免费文献传递   相关文献

臭牡丹根提取物的抑菌效果(摘要)(英文)



全 文 :StudyontheAntimicrobialEfectoftheExtractsof
ClerodendronbungeiRoots
LINNa* , YINLi-guo, CHENChao-zhong, WEIQin, LIHua-lan
DepartmentofLifeScienceandFoodEngineering, YibinUniversity, Yibin644000
Abstract [Objective] TheaimwastoresearchtheantimicrobialefectoftheextractsofClerodendronbungeirootswithdiferentsolventsonthe
commonplantmicrobes.[ Method] ThebacteriacakemethodwasusedtostudytheantimicrobialcapabilityofClerodendronbungeiroots.[Re-
sult] Theextractshaveanti-bacterialactiononRhixoctoniacerealisV.Hoeven, Fusariumgraminearum, RhizoctoniasolaniandSetosphaeriatur-
cica, especialytheextractfromdistiledwaterhasthestrongestanti-bacterialactiononRhixoctoniacerealisV.HoevenandFusariumgraminea-rum, theextractfrometherhasthestrongestanti-bacterialactiononFusariumgraminearum, theMICalwere10mg/ml.Theextractshaddifer-
entantimicrobialefectwhenpHvaluewasfrom5to8.[Conclusion] TheextractsofClerodendronbungeirootscouldinhibitthe4pathogenicmi-
croorganism, andtheantibacterialactivitywasaffectedbypHvaluegreatly.
Keywords Clerodendronbungeiroots;Extracts;Antimicrobialefect
Received:July13, 2009  Accepted:July28, 2009
SupportedbyYouthFoundationofYibinUniversity(QJ05-22)and
ResearchFund forthe DoctoralProgram ofYibin University
(2005B02).
*Correspondingauthor.E-mail:450351692@qq.com
  ClerodendronbungeiSteud.isadeciduousshrubinVer-
benafamilyanditiswidelydistributedinNorthChina,
ShaanxiProvinceandmanyprovincesinsouthoftheYangtze
river.SomeresearcheshavedemonstratedthatClerodendron
bungeiSteud.hasmanypolyphenolsubstances, alkaloid, or-
ganicacid, aminoacid, sugar, bioflavonoidandvolatileoil[ 1].
Theroot, stemandleavesofClerodendronbungeiSteud.can
beusedasdrugs, whichhavemanyeficaciessuchaspro-
motingbloodcirculation, removingbloodstasis, detumes-
cence, detoxification, clearingheatremovingdampnessand
analgesia.Themodernmedicinehasdemonstratedthatitalso
hasothermedicinalvaluessuchasanti-tumor, enhancingim-
munity[1-5] .Thenegativeinfluencesorganicsynthesispesti-
cidesonpeoplehavearisenmorerecognition, althoughthey
canbeterpreventcropdiseasesandensurestableyieldof
plant, whiledevelopingbotanicalpesticidewithlowtoxicity
andhigheficiencyisanimportantwaytosolvethisproblem.
Atpresent, theinhibitoryeffectofrootextractofClerodendron
bungeiSteud.onplantpathogenhasnotbeenreportedyet.
Therefore, RhixoctoniacerealisV.Hoeven, Fusarium gra-
minearumandRhizoctoniasolanihavebeentakenasexperi-
mentalbacteriatostudytheanti-plantpathogenicmicroorgan-
ismsactivityofClerodendronbungeiSteud.onthem.Itisex-
pectedtoprovidetheoreticalbasisforpopularizingandapply-
ingClerodendronbungeiSteud..
MaterialsandMethods
Materials
ClerodendronbungeiSteud.werecolectedfrom Yibin
City, SichuanProvincethentheyweregroundandpreserved
afterwashedanddried.RhixoctoniacerealisV.Hoeven, Fu-
sariumgraminearumandRhizoctoniasolaniwereprovidedby
MicrobiologyLaboratoryofSchoolofLifeScienceandFood
Engineering.
Methods
Preparation ofrootextractofClerodendron bungei
Steud. FourportionsofrootpowderClerodendronbungei
Steud.wereweighted30 gforeachandputintofourround
botomflask, thenaccordingto1∶8 solid-liquidratio, 240 ml
80% ethanol, ethylether, ethylacetateanddistiledwater.
Theywereplacedintothermostaticwatertankat90 ℃, 37
℃, 77℃ and100 ℃respectivelytorefluxextractionfor3 h,
thenthefilterresidueswerefiltered.Thefiltrateswererotation-
alyevaporatedtoobtainextracts, thentheyweredriedfor48h
invacuumdryingovenandpreservedinrefrigeratorat4 ℃.
ConfigurationofPDAmedium[6]  
Strainactivation ThePDAwasputintosterilizedculture
dish, thenaftercoolingsolidification, thevaccineneedles
wereusedtopicksomeinactivatedstrainsforinoculation,
thenculturedfor48 hinincubatorat28 ℃, finaly, thestrains
wereactivatedagaintoincreasetheiractivities[ 8] .
Dilutionofextract Afterremovedbacteriabymicroporous
membrane, 4 mlstocksolutionwereplacedinasepticsmal
beakerthendimethylsulfoxidewasaddedtoconfiguremedical
solutionsat400, 350, 300, 250, 200, 160, 130, 100 and50
mg/ml.
Bacteriostaticexperiment Theextractwereaddedinto
PDAmediumaccordingto1∶10 proportionat45 ℃ tomake
platethendimethylsulfoxideandasepticwaterweretakenas
thecontrol, besides, everytreatmenthadthreerepetitions.
Aftertheplatewassolidified, thebacteriacakeswereinocula-
ted(d=7.0 mm), thenculturedinconstanttemperaturefos-
terboxat28℃for48 h, finaly, crossingmethodwasusedto
detectcolonydiameter[7] .Theinhibitionrateofmycelial
growthwascalculatedbythefolowingformulae:Colonydiam-
eter(mm)=Averagediametersofmeasured-7.0.
Inhibitionrate(%)=(Diameterofcontrolcolony-Diam-
eteroftreatedcolony)/Diameteroftreatedcolony×100%
Determinationofminimalinhibitoryconcentration(MIC)
 7 mmbacteriacakewerechosenbypuncherforfutureuse.
ThesterilizedPDAwasheatedtounfreeze, thentheextract
ofClerodendronbungeiSteud.andthecontrolliquidwere
addedintoPDAwith1∶9 proportion, sothefinalyconcentra-
tionsoftreatmentmedicalsolutionswere40, 35, 30, 25, 20,
PlantProtectionAgriculturalScience&Technology, 2009, 10(5):130-133Copyright 2009, InformationInstituteofHAAS.Alrightsreserved.
16, 13, 10 and5 mg/ml.Afterplatewassolidified, thebacte-
riacakeswereplacedonwithmyceliumdownwardandevery
culturedishhadonebacteriacakewiththreerepetitions, then
theywereculturedinconstanttemperaturefosterboxat28 ℃
for48h, later, thediameterofcolonywasdetermined[ 8] , so
theminimalinhibitoryconcentrationwasthenocolonygrowth
inculturemedia.
InfluencesofpHvalueonbacteriostasis Takingwheat
phytoalexinasindicativebacteria, theculturemediumcontai-
ning30 mg/mlmedicinewasprepared, then1mol/LHCland
1 mol/LNaOHwereusedtoadjustpHvalueto5, 6, 7 and8
accordingtotheminimalinhibitoryconcentration.Aftersolidi-
fied, thewheatphytoalexincakes(d=7 mm)wereinoculated
intheculturemedium, andeveryculturedishhadonecake
withthreerepetitions.48 hlater, thecrossingmethodwas
usedtodetectdiameterofcolonyandtheantibacterialactivity
ofextractofClerodendronbungeiSteud.atdiferentpHvalue
conditionswereobserved.
ResultsandAnalysis
Inhibitionzoneofdifferentextractstotestedbacteria
ItwasconcludedfromTable1 thatfourextractsgenera-
teddiferentinhibitoryefectsontestedbacteria, amongwhich
theinhibitoryefectofdistiledwaterwasbestandthesecond
bestandthirdbestwastheextractofethylacetateandether,
however, theinhibitoryeffectof80% ethanolwasworst, so
thedistiledwatercouldextractantibacterialactivecompo-
nentsfromtherootofClerodendronbungeiSteud..Theinhib-
itoryeffectsoffourextractsonFusarium graminearumwere
beterthantheseonotherstrains, whilefourextractsgenera-
tedtheworstinhibitoryefectsonSetosphaeriaturcica, which
mightbecausedbydiferentbacteriostaticmechanisms, so
thebacteriostaticabilitytodiferentbacteriawerediferent.
Table1 AntimicrobialefectoftheextractsofClerodendronbungeirootswith4solventsondiferentthali mm
Solventextracts InhibitioncyclediameterofRhixoctoniacerealisV
Inhibitioncyclediameterof
Fusariumgraminearum
Inhibitioncyclediameter
ofRhizoctoniasolani
Inhibitioncyclediameter
ofSetosphaeriaturcica
Distiledwaterextract 7.0 7.0 7.7 12.3
80% ethanolextract 11.4 10.8 12.7 9.5
Ethylacetateextract 9.4 7.9 10.0 10.1
Etherextract 9.4 7.0 9.3 10.2
Waterextract(CK) 26.0 17.0 20.0 21.0
Dimethylsulfoxideextract(CK) 20.0 18.0 19.0 22.0
  ItwasconcludedfromTable2 thatthedistiledwaterex-
tractgeneratedthebestinhibitoryeffectonRhixoctoniacerea-
lisV.HoevenandSetosphaeriaturcicaandtheinhibitionrate
was87.76%, besides, distiledwaterextractgeneratedthe
secondbestinhibitoryefectonRhizoctoniasolaniandthe
worstinhibitoryefectonSetosphaeriaturcica.80% ethanol
extractgeneratedthebestinhibitoryefectonSetosphaeria
turcicabutitsinhibitoryeffectwasnotgoodonotherthree
strainsandtheirinhibitionratewaslessthan22%.Theethyl
acetateextractgeneratedthebestinhibitoryeffectonFusari-
umgraminearumandtheinhibitionratewas72.12%.The
etherextractgeneratedthebestinhibitoryeffectonRhizocto-
niasolaniandtheinhibitionratewas87.86%.
Table2 InhibitionrateoftheextractsofClerodendronbungeirootswith4solventstodiferentthali %
Solventextracts RhixoctoniacerealisV Fusariumgraminearum Rhizoctoniasolani Setosphaeriaturcica
Distiledwaterextract 87.86 87.86 70.78 6.22
80% ethanolextract 14.45 21.09 3.37 37.84
Ethylacetateextract 38.86 72.12 31.50 29.81
Etherextract 39.90 40.79 87.86 42.93
Minimalinhibitory concentration(MIC) ofdifferent
extractstotestedbacteria
ItwasconcludedfromTable3 thattheminimalinhibitory
concentrationsofethylacetateextracttoFusariumgraminea-
rum, RhixoctoniacerealisV.Hoeven, Rhizoctoniasolaniand
Setosphaeriaturcicawere16, 20, 20 and25 mg/mlrespec-
tively.theminimalinhibitoryconcentrationsof80% ethanol
extracttoRhizoctoniasolaniandFusariumgraminearumwere
30mg/ml, whiletheMICtoRhixoctoniacerealisVandFusar-
iumgraminearumwere35mg/ml.Theminimalinhibitorycon-
centrationsofdistiledwaterextracttoRhixoctoniacerealisV
andFusariumgraminearumwere10 mg/ml, whiletheMICto
RhizoctoniasolaniandSetosphaeriaturcicawere16 and20
mg/mlrespectively.Theminimalinhibitoryconcentrationsof
etherextracttoFusariumgraminearum, Rhixoctoniacerealis
V, RhizoctoniasolaniandSetosphaeriaturcicawere10, 20, 20
and30mg/ml.
Fourkindsofextractsgenerateddifferentantibacterial
efectsonfourtestedstrains, theinhibitoryefectsoffourex-
tractsonFusariumgraminearumweregood.MICof80% eth-
anolextractandethylacetateextracttoFusariumgraminea-
rumwereover16 mg/mlwhileMICofothertwoextractsto
Fusariumgraminearumwere10 mg/ml, inaddition, theMIC
of80% ethanolextractandethylacetateextracttoRhizoctoni-
asolaniwerebetween16and30 mg/ml.Generalyspeaking,
theMICofrootextractsofClerodendronbungeiSteud.to
severalcommonplantpathogenswerelessthan35 mg/ml.
InfluenceofpHvalueonbacteriostaticaction
ItwasconcludedfromTable7 thatthesameextractgen-
erateddifferentbacteriostaticactionsonFusariumgraminea-
rumunderdifferentpHvalueconditions.Theethylacetateex-
tractgeneratedthebestantibacterialeffectunderneutralcon-
dition, thentheantibacterialefectbecamebadwiththepH
change, besides, the80% ethanolextractwassimilartoethyl
acetateextract.Theinhibitionofetherextractunderacidic
conditionwasbiggerthanitunderneutralconditionandalka-
linecondition, whiletheinhibitionofdistiledwaterextractwas
oppositetothatofetherextract, sotheantibacterialactivity
wasinfluencedsignificantlybypHvalue.
131LINNaetal.StudyontheAntimicrobialEfectoftheExtractsofClerodendronbungeiRoots
Table3 Antimicrobialefectoftheextractsfromethylacetateunderdiferentconcentrations
Concentrationofethyl
acetateextract∥mg/ml
Inhibitioncyclediameterof
Rhixoctoniacerealis∥mm
Inhibitioncyclediameterof
Fusariumgraminearum∥mm
Inhibitioncyclediameterof
Rhizoctoniasolani∥mm
Inhibitioncyclediameterof
Setosphaeriaturcica∥mm
40 7.0 7.0 7.0 7.0
35 / / / 7.0
30 / / / 7.0
25 / / / 7.0
20 7.0 7.0 7.0 7.8
16 7.0 7.7 7.6 8.3
13 7.3 8.5 8.9 9.4
10 7.9 9.4 11.0 10.1
5 20.5 12.4 13.7 11.1
MIC∥mg/ml 16 20 20 25
/ meansbacteriostatictestwasnotexperimentedatthisconcentration, thesameasTable5and6.
Table4 Antimicrobialefectoftheextractsfromethanolunderdiferentconcentrations
Concentrationof
ethanol∥mg/ml
Inhibitioncyclediameterof
Rhixoctoniacerealis∥mm
Inhibitioncyclediameterof
Fusariumgraminearum∥mm
Inhibitioncyclediameterof
Rhizoctoniasolani∥mm
Inhibitioncyclediameterof
Setosphaeriaturcica∥mm
40 7.0 7.0 7.0 7.0
35 7.0 7.0 7.0 7.0
30 7.0 7.4 7.0 7.4
25 7.5 8.6 7.4 8.0
20 8.6 9.3 8.2 8.7
10 10.1 10.3 12.7 9.5
5 12.5 11.5 14.9 11.2
MIC∥mg/ml 30 35 30 35
Table5 Antimicrobialefectoftheextractsfromdistiledwaterunderdifferentconcentrations
Concentrationofdis-
tiledwater∥mg/ml
Inhibitioncyclediameterof
Rhixoctoniacerealis∥mm
Inhibitioncyclediameterof
Fusariumgraminearum∥mm
Inhibitioncyclediameterof
Rhizoctoniasolani∥mm
Inhibitioncyclediameterof
Setosphaeriaturcica∥mm
40 7.0 7.0 7.0 7.0
20 7.0 7.0 7.0 7.0
16 / / 7.0 7.4
13 / / 7.4 8.7
10 7.0 7.0 7.7 12.3
5 7.8 7.5 8.5 19.5
MIC∥mg/ml 10 10 16 20
Table6 Antimicrobialefectoftheextractsfrometherunderdiferentconcentrations
Concentrationof
ether∥mg/ml
Inhibitioncyclediameterof
Rhixoctoniacerealis∥mm
Inhibitioncyclediameterof
Fusariumgraminearum∥mm
Inhibitioncyclediameterof
Rhizoctoniasolani∥mm
Inhibitioncyclediameterof
Setosphaeriaturcica∥mm
40 7.0 7.0 7.0 7.0
35 / / / 7.0
30 / / / 7.0
25 / / / 7.4
20 7.0 7.0 7.0 8.9
16 / 7.3 7.6 /
13 / 8.5 8.4 /
10 7.0 9.4 9.3 10.2
5 7.5 11.1 11.7 13.1
MIC∥mg/ml 10 20 20 30
Table7 Antimicrobialefectof4 extractsunderdiferentpHcondi-
tions
pH
value
Ethylacetate
extract
Ether
extract
80%ethanol
extract
Distiledwater
extract
5 21.8 15.1 21.1 20.3
6 18.0 15.3 18.0 16.7
7 16.3 21.8 14.0 14.5
8 13.2 15.5 19.0 18.3
ConclusionandDiscussion
Itisconcludedfromtheinvitrobioassayresultsofdifer-
entextractsfromrootofClerodendronbungeiSteud.tofour
kindsoftestedpathogensthatrootofClerodendronbungei
Steud.hasbetterantibacterialactivity.Thediferentextracts
havediferentantibacterialactivitiesandthesamesolvent
generatesdiferentantibacterialactivitiesondifferentstrains,
becausediferentsolventscanextractdifferentchemicalcon-
stituents, diferentcontentsanddiferentactivecomponents,
whichhavediferentinhibitorymechanismstomycelialgrowth
andsporegrowth.Therefore, thereshouldhaveafurther
study.
TheantibacterialactivityofrootextractofClerodendron
bungeiSteud.isinfluencedbypHvalue, soitisnecessaryto
payatentiontopHvalueforincreasinggermicidalefficacy
132 AgriculturalScience&TechnologyVol.10, No.5, 2009
whenusingitasbotanicalfungicide.Lookingforgreenpesti-
cidebecomesanurgenttask, becauselongtimeusingchemi-
calpesticidehasgeneratedaseriesofpublicnuisances.The
botanicalpesticideswithlowtoxicity, lowresidualandlittle
drugresistancecandecreaseoravoidpesticidepolution
broughtbychemicalpesticide[ 9].ClerodendronbungeiSteud.
providesanewchoiceofdevelopingbotanicalfungicide.At
present, thestudyofClerodendronbungeiSteud.isseldom
intheworld, besides, thestudyofmaincomponentsandme-
dicinalvalueofClerodendronbungeiSteud.isalsoseldom.
Theexperimenthasprovidedtheoreticalbasisandtechnical
supportforthedevelopmentofnewpesticideandthediscov-
eryofleadcompoundaswelasprovidedanewwayforcom-
prehensive developmentand utilization ofClerodendron
bungeiSteud..
References
[ 1] GAOLM, WEIXM, HEYQ.Studiesonchemicalconstituentsinof
Clerodendrumbungei[J].ChinaJournalofChineseMateriaMedi-ca, 2003, 28(11):1042-1044.(inChinese).
[ 2] LIUDL.Studyprogressinthechemicalcompositionandpharma-
cologicalactionofroseglorybowerstemandleaf[ J] .Guiding
JournalofTCM, 2006, 12(8):114-115, 122.(inChinese).
[ 3] RUANJL, FUCH.Studiesonchemicalconstituentsinstemof
Clerodendrumbungei[J] .ChineseTraditionalandHerbalDrugs,
1997, 28(7):395-396.(inChinese).
[ 4] NAGAOT.Anti-celproliferationcomponentsinleavesofCleroden-
drumbungeiandleaves, stemsandpeelsofClerodendrumtri-chotomum[J].WorldPhytomedicines, 2002, 17(6):253-256.(in
Chinese).
[ 5] LIUJX.ThesedativeandhypnoticactionofClerodendronbungei
solution[J].JournalofGannanMedicalColege, 2001, 21(3):241
-243.(inChinese).
[ 6] ZHAOB, HESJ.Microbiologyexperiment[M].Beijing:Science
Press, 2002(1):72-73, 251-252.(inChinese).
[ 7] ZHANGYL, YINCP.Studyonfungistasisof15kindsofChinese
herbextractstoseveralkindsofplantfungi[J] .JournalofNorth-
westSci-TechUniversityofAgricultureandForestry:NaturalSci-
enceEdition, 2005, 33(S1):175-177.(inChinese).
[ 8] ZHANGYL, YINCP, LAIWM, etal.Bioassayof10kindsofChi-
neseherbsextractsforantifungalactivityinvitro[J].Journalof
HenanAgriculturalSciences, 2005(6):49-51.(inChinese).
[ 9] ZHANGX.DiscussionondevelopingtendencyandstrategyofChi-nesepesticide[ C] // PapersofNationalSymposiumontheNew
CentuaryNationalHundred, ThousandandTenThousandTalent
Project.Beijing, 1997.(inChinese).
[ 10] LISD, CAOKQ.InhibitionofBacilussubtilisEB-28againstphy-
tophthorainfestansandcontroleficacyonpotatolateblight[ J].
JournalofAnhuiAgriculturalSciences, 2009, 37(24):50-52.(in
Chinese).
[ 11] YINLG, LINN, WEIQ, etal.Antifungalactivityofextractsfrom
Clerodendrumbungeileavesagainsttwospeciesofphytopatho-gens[J] .AgriculturalScience&Technology, 2008, 9(1):143-
145.
[ 12] WUY, GUSB, ZHANGYJ.Studyonthebacteriostasisofcapsa-
icinincapsicumannuum[ J].JournalofAnhuiAgriculturalSci-
ences, 2007, 35(29):26-27.(inChinese).
[ 13] ZENGXR, ZENGT, LILF, etal.Insecticidalactivitiesofextracts
fromBruceajavanica(L.)Merr.Calus[ J] .AgriculturalScience
&Technology, 2008, 9(4):141-143.
[ 14] HURH, RENGX.StudyonninekindsofChineseherbalmedi-
cinesterilization[ J] .JournalofAnhuiAgriculturalSciences,
2007, 35(27):122-133.(inChinese).
[ 15] HUANGDM, CHANGWZ, DUGJ, etal.Studyonanti-oxidation
andinhibitoryeffectonnonenzymaticglycationreactionoffermen-
tationextractfrombiotransformationofGinkgobilobaL.(EGB)by
hericiumerinaceus[J].AgriculturalScience&Technology, 2008,
9(2):10-13.
[ 16] WANGGH, XIESL, XUJ, etal.Studyonthebacteriostasisof
threekindsofbryophytes[ J].JournalofAnhuiAgriculturalSci-
ences, 2007, 35(27):235-238.(inChinese).
[ 17] BAIXT, ZHUWX, LUOL, etal.Antibacterialpropertiesofpeonyseedsextract[ J].ChinaBrewing, 2009(3):59 -61.(inChi-
nese).
Responsibleeditor:CHENXiu-chen  Responsibletranslator:LIZhu-le   Responsibleproofreader:WU Xiao-yan
臭牡丹根提取物的抑菌效果(摘要)
林 娜* ,尹礼国 ,陈超众 ,魏琴 ,李华兰 (宜宾学院生命科学与食品工程系 ,四川宜宾 644000)
[目的 ] 研究臭牡丹根不同极性溶剂提取物对常见植物病原微生物的抑菌效果。
[方法 ] 制备了乙醇、乙醚、乙酸乙酯和蒸馏水 4种臭牡丹提取物 ,采用菌饼法研究臭牡丹根的抑菌能力 ,包括抑菌圈直径(十字交叉法)、最
小抑菌浓度(MIC)的测定。并以小麦赤霉为指示菌 ,观察了pH值为 5 ~ 8范围内臭牡丹根提取物的抑菌活性。
[结果 ] 臭牡丹根的 4种提取物对小麦纹枯病菌、小麦赤霉病菌 、水稻纹枯病菌、玉米大斑病菌均具有不同程度的抑菌作用 ,其中 ,蒸馏水提
取物的抑菌效果最好 ,其次为乙酸乙酯、乙醚 , 80%乙醇提取物的抑菌效果最差。 4种溶剂提取物对小麦赤霉的抑制效果几乎都优于其他的
菌种 ,而对玉米大斑的抑制效果最差 ,可能是其抑菌机理不同 ,导致对不同菌的抑菌能力产生差异。乙酸乙酯提取液对小麦赤霉、小麦纹枯、
水稻纹枯和玉米大斑最小抑菌浓度分别为 16、20、20、25mg/ml;80%乙醇提取液对水稻纹枯和小麦赤霉的最小抑菌浓度为 30 mg/ml,而对小
麦纹枯和玉米大斑的最小抑菌浓度为 35mg/ml;蒸馏水提取液对小麦纹枯和小麦赤霉的最小抑菌浓度为 10mg/ml, 水稻纹枯和玉米大斑的
最小抑菌浓度分别为 16、20mg/ml;乙醚提取液对小麦赤霉、小麦纹枯、水稻纹枯和玉米大斑最小抑制浓度分别为 10、20、20、30mg/ml。总的
看来 ,臭牡丹根提取物对这几种常见植物致病菌的MIC均在 35mg/ml以下。臭牡丹根提取物在 pH值 5~ 8的范围内具有不同程度的抑菌
作用。 80%乙醇提取物和乙酸乙酯提取物在中性条件下 ,抑菌效果较好 ,然后 ,随着pH值增加或减小而变差;乙醚提取物在酸性条件下 , 对
小麦赤霉的抑制作用大于在中性和碱性条件下;而蒸馏水的则与乙醚相反 ,表明其抑菌活性受pH值的影响较大。
[结论 ] 臭牡丹根对 4种病原微生物具有较好的抑制效果 ,其抑菌活性受 pH值影响较大。
关键词 臭牡丹根;提取物;抑菌效果
基金项目 宜宾学院青年基金(QJ05-22)及宜宾学院博士启动基金课题(2005B02)资助。
作者简介 林娜(1979-),女 ,四川内江人,硕士 ,讲师 ,从事植物学方面的研究。 *通讯作者。
收稿日期  2009-07-13  修回日期  2009-07-28
133LINNaetal.StudyontheAntimicrobialEfectoftheExtractsofClerodendronbungeiRoots