免费文献传递   相关文献

胆木中一个新吲哚生物碱的分离与结构鉴定(英文)



全 文 : 306 Journal of Chinese Pharmaceutical Sciences http://www.jcps.ac.cn
A new indole alkaloid from Nauclea officinalis (Pierre ex Pitard) Merr. et Chun
Xiaoxue Pi1, Kehui Xie1, Guangzhong Tu2, Tianzhi Cai1, Rong Yang1, Qiong Wu1, Hongzheng Fu1*
1. State Key Laboratory of Natural Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center,
Beijing 100191, China
2. Beijing Institute of Microchemistry, Beijing 100191, China
Abstract: From the aerial parts of Nauclea officinalis (Pierre ex Pitard) Merr. et Chun, one new indole alkaloid paratunamide E (1)
has been isolated together with six known indole alkaloids, paratunamide A (2), nauclealotide C (3), nauclealotide A (4),
vincosamide (5), strictosamide (6) and naucleamide F (7). Naucleamide F (7) was isolated from Nauclea officinalis for the first time.
All of the seven compounds above were elucidated by spectroscopic methods including 1 D and 2 D NMR spectroscopic analyses.
Keywords: Nauclea officinalis ; Indole alkaloid; Structural identification
CLC number: R284 Document code: A Article ID: 1003–1057(2014)5–306–05
Received: 2013-05-02; Revised: 2013-05-21; Accepted: 2013-06-26.
Foundation item: National Natural Science Foundation of China
(Grant No. 30973628).
*Corresponding author. Tel./Fax: 86-10-82805212;
E-mail: drhzfu@sina.com
http://dx.doi.org/10.5246/jcps.2014.05.042
1. Introduction
Nauclea officinalis (Pierre ex Pitard) Merr. et Chun
belongs to the genus Nauclea in family Rubiaceae,
which have been widely used as the traditional Chinese
medicine in Hainan Province to treat colds, fever, acute
tonsillitis, throat, conjunctivitis, enteritis, dysentery,
eczema, etc[1,2]. Extracts of Nauclea have been reported to
exhibit antimicrobial[3,4], antitumor[5,6], anti-inflammatory[7],
anti-malarial[8,9] and other effects[10−12]. Currently, tablet
and injection made from Naucles officinalis extracts
are applied in clinic as antibacterial and anti-inflammatory
agents[7]. In order to search for active ingredients and
to undertake further comprehensive investigation on
the chemical constituents of Nauclea officinalis, the
studies on this plant were carried out. As a result, one
new indole alkaloid paratunamide E (1) with six known
alkaloid paratunamide A (2), nauclealotide C (3),
nauclealotide A (4), vincosamide (5), strictosamide (6),
and naucleamide F (7) were isolated from the dry
aerial parts of N. officinalis. In this paper we report the
isolation and structural elucidation of these compounds
(Fig. 1).





2. Experimental
2.1. General experimental procedures
MS spectra were recorded on a MDS SCIEX QSTAR
mass spectrometer and HRESIMS was carried out on
a Bruker APEX IV mass spectrometer (Billerica, MA).
The 1D and 2D NMR spectra were recorded on Bruker
Avance AV-400 instrument with TMS as the internal
standard. IR spectra were recorded on a Nicolet Nexus
470 FT-IR instrument and KBr pellet. Chromatography
was performed on silica gel (200−300 mesh, 10−40 µm,
Qingdao Marine Chemical Factory) and Sephadex
LH-20 (Pharmacia). Solvents of analytical grade were
purchased from Beijing Chemical Factory.
2.2. Plant materials
The aerial parts of N. officinalis were purchased
from Lingshui County of Hainan Province, China, in
July 2011, and identified by Prof. Hongzheng Fu of
Peking University. A voucher specimen was deposited
at State Key Laboratory of Natural and Biomimetic
Drugs in Peking University.
2.3. Extraction and isolation
The ethanol extract (10 kg) was suspended in water
and extracted with EtOAc and n-BuOH. The EtOAc
soluble part (2 kg) was subjected to silica gel column
307 Pi, X.X. et al. / J. Chin. Pharm. Sci. 2014, 23 (5), 306–310
Figure 1. Chemical structures of compounds 1–7.
N
H
N
O
O
O
HO
H
OO
HO
HO OH
HO
1
2 3
4
56
7
8
9
10
11
12
13 14 15
16
17
18 19
20
21
22
123
4
6
H3CO
1
N
H
N
O
O
O
HO
H3CO
H
OO
HO
HO
OH
HO
1
2 3
4
56
7
8
9
10
11
12
13 14 15
16
17
18 19
20
21
22
123
4
6
2
N
H
O
N O
O
O
H H O
O
OH
OH
OH
OH
1
2
3
4
5
6
78
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
5
6
4
3
3
N
H O
N
OH
O
H O O
OH
OH
OH
HO
1
2
3
4
56
78
9
10
11
12
13
14
15
16 17
18
19
20
21
22
1
2 3
4
5
6
4
N
H
N
O
H
H
O
O
HO
HO
HO
OH
O
1
2
3
4
5
6
78
9
10
11
12
13
14 15
16
17
18 19
20
21
22
123
4
5
6
5
N
H
N
O
H
O
O
HO
HO
HO OH
O
1
2
3
4
5
6
78
9
10
11
12
13
14 15
16
17
18 19
20
21
22
H
6
N
O
N
H
O
O
O
H
H
OH
OH
OH
O
1
2
3
4
5
6
78
910
11
12 13
14
15
16
17
18
19 20
21
22
1
2 3
4
5
6
7
123
4
5
6
chromatography eluted with a gradient CHCl3−MeOH
system to yield fractions A−G. Fraction B (20 g) was
eluted by CHCl3−MeOH (80:1, v/v) on silica gel and
further isolated and purified by Sephadex LH-20
(MeOH−H2O, 1:1, v/v) and HPLC (UV: 210 nm, RP-18
column, 60% aq. MeOH) to afford compounds 1 (12 mg) ,
2 (300 mg), 5 (200 mg) and 6 (500 mg). Fraction D
(10 g) was separated by CHCl3−MeOH (30:1, v/v) on
silica gel and further isolated by Sephadex LH-20
(MeOH−H2O, 3:7, v/v) and HPLC (UV: 210 nm, RP-18
column, 40% aq. MeOH) to give compounds 3 (20 mg),
4 (8 mg) and 7 (15 mg).
3. Structural identification
3.1. Paratunamide E (1)
Compound 1 is white solid with the specific rotation
of −92 (c 0.25, MeOH). The molecular formula of
C27H34N2O11 was established by HRESIMS at m/z
585.20548 [M+Na]+ (calcd. 585.20345). The IR
spectrum showed the presence of hydroxyl (3392 cm−1),
lactam (1711 cm−1), and α,β-unsaturated carbonyl
(1654 cm−1) groups. The 1H and 13C NMR spectra
(with DEPT and HSQC experiments) (Table 1) exhibited
a tetrahydro-β-carboline with opened C ring, a lactam
ring, a four-hydrogen pyran ring and a glucopyranosyl
moiety. The NMR signals of compound 1 were exactly
similar to those of paratunamide A (2) except for the
δ-lactam moiety, which indicated that they had the
same planar structure. NOESY correlation of compound 1
(Fig. 2, 3) was H-14a to H-15 and H-3, H-14b to H-OCH3
and H-19, H-3 to H-15. However, the NOESY correlation
of compound 2 was H-14a to H-15 and H-OCH3, H-14b
to H-3, H-OCH3 to H-15. Consequently, compound 1
was the isomer of compound 2 at 3-OCH3. Depended
on the above, compound 1 was elucidated as shown in
Figure 1 named as paratunamide E. 26D[α]
308 Pi, X.X. et al. / J. Chin. Pharm. Sci. 2014, 23 (5), 306–310
3.2. Paratunamide A (2)
White solid; C27H34N2O11; ESI-MS m/z: 585.55 [M+Na]+;
1H NMR (400 MHz, pyridine-d5) δ: 11.54 (1H, s, H-1),
4.76 (1H, m, H-3), 3.13 (3H, s, H-3-OCH3), 4.30 (1H,
m, H-5a), 3.84 (1H, m, H-5b), 2.74 (2H, m, H-6), 7.65
(1H, d, J 7.2 Hz, H-9), 7.04 (1H, td, J1 7.4 Hz, J2 0.6 Hz,
H-10), 7.21 (1H, td, J1 7.6 Hz, J2 1.0 Hz, H-11), 6.94
(1H, d, J 7.7 Hz, H-12), 1.80 (1H, m, H-14a), 1.44
(1H, td, J1 13.7 Hz, J2 2.4 Hz, H-14b), 3.50 (1H, m,
H-15), 7.82 (1H, d, J 2.4 Hz, H-17), 5.03 (1H, dd,
J1 10.4 Hz, J2 1.8 Hz, H-18a), 4.97 (1H, dd, J1 17.1 Hz,
J2 1.6 Hz, H-18b), 5.43 (1H, dt, J1 17.0 Hz, J2 10.1 Hz,
H-19), 2.60 (1H, m, H-20), 5.71 (1H, d, J 1.6 Hz, H-21),
5.26 (1H, d, J 7.9 Hz, H-1′), 3.95 (1H, m, H-2′), 4.18
(1H, m, H-3′), 4.21 (1H, m, H-4′), 3.90 (1H, m, H-5′),
4.47 (1H, dd, J1 11.8 Hz, J2 2.1 Hz, H-6′a), 4.33 (1H,
m, H-6′b); 13C NMR (100 MHz, pyridine-d5) δ: 180.8
(C-2), 88.3 (C-3), 55.5 (C-3-OCH3), 42.5 (C-5), 37.2
(C-6), 75.6 (C-7), 133.5 (C-8), 124.5 (C-9), 122.2 (C-10),
129.3 (C-11), 110.1 (C-12), 142.5 (C-13), 28.1 (C-14),
22.7 (C-15), 108.1 (C-16), 147.8 (C-17), 119.4 (C-18),
133.6 (C-19), 43.3 (C-20), 97.3 (C-21), 163.7 (C-22),
100.8 (C-1′), 74.4 (C-2′), 78.3 (C-3′), 71.2 (C-4′), 78.6
Position δH J (Hz) δC HMBC NOESY
1 11.21 s 7, 8, 13
2 180.9
3 4.57 dd 9.1, 4.3 87.4 3-OMe H-6, 14a, OMe
4
5a 4.09 m 37.8 H-6, OMe
5b 3.83 m H-6, OMe
6 2.76 m 37.0 5, 7, 8 H-3, 5a, 5b, 9
7 75.9
8 133.25
9 7.70 d 7.2 124.8 11, 13 H-6, 10, 11
10 7.10 t 7.3 122.3 8, 12 H-9, 11
11 7.22 t 7.4 129.3 9, 13 H-10, 12
12 6.96 d 7.6 110.3 8, 10 H-11
13 143.0
14a 1.89 m 29.95 H-3, 15
14b 1.41 m H-OMe
15 3.04 m 23.7 H-14a, 20
16 109.0
17 7.74 d 1.5 147.1 15, 16, 21, 22
18 5.01 m 119.6 20 H-19, 20
19 5.44 dt 16.9, 9.9 133.35 H-14b, 18, 20
20 2.6 m 43.7 H-15, 21
21 5.73 d 1 96.6 15, 17, 1 H-20, 1
22 164.4
3-OMe 3.21 s 54.3 15 H-3
1 5.3 d 7.6 99.9 21 H-21, 2, 3, 5
2 4.06 m 75.0
3 4.25 m 71.4
4 4.22 m 78.5
5 3.95 m 78.9
6a 4.51 d 11.5 62.5
6b 4.37 m
Table1. 1H and 13C NMR (pyridine-d5) spectral data of compound 1
Figure 2. Key 1H-1H COSY and HMBC corrections of 1. Figure 3. Key NOESY corrections of 1 and 2.
O N
O
H
OCH3
Ha
2021
3
H
HH
Hb
NOESY
14
O N
O
OCH3
H
Ha
2021
3
H
HH
Hb
14
1 2
1515
N
H
N
O
O
O
HO
H
O
O
HO
HO
OH
HO
1
2 3
4
56
7
8
9
10
11
12
13
14 15 16 17
18 19
20
21
22
123
4
6
H3CO
1H-1H COSY
HMBC
309 Pi, X.X. et al. / J. Chin. Pharm. Sci. 2014, 23 (5), 306–310
(C-5′), 62.4 (C-6′). The 1H and 13C NMR data were
agreement with those in literature[14], and the structure
of compound 2 was identified as paratunamide A.
3.3. Nauclealotide C (3)
Yellow-green amorphous solid; C26H30N2O10; ESI-MS
m/z: 553.17 [M+Na]+; 1H NMR (400 MHz, pyridine-d5)
δ: 11.73 (1H, s, H-1), 6.01 (1H, dd, J1 4.5 Hz, J2 9.4 Hz,
H-3), 4.73 (1H, m, H-5a), 3.83 (1H, m, H-5b), 2.21 (1H,
m, H-6a), 2.01 (1H, m, H-6b), 7.37 (1H, d, J 7.4 Hz, H-9),
7.02 (1H, t, J 7.5 Hz, H-10), 7.24 (1H, t, J 7.7 Hz, H-11),
6.98 (1H, d, J 7.7 Hz, H-12), 1.78 (1H, dt, J1 12.8 Hz,
J2 4.2 Hz, H-14a), 1.54 (1H, m, H-14b), 2.83 (1H, m,
H-15), 7.86 (1H, d, J 1.6 Hz, H-17), 4.94 (2H, m, H-18),
5.43 (1H, dt, J1 17.0 Hz, J2 10.1 Hz, H-19), 2.54 (1H,
m, H-20), 5.71 (1H, m, H-21), 5.27 (1H, d, J 7.8 Hz,
H-1′), 4.06 (1H, m, H-2′), 4.25 (1H, m, H-3′), 4.24 (1H, m,
H-4′), 3.93 (1H, m, H-5′), 4.48 (1H, d, J 10.6 Hz, H-6′a),
4.34 (1H, dd, J1 11.9 Hz, J2 5.2 Hz, H-6′b); 13C NMR
(100 MHz, pyridine-d5) δ: 178.3 (C-2), 79.1 (C-3), 34.8
(C-5), 30.9 (C-6), 75.1 (C-7), 131.0 (C-8), 124.5 (C-9),
122.6 (C-10), 130.3 (C-11), 110.4 (C-12), 142.4 (C-13),
31.6 (C-14), 23.6 (C-15), 108.1 (C-16), 147.9 (C-17), 119.8
(C-18), 133.1 (C-19), 43.6 (C-20), 96.8 (C-21), 163.0
(C-22), 100.5 (C-1′), 74.8 (C-2′), 78.2 (C-3′), 71.2 (C-4′),
78.7 (C-5′), 62.4 (C-6′). The 1H and 13C NMR data were
agreement with those in literature[13], and the structure
of compound 3 was identified as nauclealotide C.
3.4. Nauclealotide A (4)
Faint yellow solid; C26H30N2O9; ESI-MS m/z: 537.47
[M+Na]+; 1H NMR (400 MHz, pyridine-d5) δ: 11.83
(1H, s, H-1), 3.83 (1H, dd, J1 11.0 Hz, J2 3.6 Hz, H-3),
4.31 (1H, m, H-5a), 4.13 (1H, m, H-5b), 2.22 (2H, m,
H-6), 7.32 (1H, d, J 7.32 Hz, H-9), 7.11 (1H, t, J 7.4 Hz,
H-10), 7.26 (1H, t, J 7.6 Hz, H-11), 7.03 (1H, d, J 7.6 Hz,
H-12), 1.80 (1H, m, H-14a), 1.31(1H, m, H-14b), 3.01
(1H, m, H-15), 7.58 (1H, d, J 2.4 Hz, H-17), 4.92 (1H,
dd, J1 12.2 Hz, J2 1.5 Hz, H-18a), 4.72 (1H, d, J 17.2 Hz,
H-18b), 5.52 (1H, dt, J1 17.1 Hz, J2 10.1 Hz, H-19),
2.31 (1H, m, H-20), 5.64 (1H, d, J 1.0 Hz, H-21), 5.31
(1H, d, J 7.8 Hz, H-1′), 4.03 (1H, m, H-2′), 4.26 (1H,
m, H-3′), 4.23 (1H, m, H-4′), 3.93 (1H, m, H-5′), 4.49 (1H,
m, H-6′a), 4.36 (1H, m, H-6′b); 13C NMR (100 MHz,
pyridine-d5) δ: 179.6 (C-2), 62.7 (C-3), 44.2 (C-5), 34.1
(C-6), 57.0 (C-7), 129.5 (C-8), 123.2 (C-9), 122.3 (C-10),
129.0 (C-11), 109.97 (C-12), 143.4 (C-13), 24.4 (C-14),
24.5 (C-15), 110.0 (C-16), 145.7 (C-17), 119.5 (C-18),
133.1 (C-19), 44.8 (C-20), 96.2 (C-21), 165.2 (C-22),
100.0 (C-1′), 75.0 (C-2′), 71.3 (C-3′), 78.3 (C-4′),
78.9 (C-5′), 62.5 (C-6′). The 1H and 13C NMR data were
agreement with those in literature[13], and the structure of
compound 4 was identified as nauclealotide A.
3.5. Vincosamide (5)
Orange powder; C26H30N2O8; ESI-MS m/z: 521.47
[M+Na]+; 1H NMR (400 MHz, pyridine-d5) δ: 11.71
(1H, s, H-1), 4.50 (1H, m, H-3), 5.39 (1H, m, H-5a),
2.75 (1H, m, H-5b), 2.86 (1H, m, H-6a), 2.78 (1H, m,
H-6b), 7.27 (1H, m, H-9), 7.50 (1H, dd, J1 8.0 Hz,
J2 1.3 Hz, H-10), 7.65 (1H, dd, J1 7.6 Hz, J2 1.5 Hz,
H-11), 7.25 (1H, m, H-12), 2.44 (1H, dt, J1 12.9 Hz,
J2 3.8 Hz, H-14a), 1.58 (1H, q, J 13.1 Hz, H-14b), 3.12
(1H, m, H-15), 7.96 (1H, d, J 2.2 Hz, H-17), 4.97 (1H,
dd, J1 10.4 Hz, J2 1.6 Hz, H-18a), 4.83 (1H, dd, J1 17.1 Hz,
J2 1.3 Hz, H-18b), 5.45 (1H, dt, J1 17.1 Hz, J2 10.1 Hz,
H-19), 2.59 (1H, m, H-20), 5.74 (1H, d, J 1.4 Hz, H-21),
5.35 (1H, d, J 7.8 Hz, H-1′), 4.11 (1H, m, H-2′), 4.28
(1H, m, H-3′), 4.32 (1H, m, H-4′), 3.98 (1H, m, H-5′),
4.54 (1H, dd, J1 12.0 Hz, J2 2.0 Hz, H-6′a), 4.40 (1H,
dd, J1 11.9 Hz, J2 5.2 Hz, H-6′b); 13C NMR (100 MHz,
pyridine-d5) δ: 134.7 (C-2), 53.2 (C-3), 39.8 (C-5), 21.5
(C-6), 108.7 (C-7), 127.5 (C-8), 121.8 (C-9), 111.7
(C-10), 118.5 (C-11), 119.45 (C-12), 137.6 (C-13),
31.9 (C-14), 26.7 (C-15), 108.4 (C-16), 147.7 (C-17),
119.5 (C-18), 133.2 (C-19), 43.6 (C-20), 96.6 (C-21),
163.2 (C-22), 100.3 (C-1′), 74.9 (C-2′), 78.3 (C-3′),
71.3 (C-4′), 78.8 (C-5′), 62.4 (C-6′). The 1H and 13C NMR
data were agreement with those in literature[15], and the
structure of compound 5 was identified as vincosamide.
3.6. Strictosamide (6)
Orange powder; C26H30N2O8; ESI-MS m/z: 521.47
[M+Na]+; 1H NMR (400 MHz, pyridine-d5) δ: 11.84 (1H,
s, H-1), 4.94 (1H, m, H-3), 5.27 (1H, m, H-5a), 2.95
(1H, m, H-5b), 2.93 (1H, m, H-6a), 2.61 (1H, m, H-6b),
7.27 (1H, m, H-9), 7.47 (1H, dd, J1 7.8 Hz, J2 1.4 Hz,
H-10), 7.56 (1H, dd, J1 7.6 Hz, J2 1.5 Hz, H-11), 7.23
(1H, m, H-12), 2.42 (1H, dt, J1 14.2 Hz, J2 3.9 Hz, H-14a),
2.00 (1H, ddd, J1 13.6 Hz, J2 6.0 Hz, H-14b), 3.21 (1H,
m, H-15), 7.88 (1H, d, J 2.3 Hz, H-17), 5.07 (1H, dd,
J1 10.4 Hz, J2 1.6 Hz, H-18a), 4.87 (1H, dd, J1 17.2 Hz,
J2 1.4 Hz, H-18b), 5.59 (1H, dt, J1 17.1 Hz, J2 10.1 Hz,
H-19), 2.53 (1H, m, H-20), 5.66 (1H, d, J 1.3 Hz, H-21),
5.22 (1H, d, J 7.9 Hz, H-1′), 3.77 (1H, m, H-2′), 4.15
(1H, m, H-3′), 4.16 (1H, m, H-4′), 3.90 (1H, m, H-5′),
4.48 (1H, dd, J1 11.7 Hz, J2 2.1 Hz, H-6′a), 4.34 (1H,
dd, J1 11.6 Hz, J2 5.3 Hz, H-6′b); 13C NMR (100 MHz,
pyridine-d5) δ: 134.8 (C-2), 53.4 (C-3), 42.8 (C-5), 21.4
(C-6), 109.7 (C-7), 128.3 (C-8), 121.6 (C-9), 111.9 (C-10),
310 Pi, X.X. et al. / J. Chin. Pharm. Sci. 2014, 23 (5), 306–310
118.5 (C-11), 119.4 (C-12), 137.2 (C-13), 27.4 (C-14),
24.3 (C-15), 108.7 (C-16), 147.6 (C-17), 119.5 (C-18),
133.7 (C-19), 44.3 (C-20), 97.6 (C-21), 164.4 (C-22),
101.3 (C-1′), 74.2 (C-2′), 78.3 (C-3′), 71.1 (C-4′), 78.7
(C-5′), 62.4 (C-6′). NMR data were agreement with
those in literature[15], and the structure of compound 6
was identified as strictosamide.
3.7. Naucleamide F (7)
Orange solid; C26H26N2O8; ESI-MS m/z: 517.42
[M+Na]+; 1H NMR (400 MHz, pyridine-d5) δ: 12.83
(1H, s, H-1), 4.68 (1H, dt, J1 13.7 Hz, J2 5.9 Hz, H-5a),
4.17 (1H, m, H-5b), 2.96 (1H, m, H-6a), 2.86 (1H, m,
H-6b), 7.67 (1H, d, J 7.9 Hz, H-9), 7.22 (1H, t, J 7.5 Hz,
H-10), 7.33 (1H, t, J 7.4 Hz, H-11), 7.57 (1H, d, J 8.2 Hz,
H-12), 6.71 (1H, s, H-14), 6.53 (1H, s, H-17), 5.07 (2H, m,
H-18), 5.77 (1H, m, H-19), 3.45 (1H, d, J 8.3 Hz, H-20),
5.58 (1H, s, H-21), 5.41 (1H, d, J 7.1 Hz, H-1′), 3.95
(1H, m, H-2′), 4.32 (1H, m, H-3′), 4.14 (1H, m, H-4′),
3.91 (1H, m, H-5′), 4.68 (1H, m, H-6′a), 4.37 (1H, m,
H-6′b); 13C NMR (100 MHz, pyridine-d5) δ: 129.7
(C-2), 140.2 (C-3), 42.1 (C-5), 20.96 (C-6), 116.1 (C-7),
127.5 (C-8), 121.4 (C-9), 121.7 (C-10), 126.1 (C-11),
113.8 (C-12), 141.0 (C-13), 103.1 (C-14), 149.7 (C-15),
118.9 (C-16), 93.6 (C-17), 120.5 (C-18), 136.0 (C-19),
49.8 (C-20), 92.6 (C-21), 161.4 (C-22), 100.2 (C-1′),
82.1 (C-2′), 77.4 (C-3′), 72.0 (C-4′), 80.8 (C-5′),
63.6 (C-6′). NMR data were agreement with those in
literature[16], and the structure of compound 7 was
identified as naucleamide F.
Acknowledgements
This work was supported by the National Natural
Science Foundation of China (Grant No. 30973628).
The authors would like to express their gratitude to the
members of State Key Laboratory of Natural and
Biomimetic Drugs in Peking University for helping
with the recording of NMR and ESI-MS spectra.
References
[1] Compiling Groups of Countrywide Herbal Medicine of
China. Compilation of Countrywide Herbal Medicine of
China. Beijing: People’s Medical Publishing House.
1975, 624.
[3] Deeni, Y.Y.; Hussain, H.S.N. J. Ethnopharmacol. 1991,
35, 91−96.
[4] Okolia, S.; Iroegbu, C.U. J. Ethnopharmacol. 2004, 92,
135−144.
[5] Erdelmeier, C.A.; Regenass, U.; Rali, T.; Sticher, O.
Planta Med. 1992, 58, 43−48.
[6] Del Rayo Camacho, M.; Phillipson, J.D.; Crosft, S.L.
Planta Med. 2004, 7, 70−72.
[7] Fu, J.; Kuang, S.Y.; Zeng, X.Z.; Xing, G.L. Nat. Sci. J.
Hainan Univ. 2002, 20, 54−56.
[8] Lamidi, M.; Ollivier, E.; Gasquet, M.; Faure, R.; Nze-
Ekekang, L.; Balansard, G. Adv. Exp. Med. Biol. 1996,
404, 383−399.
[9] Mesia, G.K.; Tona, G.L.; Penge, O. Ann. Trop. Med.
2005, 99, 345−357.
[10] Udoh, F.V.; Lot, T.Y. Fitoterapia. 1998, 69, 141−146.
[11] Gidado, A.; Ameh, D.A.; Atawodi, S.E. Afri. J. Biol.
2005, 4, 91−93.
[12] Amos, S.; Abbah, J.; Chindo, B.; Edmond, I.; Binda, L.;
Adzv, B.; Buhari, S.; Odutola, A.A.; Wambebe, C.;
Gamaniel, K. J. Ethnopharmacol. 2005, 97, 53−57.
[13] Long, F. MS. thesis, Jinan University. 2010.
[14] Kagata, T.; Saito, S.; Shigemori, H.; Ohsaki, A.; Ishiyama,
H.; Kubota, T.; Kobayashi, J. J. Nat. Prod. 2006, 69,
1517−1521.
[15] Erdelmeier, C.J.; Wright, A.D. Planta Med. 1991, 57,
149−152.
[16] Kakuguchi, Y.; Ishiyama, H.; Kubota, T.; Kobayashi, J.
Heterocycles. 2009, 79, 765−771.
胆木中一个新吲哚生物碱的分离与结构鉴定
皮晓雪1, 谢可辉1, 涂光忠2, 蔡田芝1, 杨蓉1, 吴琼1, 付宏征1*
1. 北京大学医学部 天然药物与仿生药物国家重点实验室, 北京 100191
2. 北京微量化学研究所, 北京 100191
摘要: 从胆木中分离得到一个新的吲哚生物碱 paratunamide E (1) 以及6个已知吲哚生物碱, paratunamide A (2),
nauclealotide C (3), nauclealotide A (4), vincosamide (5), strictosamide (6), naucleamide F (7)。其中, 化合物7是首次从该植物
中分离得到, 通过波谱学的方法确定了化合物的平面结构和相对构型。
关键词: 胆木; 吲哚生物碱; 结构解析