免费文献传递   相关文献

苦艾中的九个木脂素(英文)



全 文 : O
O
H
H
R2
R1
O
O
O
H
H
R2
R1
R4
R3
OMeO
MeO
MeO
OMe
OMe
OMe
O
OH
8
9
7 9
8
7
OCH3
OCH3
OCH3
1
Ar1 =
7
8
9 7
8
9
7
8
9
9
7
1
3
1
2
4
OCH3
OH
OCH3
Ar2 =
OCH3
O
O
Ar3 =
1
3
O
O
Ar4 =
1
3
7 R1 = H; R2 = Ar1
8 R1 = Ar1; R2 = H
1
Journal of Chinese Pharmaceutical Sciences http://www.jcps.ac.cn 360
Nine lignans from Artemisia absinthium L.
Abulajiang·Tulake, Yong Jiang, Peng-Fei Tu*
State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
Abstract: Nine lignans were isolated and purified by silica gel, ODS, Sephadex LH-20 column chromatographies, preparative HPLC
and recrystallization from the aerial parts of Artemisia absinthium L., and identified as follows: diayangambin (1), sesartemin (2),
epiyangambin (3), (+)arborone (4), (–)syringaresinol (5), epiashchantin (6), caruilignan C (7), 7β-caruilignan C (8), yangambin
(9). Compounds 4, 5, 7, 8 were isolated from this plant for the first time.
Keywords: Artemisia absinthium L.; Compositae; Artemisia; Lignan
CLC number: R284.2 Document code: A Article ID: 1003–1057(2012)4–360–05
Received date: 2012-02-16.
Foundation item: National Natural Science Foundation of China (Grant
No. 30973629).
*Corresponding author. Tel.: 86-10-82802750;
E-mail: pengfeitu@bjmu.edu.cn
doi:10.5246/jcps.2012.04.050
1. Introduction
Artemisia absinthium L., commonly known as
wormwood, is a yellow-flowering, perennial herba-
ceous plant belonging to Compositae family, has been
commonly used in traditional Chinese medicines and
Uighur Medicine named “Ku Ai”, for antiparasitic
and to treat anorexia and indigestion, dizziness,
headache, twinge of articular, general edema, irregular
menses, skin itch and common cold[1,2]. According
to previous studies, chemical constituents such as
sesquiterpenes, dimeric guaianolides, flavones,
lignans, volatile oil and tannins were isolated
from this plant[2–8]. These constituents exhibited anti-
inflammatory[9,10], antibiosis[11], anticancer[12] and
anti-HIV activities[13]. And the plant materials of
previous studies were from European countries,
central Asian region. To study chemical constituents
of A. absinthium grows in Xinjiang, we carry out a
continuation study. In this paper, we report the isola-
tion and structural elucidation of nine lignans from
the aerial parts of A. absinthium L. and compounds
4, 5, 7, 8 were isolated from this plant for the first
time. Their structures were shown in Figure 1.





























2. Experimental
2.1. General procedures
NMR spectra were recorded on a Varian 500
spectrometer, operating at 500 MHz for 1H NMR
and 125 MHz for 13C NMR. The chemical shifts
R1 R2 R3 R4
1 H Ar1 H Ar1
2 Ar1 H Ar3 H
3 H Ar1 Ar1 H
5 Ar2 H Ar2 H
6 H Ar1 Ar4 H
9 Ar1 H Ar1 H
Figure 1. Chemical structures of compounds 1–9.
361 Abulajiang·Tulake et al. / Journal of Chinese Pharmaceutical Sciences 21 (2012) 360–364
were given in δ (ppm) with deuterated solvents as
standard. ESI-MS was measured on an Agilent 6320
ion trap MS spectrometer. Semi-preparative HPLC
was carried on a Waters 600 instrument with ODS
column (Grace Prevail C18 Column, 250 mm×10 mm,
5 μm and Beijing Chuangxin Tongheng Science and
Technology Co., Ltd SP-120-10-C18-AP, 250 mm×
10 mm, 10 μm) and C18 guard column with a 2996
photodiode array detector. Column chromatography
was performed with silica gel (100–200 mesh,
200–300 mesh, Qingdao Haiyang Chemical Works),
ODS (Merck) and Sephadex LH-20 (Pharmacia Co.).
Analytical grade solvents were purchased from
Beijing Chemical Factory.
2.2. Plant material
The aerial parts of Artemisia absinthium L. were
collected in Urumqi Xinjiang, China in July,
2009. The plant material was authenticated by
Prof. Peng-Fei Tu in School of Pharmaceutical
Sciences, Peking University and Sulaiman·Halik in
Xinjiang Institute for Drug Control. A voucher
specimen was deposited at the Herbarium of the
Peking University Modern Research Center for
Traditional Chinese Medicine.
2.3. Extraction and isolation
Dried aerial parts (19 kg) of A. absinthium L. were
cut and extracted three times with 95% EtOH. After
evaporation of the solvent under reduced pressure,
the residue was suspended in water and extracted
with petroleum ether, chloroform, ethyl acetate,
successively. The residue of the CHCl3 layer (364 g)
was fractionated by silica gel column chromatography
using a step-wise gradient of petroleum ether and
EtOAc to give six fractions. Fraction 4 was subjected
to silica gel column chromatography (petroleum
ether–EtOAc, 10:1–1:2, v/v) to afford sub-fractions
1–14. Sub-fraction 11 was recrystallized to obtain 1
(360 mg). Sub-fraction 8 was subjected to ODS open
column chromatography (MeOH–H2O, 40:60–90:10,
v/v) and then was separated by semi-preparative
HPLC (MeCN–H2O, 50:50, v/v) to give 2 (86 mg).
Sub-fraction 10 was subjected to ODS open column
chromatography (MeOH–H2O, 40:60–90:10, v/v) and
Sephadex LH-20 column chromatography (MeOH)
to give 3 (56 mg). Sub-fraction 13 was subjected
to ODS open column chromatography (MeOH–H2O,
40:60–90:10, v/v) and Sephadex LH-20 column chro-
matography (MeOH) to give 4 (133 mg). Fraction 6
was subjected to ODS open column chromatography
(MeOH–H2O, 40:60–80:10, v/v), Sephadex LH-20
column chromatography (MeOH) and then was sepa-
rated by semi-preparative HPLC (MeCN–H2O, 49:51,
v/v) to give 5 (34 mg) and 6 (233 mg). The rest of
fraction 4 and fraction 5 were combined together
and subjected to ODS open column chromatography
(MeOH–H2O, 40:60–80:10, v/v), Sephadex LH-20
column chromatography (MeOH) and then were sepa-
rated by semi-preparative HPLC (CH3CN–H2O, 43:57,
v/v) to give 7 (10 mg), 8 (25 mg) and 9 (11 mg).
3. Identification
3.1. Diayangambin (1)
White needle (EtOAc); positive ESI-MS: m/z 469
[M+Na]+; 1H NMR (500 MHz, CDCl3) δ: 6.61 (s, 4H,
H-2,6,2′,6′), 4.92 (d, 2H, J 4.5 Hz, H-7,7′), 3.89 (s,
12H, 3,5,3′,5′-OMe), 3.86 (s, 6H, 4,4′-OMe), 3.75
(dd, 2H, J1 1.5 Hz, J2 9.5 Hz, Hα-9,9′), 3.60 (dd, 2H,
J1 7 Hz, J2 10 Hz, Hβ-9,9′), 3.21 (m, 2H, H-8,8′);
13C NMR (125 MHz, CDCl3) δ: 153.2 (C-3,5,3′,5′),
137.1 (C-1,1′), 134.6 (C-4,4′), 103.2 (C-2,6,2′,6′),
84.1 (C-7,7′), 68.9 (C-9,9′), 60.9 (4,4′-OMe), 56.1
(3,5,3′,5′-OMe), 49.4 (C-8,8′). These data were in
good agreement with those of diayangambin[17].
3.2. Sesartemin (2)
Yellow oil (MeOH); positive ESI-MS: m/z 453
[M+Na]+; 1H NMR (500 MHz, CDCl3) δ: 6.57 (s,
2H, H-2,6), 6.55 (d, 1H, J 1.5 Hz, H-6′), 6.53 (d, 1H,
J 1.5 Hz, H-2′), 5.95 (s, 2H, OCH2O), 4.72 (d, 2H,
J 4.5 Hz, H-7,7′), 4.29 (dd, 1H, J1 6.7 Hz, J2 9.2 Hz,
Hα-9), 4.26 (dd, 1H, J1 6.7 Hz, J2 9.2 Hz, Hα-9′),
3.92 (dd, 1H, J1 3.6 Hz, J2 9.2 Hz, Hβ-9), 3.91 (s,
3H, 5′-OMe), 3.90 (dd, 1H, J1 3.6 Hz, J2 9.2 Hz,
Hβ-9′), 3.87 (s, 6H, 3,5-OMe), 3.83 (s, 3H, 4-OMe),
Abulajiang·Tulake et al. / Journal of Chinese Pharmaceutical Sciences 21 (2012) 360–364 362
3.07 (m, 2H, H-8,8′); 13C NMR (125 MHz, CDCl3)
δ: 153.4 (C-3,5), 149.1 (C-3′), 143.4 (C-5′), 137.4 (C-4),
136.7 (C-1), 135.7 (C-1′), 134.6 (C-4′), 105.5 (C-6′),
102.8 (C-2,6), 101.4 (OCH2O), 100.0 (C-2′), 85.9
(C-7′), 85.7 (C-7), 71.9 (C-9), 71.7 (C-9′), 60.8
(4-OMe), 56.6 (5′-OMe), 56.1 (3,5-OMe), 54.3
(C-8,8′). These data were in accordance with those
of sesartemin[14,17].
3.3. Epiyangambin (3)
White needle (MeOH); positive ESI-MS: m/z 469
[M+Na]+; 1H NMR (500 MHz, CDCl3) δ: 6.60 (s, 2H,
H-2,6), 6.59 (s, 2H, H-2′,6′), 4.87 (d, 1H, J 5.5 Hz,
H-7), 4.45 (d, 1H, J 7.0 Hz, H-7′), 4.17 (d, 1H, J 9.5 Hz,
Hβ-9′), 3.91 (m, 2H, Hα-9,9′), 3.89–3.85 (m, 18H,
3,4,5,3′,4′,5′-OMe), 3.37 (m, 1H, H-8), 3.36 (m, 1H,
Hβ-9), 2.93 (m, 1H, H-8′); 13C NMR (125 MHz,
CDCl3) δ: 153.4 (C-3′,5′), 153.2 (C-3,5), 137.6
(C-4′), 137.0 (C-4), 136.8 (C-1′), 134.0 (C-1),
103.0 (C-2′,6′), 102.6 (C-2,6), 87.8 (C-7′), 82.2
(C-7), 71.1 (C-9′ ), 69.8 (C-9), 60.9 (4′ -OMe),
60.8 (4-OMe), 56.2 (3,5,3′,5′-OMe), 54.5 (C-8′),
50.0 (C-8). These data were in agreement with those
of epiyangambin[14,17].
3.4. (+)Arborone (4)
White powder (MeOH); positive ESI-MS: m/z 485
[M+Na]+; 1H NMR (500 MHz, CDCl3) δ: 7.43 (s, 2H,
H-2,6), 6.55 (s, 2H, H-2′,6′), 5.03 (d, 1H, J 6.0 Hz,
H-7′), 4.44 (t, 1H, J 8.0 Hz, Hβ-9), 4.33 (ddd, 1H,
J1 2.8 Hz, J2 5.6 Hz, J3 8.0 Hz, H-8), 4.26 (dd, 1H,
J1 2.8 Hz, J2 8.0 Hz, Hα-9), 3.94 (s, 3H, 4-OMe),
3.93 (s, 6H, 3,5-OMe), 3.87 (s, 6H, 3′,5′-OMe), 3.84
(s, 3H, 4′-OMe), 3.44 (d, 2H, J 6.8 Hz, H-9′), 2.91
(m, 1H, H-8′); 13C NMR (125 MHz, CDCl3) δ:
198.5 (C-7), 153.4 (C-3,5), 153.2 (C-3′,5′), 143.0
(C-4), 137.1 (C-4′ ), 133.6 (C-1′ ), 131.3 (C-1),
106.4 (C-2,6), 102.5 (C-2′,6′), 81.6 (C-7′), 69.1 (C
-9), 62.0 (C-9′), 61.0 (4-OMe), 60.9 (4′-OMe), 56.4
(3,5-OMe), 56.2 (3′,5′-OMe), 49.6 (C-8′), 48.8 (C-8).
These data were in good agreement with those of
(+)arborone[15].
3.5. (–)Syringaresinol (5)
White powder (MeOH); positive ESI-MS: m/z 457
[M+K]+; 1H NMR (500 MHz, CDCl3) δ: 6.59 (s, 4H,
H-2,6,2′,6′), 5.52 (br s, 2H, 4,4′-OH), 4.74 (d, 2H,
J 4.0 Hz, H-7,7′), 4.29 (dd, 2H, J1 6.5 Hz, J2 8.5 Hz,
Hβ-9,9′), 3.92 (dd, 2H, J1 2.9 Hz, J2 8.5 Hz, Hα-9,9′),
3.90 (s, 12H, 3,5,3′,5′-OMe), 3.10 (m, 2H, H-8,8′);
13C NMR (125 MHz, CDCl3) δ: 147.1 (C-3,5,3′,5′),
134.3 (C-4,4′), 132.1 (C-1,1′), 102.7 (C-2,6,2′,6′),
86.0 (C-7,7′), 71.8 (C-9,9′), 56.4 (3,5,3′,5′-OMe),
54.3 (C-8,8′). These data were in good agreement
with those of (–)syringaresinol[16,21].
3.6. Epiashchantin (6)
White needle (MeOH); positive ESI-MS: m/z 423
[M+Na]+; 1H NMR (500 MHz, CDCl3) δ: 6.78–6.88
(m, 3H, H-2′,5′,6′), 6.59 (s, 2H, H-2,6), 5.96 (s, 2H,
OCH2O), 4.86 (d, 1H, J 5.5 Hz, H-7), 4.44 (d, 1H,
J 7.0 Hz, H-7′), 4.13 (dd, 1H, J1 1.4 Hz, J2 9.5 Hz,
Hβ-9′), 3.89 (s, 6H, 3,5-OMe), 3.86 (s, 3H, 4-OMe),
3.85 (m, 2H, Hα-9,9′), 3.36 (m, 1H, H-8), 3.34 (m,
1H, Hβ-9), 2.89 (m, 1H, H-8′); 13C NMR (125 MHz,
CDCl3) δ: 153.2 (C-3,5), 148.0 (C-3′), 147.2 (C-4′),
136.9 (C-4), 135.1 (C-1′), 134.0 (C-1), 119.5 (C-6′),
108.2 (C-5′), 106.5 (C-2′), 102.6 (C-2,6), 101.0
(OCH2O), 87.6 (C-7′), 82.2 (C-7), 71.0 (C-9′), 69.7
(C-9), 60.9 (4-OMe), 56.2 (3,5-OMe), 54.5 (C-8′),
50.1 (C-8). These data were in accordance with
those of epiashchantin[14,17,18].
3.7. Caruiligan C (7)
White powder (MeOH); positive ESI-MS: m/z 317
[M+Na]+; 1H NMR (500 MHz, CDCl3) δ: 6.51 (s,
2H, H-2,6), 4.95 (d, 1H, J 6.0 Hz, H-7), 4.53 (d, 1H,
J 9.5 Hz, Hβ-9), 4.10 (dd, 1H, J1 8.0 Hz, J2 9.5 Hz,
Hβ-9′), 3.98 (dd, 1H, J1 6.5 Hz, J2 9.5 Hz, Hα-9),
3.88 (s, 6H, 3,5-OCH3), 3.85 (s, 3H, 4-OCH3), 3.83
(dd, 1H, overlapped, Hα-9′), 3.39 (m, 1H, H-8′);
13C NMR (125 MHz, CDCl3) δ: 178.6 (C-7′), 153.5
(C-3,5), 137.4 (C-4), 132.1 (C-1), 102.7 (C-2,6), 84.2
(C-7), 70.9 (C-9), 68.4 (C-9′), 60.9 (4-OCH3), 56.2
(3,5-OCH3), 45.9 (C-8), 43.5 (C-8′). These data were
in agreement with those of caruiligan C[19].
Abulajiang·Tulake et al. / Journal of Chinese Pharmaceutical Sciences 21 (2012) 360–364 363
3.8. 7β-Caruilignan C (8)
White powder (MeOH); positive ESI-MS: m/z 317
[M+Na]+; 1H NMR (500 MHz, CDCl3) δ: 6.57 (s,
2H, H-2,6), 4.62 (d, 1H, J 7.0 Hz, H-7), 4.52 (dd,
1H, J1 6.5 Hz, J2 9.5 Hz, Hβ-9), 4.40 (t, 1H, J 9.0 Hz,
Hβ-9′), 4.37 (dd, 1H, J1 2.0 Hz, J2 9.8 Hz, Hα-9),
4.22 (dd, 1H, J1 4.0 Hz, J2 9.0 Hz, Hα-9′), 3.88 (s,
6H, 3′,5′-OCH3), 3.85 (s, 3H, 4′-OCH3), 3.46 (dt,
1H, J1 4.0 Hz, J2 9.0 Hz, J3 9.0 Hz, H-8′), 3.14 (m,
1H, H-8). 13C NMR (125 MHz, CDCl3) δ: 178.0
(C-7′ ), 153.6 (C-3,5), 138.0 (C-4), 134.5 (C-1),
102,8 (C-2,6), 86.2 (C-7), 70.2 (C-9′), 69.8 (C-9),
60.8 (4-OCH3), 56.2 (3,5-OCH3), 48.5 (C-8), 46.0
(C-8′). These data were in good agreement with
caruilignan C called in an article[20]. But in another
article[19] published in Chem. Pharm. Bull. in 2001,
earlier than the former one, call compound 7 as
caruilignan C, according to the structure, we called
compound 8 as 7β-caruilignan C.
3.9. Yangambin (9)
White needle (MeOH); positive ESI-MS: m/z 469
[M+Na]+; 1H NMR (500 MHz, CDCl3) δ: 6.58 (s,
4H, H-2,6,2′,6′), 4.76 (d, 2H, J 4.0 Hz, H-7,7′),
4.32 (dd, 2H, J1 7.0 Hz, J2 9.0 Hz, Hα-9,9′), 3.94
(dd, 2H, J1 3.0 Hz, J2 9.0 Hz, Hβ-9,9′), 3.88 (s,
12H, 3,3′ ,5,5′-OCH3), 3.85 (s, 6H, 4,4′-OCH3),
3.11 (m, 2H, H-8,8′); 13C NMR (125 MHz, CDCl3)
δ: 153.4 (C-3,5,3′,5′), 136.7 (C-1,1′), 137.5 (C-4,4′),
102.8 (C-2,6,2′,6′), 85.9 (C-7,7′), 72.0 (C-9,9′), 60.8
(4,4′-OCH3), 56.2 (3,5,3′,5′-OCH3), 54.3 (C-8,8′).
These data were in accordance with those of
yangambin[14,17].
Acknowledgements
The authors thank the National Natural Science
Foundation of China for financial support (Grant
No. 30973629).
References
[1] Drug Standard of Ministry of Public Health of the Peoples
Republic of China, Uighur Medicine Part. Xinjiang:
Xinjiang Technological and Health Publishing House.
1999, 53.
[2] Aberham, A.; Cicek, S.S.; Schneider, P.; Stuppner, H.
J. Agric. Food Chem. 2010, 58, 10817–10823.
[3] Akhmedov, I.S.; Kasymov, S.Z.; Sidyakin, G.P. Khim.
Prir. Soedin. 1970, 5, 622–623.
[4] Kasymov, S.Z.; Abdullaev, N.D.; Sidyakin, G.P.; Yagudaev,
M.R. Khim. Prir. Soedin. 1979, 4, 495–501.
[5] Herout, V.; Sorm, F. Collect. Czech. Chem. Commun.
1953, 18, 854–869.
[6] Greger, H.; Hofer, O. Tetrahedron. 1980, 36, 3551–3558.
[7] Anne, O.; Ain, R.; Elmar, A.; Mati, M.; Tiiu, K. Proc.
Estonian. Acad. Sci. Chem. 2006, 55, 155–165.
[8] Slepetys, J. Lietuvos TSR Mokslu Akademijos Darbai,
Serija C: Biologijos Mokslai. 1975, 1, 43–48.
[9] Lee, H.G.; Kim, H.; Oh, W.K.; Yu, K.A.; Choe, Y.K.;
Ahn, J.S.; Kim, D.S.; Kim, S.H.; Dinarello, C.A.;
Kim, K.; Yonn, D.Y. Ann. N. Y. Acad. Sci. 2004,
1030, 555–568.
[10] Oswiecimska, M.; Polak, A.; Seidl, O.; Sendra, J. Dissert.
Pharm. 1965, 17, 503–511.
[11] Juteau, F.; Jerkovic, I.; Masotti, V.; Milos, M.; Mastelic,
J.; Bessiere, J.M.; Viano, J. Planta Med. 2003, 69,
158–161.
[12] Chemesova, I.I.; Belenovskaya, L.M.; Stukov, A.N.
Rastit. Res. 1987, 23, 100–103.
[13] Ma, C.M.; Nakamura, N.; Hattori, M.; Zhu, S.; Komatsu,
K. J. Nat. Prod. 2000, 63, 1626–1629.
[14] Ahmed, A.A.; Mahmoud, A.A.; Ali, E.T.; Tzakou, O.;
Couladis, M.; Mabry, T.J.; Gáti, T.; Tóth, G. Phyto-
chemistry. 2002, 59, 851–856.
[15] Tsai, I.L.; Lee, F.P.; Wu, C.C.; Duh, C.Y.; Ishikawa, T.;
Chen, J.J.; Chen, Y.C.; Seki, H.; Chen, I.S. Planta Med.
2005, 71, 535–542.
[16] Wu, Y.C.; Chang, G.Y.; Ko, F.N.; Teng, C.M. Planta
Med. 1995, 61,146–149.
[17] Greger, H.; Hofer, O. Tetrahedron. 1980, 36, 3551–
3558.
[18] Hofer, O.; Scholm, R. Tetrahedron. 1981, 37, 1181–
1186.
[19] Ma, C.M.; Nakamura, N.; Min, B.S.; Hattori, M. Chem.
Pharm. Bull. 2001, 49, 183–187.
Abulajiang·Tulake et al. / Journal of Chinese Pharmaceutical Sciences 21 (2012) 360–364 364
[20] Lee, I.K.; Yun, B.S.; Kim, Y.H.; Yoo, I.D. J. Microbiol.
Biotechnol. 2002, 12, 692–694.
[21] Huang, X.C.; Guo, Y.W.; Wang, Z.T.; Zhou, W.L.;
Zuo, J.P. Nat. Prod. Res. Dev. 2002, 14, 9–12.
苦艾中的九个木脂素
阿不拉江·图拉克, 姜勇, 屠鹏飞*
北京大学医学部 天然药物及仿生药物国家重点实验室; 药学院 天然药物学系, 北京 100191

摘要: 从苦艾的地上部分通过硅胶、反相、凝胶柱层析, 制备高效液相色谱和重结晶手段分离纯化得到九个木脂素,
分别为 diayangambin (1), sesartemin (2), epiyangambin (3), (+)arborone (4), (–)syringaresinol (5), epiashchantin (6), caruiligan
C (7), 7β-caruilignan C (8), yangambin (9)。其中化合物4, 5, 7, 8为首次从苦艾中分离得到。
关键词: 苦艾; 菊科; 蒿属; 木脂素
“Special Issue in Honor of 100th Anniversary of Peking University
Health Science Center” will be published in Vol. 21 No. 5 Sep. 2012.
Please pay more attention on it.

“庆祝北京大学医学部百年校庆” 专刊, 即将于2012年9月第21卷
第5期出版, 敬请关注。