免费文献传递   相关文献

Correlations between standing trees trunk decay degree and soil physical-chemical properties in Korean pine-broadleaved mixed forest in Xiao Xing’an Mountains of Northeast China.

小兴安岭红松活立木树干腐朽与立地土壤理化特性的关系


活立木腐朽造成大量木材资源损失.研究活立木腐朽与立地生境之间的关系,对于科学合理地营林管理、减少木材资源损失有着积极的指导意义.2011年5月,使用阻抗仪对小兴安岭林区红松阔叶混交林中15株成熟龄的红松活立木树干根部腐朽状况及胸径进行了检测,同时分别在活立木根部、坡上距根部5 m和坡下距根部5 m处采集土样,测定土壤的含水率、容重、总孔隙度、pH值和有机质含量,并建立了活立木树干根部腐朽程度与其胸径和各样点土壤理化指标的回归方程.结果表明:成熟龄红松活立木树干根部腐朽程度与根部土壤5项理化指标有较强的相关性(R=0.687),且与土壤含水率呈显著正相关(R=0.507),而与坡上和坡下距根部5 m土壤各理化特性指标的相关性不显著.土壤含水率降至18.4%以下时将有助于降低树干根部的腐朽程度.成熟龄红松活立木树干根部腐朽程度与树龄的相关性不显著.

 

Standing trees decay often causes vast loss of timber resources. To investigate the correlations between the standing trees decay and the site conditions is of importance to scientifically and reasonably manage forests and to decrease wood resources loss. By using Resistograph and meter ruler, a measurement was made on the decay degree of the trunk near root and the diameter at breast height (DBH) of 15 mature Korean pine standing trees in a Korean pine-broadleaved mixed forest in Xiao Xing’an Mountains in May, 2011. In the meantime, soil samples were collected from the root zones of standing trees and the upslope and downslope 5 meters away from the trunks, respectively. Five physical-chemical properties including moisture content, bulk density, total porosity, pH value, and organic matter content of the soil samples were tested. The regression equations concerning the trunk decay degree of the standing trees, their DBH, and the 5 soil properties were established. The results showed that the trunk decay degree of the mature Korean pine standing trees had higher correlations with the bulk density, total porosity, pH value, and organic matter content (R=0.687), and significant positive correlation with the moisture content (R=0.507) of the soils at the root zones of standing trees, but less correlation with the 5 properties of the soils at both upslope and downslope 5 meters away from the trunks. The trunk decay degree was decreased when the soil moisture content was below 18.4%. No significant correlation was observed between the trunk decay degree of mature Korean pine standing trees and the tree age.


全 文 :小兴安岭红松活立木树干腐朽与立地
土壤理化特性的关系*
孙天用1 摇 王立海2 摇 孙墨珑3**
( 1东北林业大学工程技术学院, 哈尔滨 150040; 2东北林业大学森林作业与森林环境中心, 哈尔滨 150040; 3东北林业大学理
学院, 哈尔滨 150040)
摘摇 要摇 活立木腐朽造成大量木材资源损失.研究活立木腐朽与立地生境之间的关系,对于
科学合理地营林管理、减少木材资源损失有着积极的指导意义. 2011 年 5 月,使用阻抗仪对小
兴安岭林区红松阔叶混交林中 15 株成熟龄的红松活立木树干根部腐朽状况及胸径进行了检
测,同时分别在活立木根部、坡上距根部 5 m和坡下距根部 5 m处采集土样,测定土壤的含水
率、容重、总孔隙度、pH值和有机质含量,并建立了活立木树干根部腐朽程度与其胸径和各样
点土壤理化指标的回归方程. 结果表明:成熟龄红松活立木树干根部腐朽程度与根部土壤 5
项理化指标有较强的相关性(R=0. 687),且与土壤含水率呈显著正相关(R = 0. 507),而与坡
上和坡下距根部 5 m土壤各理化特性指标的相关性不显著.土壤含水率降至 18. 4%以下时将
有助于降低树干根部的腐朽程度. 成熟龄红松活立木树干根部腐朽程度与树龄的相关性不
显著.
关键词摇 红松阔叶混交林摇 活立木摇 树干根部腐朽摇 立地条件摇 土壤理化特性摇 小兴安岭
*国家林业公益性行业科研专项(200904022)资助.
**通讯作者. E鄄mail: sunmolong@ yahoo. com
2012鄄09鄄11 收稿,2013鄄05鄄03 接受.
文章编号摇 1001-9332(2013)07-1837-06摇 中图分类号摇 S718. 51摇 文献标识码摇 A
Correlations between standing trees trunk decay degree and soil physical鄄chemical properties
in Korean pine鄄broadleaved mixed forest in Xiao Xing爷 an Mountains of Northeast China.
SUN Tian鄄yong1, WANG Li鄄hai2, SUN Mo鄄long3 ( 1College of Engineering and Technology, North鄄
east Forestry University, Harbin 150040, China; 2Forest Operations and Forest Environment Re鄄
search Center, Northeast Forestry University, Harbin 150040, China; 3College of Science, Northeast
Forestry University, Harbin 150040, China) . 鄄Chin. J. Appl. Ecol. ,2013,24(7): 1837-1842.
Abstract: Standing trees decay often causes vast loss of timber resources. To investigate the corre鄄
lations between the standing trees decay and the site conditions is of importance to scientifically and
reasonably manage forests and to decrease wood resources loss. By using Resistograph and meter
ruler, a measurement was made on the decay degree of the trunk near root and the diameter at
breast height (DBH) of 15 mature Korean pine standing trees in a Korean pine鄄broadleaved mixed
forest in Xiao Xing爷an Mountains in May, 2011. In the meantime, soil samples were collected from
the root zones of standing trees and the upslope and downslope 5 meters away from the trunks, re鄄
spectively. Five physical鄄chemical properties including moisture content, bulk density, total porosi鄄
ty, pH value, and organic matter content of the soil samples were tested. The regression equations
concerning the trunk decay degree of the standing trees, their DBH, and the 5 soil properties were
established. The results showed that the trunk decay degree of the mature Korean pine standing
trees had higher correlations with the bulk density, total porosity, pH value, and organic matter
content (R=0. 687), and significant positive correlation with the moisture content (R=0. 507) of
the soils at the root zones of standing trees, but less correlation with the 5 properties of the soils at
both upslope and downslope 5 meters away from the trunks. The trunk decay degree was decreased
when the soil moisture content was below 18. 4% . No significant correlation was observed between
the trunk decay degree of mature Korean pine standing trees and the tree age.
应 用 生 态 学 报摇 2013 年 7 月摇 第 24 卷摇 第 7 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
Chinese Journal of Applied Ecology, Jul. 2013,24(7): 1837-1842
Key words: Korean pine鄄broadleaved mixed forest; standing tree; decay of the trunk near root;
site condition; soil physical鄄chemical properties; Xiao Xing爷an Mountains.
摇 摇 树木在生长过程中极易受到多种生物的侵袭,
其中木腐菌造成的木材腐朽是最为广泛和严重的危
害之一.腐朽可以导致树木生长受阻甚至死亡,造成
木材资源的大量损失;腐朽还会明显降低木材的力
学性能[1-4] .为此,世界各国对木材腐朽进行了大量
的研究,并在木材腐朽的检测和评价、木材腐朽过程
中物化性质的变化、木材腐朽影响因素以及木腐菌
分解木材的机理等方面取得突破性的进展.
目前在木材腐朽检测技术领域,已形成了应力
波、超声波、近红外、X射线、核磁共振、阻抗仪、电阻
等几十种检测技术[5-8],其中应力波、超声波和电阻
检测技术从最初只能定性判断木材是否腐朽,发展
到如今形成腐朽区域的二维或三维图像,大体表示
出腐朽的分布和程度[9-12] .其中,应用于活立木腐朽
检测的主要有应力波、超声波、阻抗仪和电阻技
术[11, 13-16] .而对木材内部腐朽的分布和程度实现准
确的检测和定量仍是该领域研究的难点[17-20] .
有研究表明,木材内部和木材所处环境的水分、
温度和养分状况是影响木材腐朽的主要因素[21-24] .
鞠国柱等[25]研究发现,在不同坡向和坡位,红松
(Pinus koraiensis)根朽病病害的严重程度不同,与样
地的温度和水分条件有关. Grizelle 等[26]研究了不
同气候地区欧洲山杨(Populus tremuloides)的腐朽情
况,结果表明,空气湿度和土壤含水率等是影响木材
腐朽的一个重要因素. Brischke 等[27]通过长期的野
外观测发现,木材含水率和温度是影响木材腐朽的
重要因素. Matheron 等[28]研究发现,柠檬(Citrus li鄄
mon)树枝的腐朽程度与气温呈显著正相关关系.增
加环境中 N含量会加快木材腐朽[29] .
目前国内外对活立木腐朽与立地生境的关系的
研究还很少.开展该领域的研究,对于减少腐朽造成
的木材资源损失、提高森林质量具有重要的现实意
义.为此,本文以黑龙江省带岭林区成熟龄的红松活
立木为对象,研究树干根部腐朽程度与立地土壤理
化特性的关系,旨在为该林区的合理经营和森林生
态系统的可持续发展提供指导.
1摇 研究地区与研究方法
1郾 1摇 研究区概况
带岭林区地处黑龙江省东北部、小兴安岭南坡
(46毅50忆8义—46毅59忆20义 N, 128毅57忆6义—129毅17忆50义
E),以低山地为主,多为缓坡,最高海拔 1050 m,最
低海拔250 m.该地区属于寒温带大陆性季风气候,年
均气温 1. 4 益,极端最低气温-40 益(1 月上旬),极
端最高气温 37 益(7 月),逸10 益年积温 2156 益.年
均降水量 661 mm,全年无霜期 115 d.土壤为暗棕色
森林土, 剖面特征:A0层厚度 2 ~ 6 cm;A1层厚度
6 ~ 20 cm. A1层下有较厚的淀积层(B 层),土壤厚
度在 6 ~ 47 cm.林区的地带性植被是以红松为主的
温带针阔叶混交林,伴生有榆树(Ulmus pumila)、桦
树(Betula)、蒙古栎 (Quercus mongolica)和大青杨
(Populus ussuriensis)等 20 余种温带阔叶树种.
1郾 2摇 供试材料
在带岭林区第 18 林班所辖的林地内进行野外
试验,样地面积约 30 hm2,地形为 5 ~ 8毅的缓坡,包
括各种坡向和坡位. 选取样地内腐朽的红松活立木
作为试验样木.首先目测查找可能发生腐朽的活立
木,然后用 Resistograph 阻抗仪 (德国 Rinntech 公
司)对其树干根部进行检测,根据树木内部的腐朽
状况选择样木.共选取 15 株样木.
1郾 3摇 试验方法
在每株样木距离地面 40 ~ 50 cm处选取一个横
截面,使用阻抗仪沿横截面上两个互相垂直的方向
进行检测,检测结果形成两张阻力曲线图,当曲线上
某处形成明显的下降波谷时,表明样木在该处有腐
朽发生.
分别在每株样木的根部、坡上距根部 5 m 和坡
下距根部 5 m处取土样,测量土壤的含水率、容重、
总孔隙度、pH 值和有机质含量 5 项理化指标.在每
个取样点用钢制环刀取自然状态的土壤,使土柱的
土壤结构保持完整,称量湿土柱质量(m1),然后将
环刀连同土柱浸泡在水中 12 h,称量饱和湿土质量
(m2),再将环刀放在沙土上沥 2 h,称量土柱质量
(m3),最后将土样烘干,称量烘干土质量(m4).计算
公式如下:土壤含水率 = (m1 -m4 ) / m4;土壤容重
(g·cm-3) = 100 mL / [ V 伊 (土壤含水率 (% ) +
100)].式中,V为环刀体积,V = 98. 125 cm3;总孔隙
度=(毛管孔隙度+非毛管孔隙度) 伊100% ,其中,非
毛管孔隙度(% )= [土壤饱和持水量(% )-毛管持
水量(% )] 伊土壤容重,毛管孔隙度 =毛管持水量
(% )伊土壤容重;土壤饱和持水量 = (m2 -m4) / m4 伊
100% ;毛管持水量=(m3-m4) / m4伊100% .
8381 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 24 卷
图 1摇 活立木的腐朽程度阻力曲线
Fig. 1摇 Resistance curve of decay degree of standing trees.
摇 摇 另取约 200 g 土样装于塑料密封袋内,用于测
量土壤 pH 值和有机质含量.土壤 pH 值采用 pH 计
测量.利用重铬酸钾在酸性溶液中将有机质氧化,并
利用硫酸亚铁铵将多余的重铬酸钾还原,由消耗的
重铬酸钾求得有机碳的含量,再乘以换算系数即得
有机质的含量[30-31] .
1郾 4摇 数据处理
在第 12 号样木上测得阻力曲线图(图 1).图中
的曲线有明显下降区段,说明阻力值下降而形成波
谷,而且波谷内阻力的波动不大.活立木树干根部腐
朽程度(M)计算公式:
M=
L·(H1+H2) / 2
D2
式中:L为波谷在横轴上投影的长度;H1和 H2分别
为波谷左右两边在纵轴上投影的长度;D 为活立木
横截面的直径.
每株活立木在一个测量截面上沿两个互相垂直
的方向各测量一次,腐朽程度分别记为 M1和 M2,M
(M=M1+M2)为一株活立木的树干根部腐朽程度.
然后以活立木树干根部腐朽程度(M)为因变
量,各取样点土壤理化特性指标为自变量,用普通最
小二乘回归分别建立多元线性回归方程;计算 M 和
土壤理化指标之间的 Pearson相关系数;采用单因素
方差分析和主成分分析法分析不同取样点土壤理化
特性的差异(琢 = 0. 05);用最小二乘法对 M 和活立
木胸径进行一元线性回归分析.
2摇 结果与分析
2郾 1摇 活立木树干根部腐朽程度与土壤理化特性的
关系
用最小二乘回归对活立木树干根部腐朽程度
(M)与坡上 5 m(u)(表 1)、坡下 5 m(d)和根部(r)
土壤理化指标进行多元线性回归分析,方程为:
Mu = -8. 323-0. 328 X1 +25. 126 X2 -0. 106X3 +
3. 166 X4+3. 658X5(R2 =0. 358, R=0. 599)
Md = 48. 441 - 0. 34 X1 + 12. 37X2 - 0. 25X3 +
6. 342 X4+0. 333X5(R2 =0. 279, R=0. 529)
Mr = -145. 893+1. 962 X1-51. 794 X2+0. 361X3+
12. 324 X4+1. 067X5(R2 =0. 472, R=0. 687)
说明 M与坡上 5 m 和坡下 5 m 土壤理化指标
均不存在明显的相关性;与根部土壤理化指标显著
相关.
为分析 M与单个土壤理化指标间的相关关系,
表 1摇 活立木树干根部腐朽程度(M)和坡上 5 m 土壤理化
指标
Table 1摇 Standing trees爷 trunk decay degrees (M) and soil
physical鄄chemical indicators upslope 5 meters away from
the trunks
活立木序号
Standing
tree No.
M X1
(% )
X2
(g·cm-3)
X3
(% )
X4 X5
(% )
1 15. 1 66. 50 1. 369 153. 32 6. 34 7. 01
2 69. 7 56. 33 1. 207 146. 65 6. 33 7. 80
3 58. 9 56. 03 1. 289 172. 19 6. 09 10. 05
4 24. 2 71. 68 1. 012 38. 81 5. 60 7. 51
5 59. 7 92. 02 1. 183 63. 71 5. 56 14. 62
6 68. 9 75. 99 1. 317 103. 62 4. 96 15. 12
7 23. 4 85. 01 1. 439 101. 31 5. 49 7. 14
8 37. 2 89. 27 1. 418 94. 66 5. 67 9. 45
9 54. 8 64. 84 1. 247 138. 51 5. 52 8. 55
10 63. 8 57. 48 1. 207 154. 07 6. 06 12. 07
11 9. 4 59. 88 1. 248 156. 28 6. 12 11. 43
12 58. 6 55. 98 1. 329 185. 21 5. 87 14. 36
13 27郾 0 52. 07 1. 116 166. 65 6. 39 3. 42
14 8. 3 34. 21 0. 995 198. 88 5. 76 3. 63
15 34. 5 40. 73 1. 097 188. 31 5. 83 12. 47
X1、X2、X3、X4、X5分别表示土壤含水率、容重、总孔隙度、pH 值和有机质含量.
X1,X2,X3,X4,X5 represented moisture content, bulk density, total porosity, pH
value and organic matter content of soil, respectively. 下同 The same below.
93817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 孙天用等: 小兴安岭红松活立木树干腐朽与立地土壤理化特性的关系摇 摇 摇 摇 摇 摇 摇
表 2摇 活立木树干根部腐朽程度(M)与土壤理化指标的相关系数
Table 2摇 Correlation coefficients between standing trees爷 trunk decay degrees (M) and soil physical鄄chemical properties
取样部位
Sampling position
数据类别
Data type
X1 X2 X3 X4 X5
坡上距根部 5 m r 0. 190 -0. 206 0. 103 -0. 205 0. 594
Upslope 5 meters away from the trunks P 0. 249 0. 231 0. 358 0. 221 0. 010
坡下距根部 5 m r 0. 428 -0. 241 0. 502 0. 117 -0. 030
Downslope 5 meters away from the trunks P 0. 056 0. 193 0. 028 0. 339 0. 458
根部 r 0. 507 -0. 474 0. 242 0. 451 0. 261
At root P 0. 027 0. 037 0. 192 0. 046 0. 174
*表中的显著性检验均采用单边 t检验 All the significant tests used were one鄄tailed t test.
计算 M与每个取样点土壤理化指标之间的 Pearson
相关系数(表 2).
在坡上距根部 5 m 土壤中, M 与 X5的 Pearson
相关系数最大, r 为 0. 594;与其他自变量之间没有
明显的相关性.说明 M与坡上距根部 5 m 土壤的有
机质含量有较强的相关关系.
在坡下距根部 5 m土壤中,M与 X3和 X1的相关
性较强,r分别为-0. 502 和 0. 428,说明 M与坡下距
根部 5 m土壤的总孔隙度和含水率之间有较强的相
关关系.
在根部土壤中,M与 X1、X2和 X4的相关性较强,
r分别为 0. 507、0. 474 和 0. 451.说明 M与根部土壤
的含水率、容重和 pH值之间有较强的相关关系.
为了将土壤理化特性的 5 个指标综合成一个指
标(F1),对 X1 ~ X5进行主成分分析,结果表明,3 个
取样点土壤的理化指标第 1 主成分的方差贡献率分
别为 52. 1% (坡上距根部 5 m 处土壤)、48. 7% (坡
下距根部 5 m处土壤)和 51. 3% (根部土壤),远远
小于 85% ,故无法将 5 个指标综合成一个指标 F1 .
2郾 2摇 活立木树干根部腐朽程度与胸径的关系
对活立木树干根部的 M 和胸径做一元线性回
归分析(表 3),R2 =0. 151,P = 0. 153,方程的拟合程
度很低,且不存在显著的相关性,说明成熟龄的红松
活立木树干根部腐朽程度与胸径之间没有显著的相
关关系.
2郾 3摇 不同样点土壤理化指标的差异
以土壤取样点为影响因素,分别对 5 项理化指
标作单因素方差分析,确定不同样点的土壤中是否
表 3摇 活立木树干根部腐朽程度(M)和胸径的回归分析
Table 3摇 Regression analysis for standing trees爷 trunk de鄄
cay degrees (M) and diameters at breast height
模型
Model
复相关系数
R
复决定系数
R2
F P
1 0. 388 0. 151 2. 310 0. 153
表 4摇 土壤各理化指标单因素方差分析结果
Table 4 摇 Analysis results from one鄄way ANOVA for soil
physical鄄chemical properties
指标
Item
X1 X2 X3 X4 X5
P 0. 122 0. 014 0. 113 0. 924 0. 030
存在显著差异(表 4).结果表明,土壤容重和有机质
含量没有通过 F 检验,说明不同样点土壤容重和有
机质含量有显著差异,其余指标差异不显著.
3摇 讨摇 摇 论
3郾 1摇 活立木树干根部腐朽程度与土壤理化特性的
关系
在所测定的 5 项土壤理化指标中, 坡下距根部
5 m和根部的土壤含水率与活立木树干根部腐朽程
度呈明显的正相关. 这与鞠国柱等[25] 和 Grizelle
等[26]研究结果相类似. 前者认为,低凹潮湿林地中
的红松根朽病较严重,说明土壤含水率偏高时红松
更容易发生根朽;后者也发现,空气湿度和土壤含水
率等是影响欧洲山杨木材腐朽的一个重要因素,并
且水分和木材腐朽的关系可能是非线性的. 本试验
所测的坡下距根部 5 m和根部土壤含水率经检验符
合正态分布,土壤含水率 95% 的置信区间为
[18郾 4% , 86. 3% ]. 在这个区间内,土壤含水率越
高,红松活立木腐朽程度越高. 因此,采取适当经营
措施使土壤含水率低于 18. 4% ,将有助于减少红松
活立木树干根部的腐朽.
坡上距根部 5 m土壤有机质含量与腐朽程度呈
现较强的正相关关系( r = 0. 594),即有机质含量越
高,活立木腐朽程度越高. van der Wal 等[29]研究也
发现,将感染了木腐菌的木块和木屑放在(或埋进)
荒野土壤,木腐菌的生物量和活性远远低于耕地土
壤.主要是耕地土壤中含有更多的有机质,有利于木
腐菌繁殖,对木材腐朽有促进作用.
0481 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 24 卷
pH值也是影响木材腐朽的主要因素之一. 根
部土壤中 pH值与腐朽程度(M)呈现较强的正相关
关系.本试验所测根部土壤 pH 在 5. 2 ~ 6. 51,属于
弱酸性环境,因此更适宜木腐菌的生长[32] .
在根部和坡下距根部 5 m 土壤中,土壤容重与
M呈负相关,总孔隙度与 M 呈正相关. 这两个指标
反映了土壤密实度和孔隙状况,土壤越疏松,孔隙越
多,活立木的腐朽程度越严重.
3郾 2摇 活立木树干根部腐朽程度与不同位置土壤的
关系
多元线性回归结果表明,活立木树干根部腐朽
程度(M)与根部土壤理化指标有较强的相关关系
(R=0. 687),与其他两处土壤理化指标相关性不明
显.根部土壤是活立木生长所需养分、水分的直接来
源.相对于其他部位的土壤, 根部土壤的变化会影
响到活立木体内木腐菌的生存条件,最终影响活立
木的腐朽程度.
3郾 3摇 活立木树干根部腐朽程度与胸径的关系
本试验所测的红松活立木的胸径最小为
27. 5 cm,最大达 88. 5 cm,均属于成熟龄.一元线性
回归分析表明,这些红松活立木树干根部腐朽程度
与胸径之间没有明显的相关性,说明红松达到成熟
龄后,其腐朽程度不会随着树龄的增长出现升高或
降低的趋势.笔者在林内调查红松腐朽样木时也发
现了这一现象.许多生长在缓坡地段的胸径在 70 ~
80 cm的红松并没有腐朽,而生长在低洼地的中等
树龄(胸径 30 ~ 40 cm)的红松却空心腐朽,甚至枯
死.可见,立地生境是决定红松腐朽程度的主要因素
之一.
参考文献
[1]摇 Yang Z (杨 摇 忠). Modeling Slash Pine Plantation
Wood Properties and Decay Using Near Infrared Spec鄄
troscopy. PhD Thesis. Beijing: Chinese Academy of
Forestry, 2005 (in Chinese)
[2]摇 Curling SF, Clausen CA, Winandy JE. Relationships
between mechanical properties, weight loss, and chemi鄄
cal composition of wood during incipient brown鄄rot de鄄
cay. Forest Products Journal, 2002, 52: 34-39
[3]摇 Howell C, Hastrup ACS, Goodell B, et al. Temporal
changes in wood crystalline cellulose during degradation
by brown rot fungi. International Biodeterioration & Bio鄄
degradation, 2009, 63: 414-419
[4]摇 Zhang X鄄L (张新玲). Responses of Chemical Indices
to Rot in the Xiaoxing爷 anling Main Tree Species. Mas鄄
ter Thesis. Harbin: Northeast Forestry University, 2011
(in Chinese)
[5]摇 Wang L鄄H (王立海), Yang X鄄C (杨学春), Xu H鄄K
(徐宏凯). Current situation of research on the non鄄de鄄
structive testing technique for wood defects. Forestry Sci鄄
ence & Technology (林业科技), 2002, 27(3): 35-38
(in Chinese)
[6]摇 Brashaw BK, Bucur V, Divos F, et al. Nondestructive
testing and evaluation of wood: A worldwide research
update. Forest Products Journal, 2009, 59: 7-14
[7]摇 Wang Z鄄T (王志同). Application of the non鄄destruc鄄
tive testing technique to wood industry. World Forestry
Research (世界林业研究), 1991(4): 64-69 (in Chi鄄
nese)
[8]摇 Zhang H鄄F (张鸿富), Li Y鄄X (李耀翔). Literature
review on application of near鄄infrared spectroscopy in
wood non鄄destructive testing. Forest Engineering (森林
工程), 2009, 25(5): 26-31 (in Chinese)
[9]摇 Rojas G, Condal A, Beauregard R. Identification of in鄄
ternal defect of sugar maple logs from CT images using
supervised classification methods. Holz als Roh鄄 und
Werkstoff, 2006, 64: 295-303
[10]摇 Li H (李摇 华), Liu X鄄Y (刘秀英). Ultrasonic non鄄
destructive evaluation of the wood frame for the great
bell. China Wood Industry (木材工业), 2003, 17
(2): 33-36 (in Chinese)
[11]摇 Nicolotti G, Socco LV, Martinis R, et al. Application
and comparison of three tomographic techniques for de鄄
tection of decay in trees. Journal of Arboriculture, 2003,
29: 66-78
[12]摇 Chen L (陈 摇 雷), Qi D鄄W (戚大伟). Computer
tomography in non鄄destructive testing for logs. Forest
Engineering (森林工程), 2005, 21(3): 21-23 ( in
Chinese)
[13]摇 Liu T鄄N (刘铁男). Attenuation Tomography of Living
Trees Internal Decay Based on Ultrasonic Wave. Master
thesis. Harbin: Northeast Forestry University, 2010 (in
Chinese)
[14]摇 Bucur V. Ultrasonic techniques for nondestructive tes鄄
ting of standing trees. Ultrasonics, 2005, 43: 237-239
[15]摇 Wang XP, Allison RB. Decay detection in red oak trees
using a combination of visual inspection, acoustic tes鄄
ting, and resistance microdrilling. Arboriculture & Urban
Forestry, 2008, 34: 1-4
[16]摇 Wang XP, Divos F, Pilon C, et al. Assessment of De鄄
cay in Standing Timber Using Stress Wave Timing Non鄄
destructive Evaluation Tools. General Technical Report
FPL鄄GTR鄄147. Madison, WI: Forest Products Labora鄄
tory, Forest Service, United States Department of Agri鄄
culture, 2004
[17]摇 Huang R鄄F (黄荣凤), Wang X鄄H (王晓欢), Li H
(李摇 华), et al. Quantitative analysis on the detected
results by resistograph on inside wood decay of ancient
architecture. Journal of Beijing Forestry University (北
京林业大学学报), 2007, 29(6): 167-171 ( in Chi鄄
nese)
[18]摇 An Y (安摇 源), Yin Y鄄F (殷亚方), Jiang X鄄M (姜
笑梅). Inspection of decay distribution in wood column
by stress wave and resistograph techniques. Journal of
Building Materials (建筑材料学报), 2008, 11(4):
14817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 孙天用等: 小兴安岭红松活立木树干腐朽与立地土壤理化特性的关系摇 摇 摇 摇 摇 摇 摇
457-463 (in Chinese)
[19]摇 Xu K鄄H (徐凯宏). Theory and Technology of Detecting
Inner鄄Defects in Wood with A Probing Drill Device.
PhD thesis. Harbin: Northeast Forestry University,
2004 (in Chinese)
[20]摇 Tanasoiu V, Miclea C, Tanasoiu C. Nondestructive tes鄄
ting techniques and piezoelectric ultrasonics transducers
for wood and built in wooden structures. Journal of Op鄄
toelectronics and Advanced Materials, 2002, 4: 949 -
957
[21]摇 Sun T鄄Y (孙天用), Wang L鄄H (王立海). Non鄄
destructive testing of log internal decay based on two鄄
dimensional CT images of stress wave and X鄄ray testing.
Forest Engineering (森林工程), 2011, 27(6): 26-29
(in Chinese)
[22]摇 Forest Products Laboratory, Forest Service, United
States Department of Agriculture. Factors Influencing
Decay of Untreated Wood. Madison, WI: Forest Prod鄄
ucts Laboratory, Forest Service, United States Depart鄄
ment of Agriculture, 1967
[23]摇 Carll CG, Highley TL. Decay of wood and wood鄄based
products above ground in buildings. Journal of Testing
and Evaluation, 1999, 27: 150-158
[24]摇 Zhao M (赵 摇 敏). Biological Characters of Wood Rot
Fungi and Decay Capacity to Betula platiphilla and Gene
Differential Display. Master thesis. Harbin: Northeast
Forestry University, 2009 (in Chinese)
[25]摇 Ju G鄄Z (鞠国柱), Xiang C鄄T (项存悌), Ji L鄄Q (季
良杞), et al. A study on root rot [Armillariella mellea
(Vohl. et Fr. ) Karst] of Korean pine. Journal of North鄄
east Forestry Institute (东北林学院学报), 1979(2):
49-58 (in Chinese)
[26]摇 Grizelle G, William AG, Andrew TH, et al. Decay of
aspen (Populus tremuloides Michx. ) wood in moist and
dry boreal, temperate, and tropical forest fragments.
Ambio, 2008, 37: 599-597
[27]摇 Brischke C, Rapp AO. Influence of wood moisture con鄄
tent and wood temperature on fungal decay in the field:
Observations in different micro鄄climates. Wood Science
and Technology, 2008, 42: 663-677
[28] 摇 Matheron ME, Porchas M. Factors affecting the devel鄄
opment of wood rot on lemon trees infected with Antrodia
sinuosa, Coniophora eremophila, and a Nodulisporium
sp. Plant Disease, 2006, 90: 554-558
[29]摇 van der Wal A, de Boer W, Smant W, et al. Initial de鄄
cay of woody fragments in soil is influenced by size, ver鄄
tical position, nitrogen availability and soil origin. Plant
and Soil, 2007, 301: 189-201
[30]摇 Yu T鄄R (于天仁), Wang Z鄄Q (王振权). Soil Chemi鄄
cal Analysis. Beijing: Science Press, 1988 ( in Chi鄄
nese)
[31]摇 Wuhan University (武汉大学). Analytical Chemistry.
5th Ed. Beijing: Higher Education Press, 2007 ( in
Chinese)
[32]摇 Chongqing F Prosperous Ecological Wood & Plastic
Wood (重庆福旺生态木·塑木). Physiology and
Ecology of Wood Decay Fungi[EB / OL]. (2012鄄12鄄20)
[2013鄄04鄄22]. http: / / www. cqfwstm. com / shownews.
asp? id=247
作者简介摇 孙天用,男,1988 年生,博士研究生.主要从事活
立木腐朽检测及活立木腐朽与立地生境的关系研究.
E鄄mail: 1294686131@ qq. com
责任编辑摇 李凤琴
2481 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 24 卷