期后,尽管雄株在开花方面较雌株向生殖的分
配更多[33],但考虑结实消耗,雌株在繁殖上的投资
更高[6-7],最终会抑制雌株的生长投资,进而导致雌
株生长速率低于雄株[8] .在长白山地区对东北红豆
杉(Taxus cuspidata) [15]的研究得到了相同结果.
由于繁殖方式的差异,雌雄异株植物对气候因
素的响应机制不同[10] . 本研究发现,雌雄异株植物
山杨不同性别植株对气候因子的响应具有一定相似
性,1980 年之前,山杨雌雄株均受到春季温度和生
长季前期降水量的抑制作用,1980 年(含)以后均与
冬季高温和生长季末降水量呈负相关(图 4). 山杨
为早春先叶开花,花期(3—4 月)、果期(4—5 月)不
耐水湿,适宜排水良好的肥沃土壤[34] . 冬季或早春
土壤冻结时,树木根系不活动,此时温度过高将加速
蒸腾作用,扰乱水分平衡,最终导致冻害[35] .较高的
春季温度会增强呼吸作用,过多地消耗积累的有机
物质.在恶劣条件下,过多的降水将导致植株进行无
氧呼吸,树木将减少营养生长的投资,导致树木生长
与生长季前期和末期降水量呈负相关[36-37] .有研究
表明,气候变化后雄株对土壤水分变化或者叶面水
分蒸发量的持续增加均表现出更强的气孔敏感
性[10],生长季末降水量的增加会改变雄株气孔导
度,间接影响光合作用中有机物质的积累,导致生长
季末降水量成为影响雄株生长的主要因子.
6681 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷
图 4摇 山杨雌株(A)和雄株(B)标准年表与月平均、最低和最高温度以及降水之间的相关性分析
Fig. 4摇 Correlation analysis between tree鄄ring standard chronology of female (A) and male (B) Populus davidiana trees, and monthly
mean, minimum and maximum temperature and total precipitation.
*P<0. 05. a) 月平均温度Monthly mean temperature; b) 月最低温度Montly minimum temperature; c) 月最高温度Monthly maximum temperature;
d) 降水量 Precipitation. 玉: 1980 年之前 Before 1980; 域: 1980 年之后 After 1980. P: 上年 Previous year.
摇 摇 另一方面,雌株和雄株对气候因子的响应差异
主要体现在温度方面. 1980 年之前,山杨雌株与生
长季末的低温呈显著负相关,雄株则与生长季温度
呈显著正相关. 1980 年后,雌株植物对低温敏感性
增强,与生长季末低温呈显著负相关,与春季低温呈
显著正相关,而雄株与低温的相关关系均未达到显
著水平.生长季末是树木晚材形成时期[38],昼夜变
温对植物生长具有促进作用[39],当夜间温度过高,
将导致呼吸作用超过光合作用,蒸发量同样增多从
而抑制树木的生长[40] .生长季温度的上升有利于提
高树木的光合作用,且雄株具有较多叶绿素[41]和较
高的光合速率[42], 生长季温度的增加直接促进雄
株的径向生长. 温度上升后,尤其是低温的明显增
加,使得生长季末低温对雌株生长的限制作用增强.
一般认为,春季低温的上升将促进土壤动物和菌类
的活动[43],加强根系的水分和营养物质的交换以及
地上部分的活动,有利于延长生长季[44],使得春季
温度成为影响山杨雌株当年营养生长的重要因子.
而雄株更能适应低温[45],这也可能导致雄株对低温
表现不敏感.
北半球最低温度的增幅比最高温度的增幅
大[46],冬季增温比夏季增温明显. 本研究区气候变
76817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 高露双等: 雌雄异株植物山杨的气候响应差异摇 摇 摇 摇 摇 摇
化表现为,1980 年后月平均温度和月最低温度均显
著提高,而月最高温度和降水量无明显变化,山杨雌
雄株与冬季和春季温度的负相关关系可以用来解释
1980 年后雌株和雄株生长速率均下降的情况,而山
杨雌株与低温的显著负相关关系使得山杨雌株下降
速率更快.在长白山地区低温对山杨雌株生长具有
重要作用,在降水基本保持不变的条件下,低温的上
升将明显抑制山杨雌株的生长,而对雄株生长影响
不显著.不同性别间山杨植株对气候变化的响应差
异将有可能导致典型地带性植被阔叶红松林内山杨
种群的结构发生变化. 然而,雌雄异株植物生殖、萌
发和性比还受到 CO2浓度的影响[47],美国密歇根州
雌雄异株植物颤杨(Populus tremloides)对 CO2浓度
的响应就表现出明显的差异性,且随着 CO2浓度增
加,差异更显著[48] .因此,气候变化背景下雌雄异株
植物种群结构动态研究还需考虑温度和 CO2浓度的
交互作用.
参考文献
[1]摇 Renner SS, Ricklefs RE. Dioecy and its correlates in
the flowering plants. American Journal of Botany, 1995,
82: 596-606
[2]摇 Retuerto R, Fernandezlema B, Rodriguezroiloa S, et al.
Gender, light and water effects in carbon isotope dis鄄
crimination, and growth rate in the dioecious tree Ilex
aquifolium. Functional Ecology, 2000, 14: 529-537
[3]摇 Ramp PF, Stephenson SN. Gender dimorphism in
growth and mass partitioning by box鄄elder (Acer negundo
L. ). American Naturalist, 1988, 119: 420-430
[4]摇 Nicotra AB. Sexually dimorphic growth in the dioecious
tropical shrub, Siparuna grandiflora. Functional Ecolo鄄
gy, 1999, 13: 322-331
[5]摇 Delph LF. Sex鄄differential resource allocation patterns in
the subdioecious shrub Hebe subalpina. Ecology, 1990,
71: 1342-1351
[6]摇 Delph LF. Sexual dimorphism in life history / / Geber
MA, Dawson TE, Delph LF, eds. Gender and Sexual
Dimorphism in Flowering Plants. Berlin: Springer鄄
Verlag, 1999
[7]摇 Agren J. Sexual differences in biomass and nutrient allo鄄
cation in the diocecious Rubus chamaemorus. Ecology,
1988, 69: 962-973
[8]摇 Cipollini ML, Whigham DF. Sexual dimorphism and
cost of reproduction in the dioecious shrub Lindera ben鄄
zoin (Lauraceae). American Midland Naturalist, 1994,
115: 397-406
[9]摇 Lloyd D, Webb CJ. Secondary sex characteristics in
plants. Botanical Review, 1977, 43: 177-216
[10]摇 Dawson TE, Ehleringer JR. Gender鄄specific physiology,
carbon isotope discrimination, and habitat distribution in
box鄄elder, Acer negundo. Ecology, 1993, 74: 798-815
[11] 摇 Nanami S, Kawaguchi H, Yamakura T. Sex ratio and
gender鄄dependent neighboring effects in Podocarpus na鄄
gi, a dioecious tree. Plant Ecology, 2005, 177: 209-
222
[12]摇 Adams HD, Kolb TE. Drought responses of conifers in
ecotone forests of northern Arizona: Tree ring growth and
leaf 啄13C. Oecologia, 2004, 140: 217-225
[13]摇 Queenborough SA, Mazer SJ, Vamosi SM, et al. Seed
mass, abundance and breeding system among tropical
forest species: Do dioecious species exhibit compensato鄄
ry reproduction or abundances? Journal of Ecology,
2009, 97: 555-566
[14]摇 Benedict MA, Frelich LE. Site factors affecting black
ash ring growth in northern Minnesota. Forest Ecology
and Management , 2008, 255: 3489-3493
[15]摇 Zhang C鄄Y (张春雨), Gao L鄄S (高露双), Zhao Y鄄Z
(赵亚洲), et al. Response of radial growth to neigh鄄
boring competition and climate factors in Taxus cuspida鄄
ta. Chinese Journal of Plant Ecology (植物生态学报),
2009, 33(6): 1177-1183 (in Chinese)
[16]摇 Zhao Y鄄Z (赵亚洲), Gao L鄄S (高露双), Zhang C鄄Y
(张春雨), et al. Factors affecting radial growth of fe鄄
male and male Pistacia chinensistrees. Chinese Journal of
Ecology (生态学杂志), 2010, 29(10): 1937 -1943
(in Chinese)
[17]摇 Montesinos D, De Luis M, Verdu M, et al. When, how
and how much: Gender鄄specific resource鄄use strategies
in the dioecious tree Juniperus thurifera. Annals of Bota鄄
ny, 2006, 98: 885-889
[18]摇 Xu X, Yang F, Xiao XW, et al. Sex鄄specific responses
of Populus cathayana to drought and elevated tempera鄄
tures. Plant, Cell and Environment, 2008, 31: 850 -
860
[19]摇 Nicotra AB. Sexually dimorphic growth in the dioecious
tropical shrub, Siparuna grandiflora. Functional Ecolo鄄
gy, 1999, 13: 322-331
[20]摇 Gao LS, Zhang CY, Zhao XH, et al. Gender鄄related
climate response of radial growth in dioecious Fraxinus
mandshurica trees. Tree鄄Ring Research, 2010, 66:
105-112
[21]摇 Jones MH, Macdonald SE, Henry GHR. Sex鄄 and habi鄄
tat鄄specific responses of a high arctic willow, Salix arcti鄄
ca, to experimental climate change. Oikos, 1999, 87:
129-138
[22]摇 Li C, Yang Y, Junttila O, et al. Sexual differences in
cold acclimation and freezing tolerance development in
sea buckthorn ( Hippophae rhamnoides L. ) ecotypes.
Plant Science, 2005, 168: 1365-1370
[23]摇 Dawson TE, Bliss LC. Patterns of water use and the tis鄄
sue water relations in the dioecious shrub, Salix arctica:
The physiological basis for habitat partitioning between
the sexes. Oecologia, 1989, 79: 332-343
[24]摇 IPCC. Climate Change 2007: The Physical Science
Basis. Contribution of Working Group 玉 to the Fourth
Assessment Report of the IPCC. Cambridge: Cambridge
University Press, 2007
[25]摇 Xu YL, Huang XY, Zhang Y, et al. Statistical analyses
8681 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷
of climate change scenarios over China in the 21st centu鄄
ry. Advances in Climate Change Research, 2006, 2:
50-53
[26]摇 Stokes MA, Smiley TL. An Introduction to Tree鄄Ring
Dating. Chicago: The University of Chicago Press, 1968
[27] 摇 Cook ER, Kairiukstis LA. Methods of Dendrochronolo鄄
gy: Applications in the Environmental Sciences. Dor鄄
drecht: Springer, 1990
[28]摇 Kendall MG. Rank Correlation Methods. London: Grif鄄
fin, 1970
[29]摇 Kohler MA. On the use of double鄄mass analysis for tes鄄
ting the consistency of meteorological records and for
making required adjustments. Bulletin of the American
Meteorology Society, 1949, 82: 96-97
[30]摇 Biondi F, Waikul K. DENDROCLIM2002: A C++ pro鄄
gram for statistical calibration of climate signals in tree鄄
ring chronologies. Computer Geosciences, 2004, 30:
303-311
[31]摇 Popp JW, Reinatrz JA. Sexual dimorphism in biomass
allocation and clonal growth of Xanthoxylum america鄄
num. American Journal of Botany, 1988, 75: 1732 -
1741
[32]摇 Obeso JR, Alvarez鄄Santullano M, Retuerto R. Sex rati鄄
os, size distributions, and sexual dimorphism in the
dioecious tree Ilex aquifolium (Aquifoliaceae). Ameri鄄
can Journal of Botany, 1998, 85: 1602-1608
[33]摇 Rocheleau AF, Houle G. Diferent cost of reproduction
for the males and females of the rare dioecious shrub
Corema conradii ( Empetraceae). American Journal of
Botany, 2001, 88: 659-666
[34]摇 Liu S鄄E (刘慎谔). Northeast Woody Plant Logos. Bei鄄
jing: Science Press, 1955 (in Chinese)
[35]摇 Krebs CJ. Ecology: The Experimental Analysis of Distri鄄
bution and Abundance. New York: Harper & Row Pub鄄
lishers, 1985
[36]摇 Ba觡uelos MJ, Obeso JR. Resource allocation in the
dioecious shrub Rhamnus alpinus: The hidden costs of
reproduction. Evolutionary Ecology Research, 2004, 6:
397-413
[37]摇 Yasue K, Funada R, Kondo T, et al. The effect of cli鄄
matic factors on the radial growth of Japanese ash in
northern Hokkaido, Japan. Canadian Journal of Forest
Research, 1996, 26: 2052-2055
[38]摇 Chen L (陈 摇 力), Yin Y鄄H (尹云鹤), Pan T (潘
韬), et al. Growth of Pinus koraiensis and its response
to temperature change at Changbai Mountain, Northeast
China. Resource Sciences (资源科学), 2012, 34(11):
2139-2145 (in Chinese)
[39]摇 Jiang H鄄Q (姜汉桥), Duan C鄄Q (段昌群), Yang S鄄H
(杨树华), et al. Plant Ecology. Beijing: Higher Edu鄄
cation Press, 2004 (in Chinese)
[40]摇 Jin Q鄄Y (金秋艳). Study on growth rule of Populus da鄄
vidiana in Xinglongshan Nature Reserve. Journal of
Gansu Forestry Science and Technology (甘肃林业科
技), 2012(1): 30-32 (in Chinese)
[41]摇 Kumar N, Gupta S, Tripathi AN. Gender鄄specific
responses of Piper betle L. to low temperature stress:
Changes in chlorophyllase activity. Biologia Plantarum,
2006, 50: 705-708
[42]摇 Gehring JL, Monson RK. Sexual differences in gas ex鄄
change and response to environmental stress in dioecious
Silene latifolia (Caryophyllaceae). American Journal of
Botany, 1994, 81: 166-174
[43]摇 Lu P鄄L (陆佩玲), Yu Q (于 摇 强), He Q鄄T (贺庆
棠). Responses of plant phenology to climatic change.
Acta Ecologica Sinica (生态学报), 2006, 26 (3):
923-929 (in Chinese)
[44] 摇 Chen X鄄Q (陈效逑). Relationships between growing
seasons determined by trees爷 phenology and air tempera鄄
ture: The case of the Taunus Mountain area in central
Germany. Acta Meteorologica Sinica (气象学报 ),
2000, 58(6): 721-737 (in Chinese)
[45]摇 Li C, Yang Y, Junttila O, et al. Sexual differences in
cold acclimation and freezing tolerance development in
sea buckthorn ( Hippophae rhamnoides L. ) ecotypes.
Plant Science, 2005, 168: 1365-1370
[46]摇 Nicholls N, Gruza GV, Jouzel J, et al. Observed cli鄄
mate variability and change / / Houghton JT, Meira Filho
LG, Callander BA, eds. Climate Change 1995, the Sci鄄
ence of Climatic Change. Cambridge, UK: Cambridge
University Press, 1996: 56-60
[47]摇 Wang XZ. Reproduction and progeny of Silen latifolia
(Caryophyllaceae) as affected by atmospheric CO2 con鄄
centration. American Journal of Botany, 2005, 92:
826-832
[48]摇 Wang XZ, Curtis PS. Gender鄄specific response of Popu鄄
lus tremuloides to atmospheric CO2 enrichment. New
Phytologist, 2001, 150: 657-684
作者简介 摇 高露双,女,1982 年生,讲师,博士. 主要从事树
木生长过程模型模拟及树轮生态学研究. E鄄mail: gaolush鄄
uang@ bjfu. edu. cn
责任编辑摇 杨摇 弘
96817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 高露双等: 雌雄异株植物山杨的气候响应差异摇 摇 摇 摇 摇 摇