免费文献传递   相关文献

富营养化水体中蕹菜生理指标的变化研究(英文)



全 文 :StudyontheChangesofPhysiologicalIndexesof
WaterSpinachinEutrophicationWater
LIYan-qiang1, 2* , LIZhao-hua2 , JIANGYing-he1 , WANJing2 , ZHAOLi-ya2
1.SchoolofCivilEngineering&Architecture, WuhanUniversityofTechnology, Wuhan430070;2.FacultyofResourcesandEnvironmental
Science, HubeiUniversity, Wuhan430062
Abstract [Objective] Efectofhypoxicwatercultureonphysiologicalcharacteristicofwaterspinachanditshypoxiatolerancewerestudied.
[ Method] Waterspinachwasplantedinsoilandeutrophicationwaterbymeansoffloatingbed, respectively, andthechangeofphysiologicalin-
dexesincludingchlorophyl, proline(Pro), malondialdehyde(MDA), solublesugarandsolubleproteininwaterspinachleavesatmaturestage
wasresearched, whilethehypoxiatoleranceofwaterspinachandtheeffectofplantdensityonwaterspinachgrowthwerediscussedinourpa-
per.[Result] Inthehypoxiceutrophicationwater, thecontentoftotalchlorophyl, malondialdehyde, solublesugarandsolubleproteininwater
spinachleaveswaslowerthanthatofsoilculture, withhigherprolinecontent, whichshowedthatwaterspinachhadbetertolerancetohypoxic
eutrophicationwater;thehighertheplantdensity, thelowerthechlorophylcontentinwaterspinachleaves, andtherewasnosignificantefect
ofplantdensityonprolineandmalondialdehydecontent, whilesolubleproteincontentwashigherunderhighplantdensity.[ Conclusion] The
bestplantdensityofwaterspinachwas66plantsperfloatingbedwiththeareaof2m2 , whichcouldprovidetheoreticalbasisfortheapplication
ofwaterspinachinfloatingbed.Keywords Waterspinach;Eutrophicationwater;Plantdensity;Physiologicalindex
Received:December8, 2010  Accepted:January11, 2011
Supported by AgriculturalScience and Technology Achievements
Transformation Fund ProjectofScience and Technology Ministry
(2009GB23320484);NationalSparkProgramProject(2010GA760003).
*Correspondingauthor.E-mail:dark@hubu.edu.cn
  Eutrophicationreferstowaterpolutioncausedbyexcess
nitrogen, phosphorousandotherplantnutrients.Inrecent
years, withtheaggravationofhumanactivity, moreandmore
plantnutrientsfrom industrialwastewater, domesticsewage
andagriculturalrunofweredischargedintolakeandotherwa-
ters, sowatereutrophicationbecameincreasinglyserious.
ChinaEnvironmentalStateBuletinin2009showedthatnation-
allakeeutrophicationbecameaseriousproblemin2009, while
classVandbelowclassVaccountedfor19.2% and34.6%
among26 nationalcontrolingmajorlakes(reservoir), respec-
tively, andthemainpolutionindexesincludedtotalnitrogenand
phosphorous, whileeutrophiclakesoccupied42.3%[ 1] .Atpres-
ent, man-madefloatingculturebedcanbeusedtocontroleu-
trophicationwaterandrestorepolutedwaterefectively, namely
plantinfloatingbedcanpurifywaterthroughabsorbinganden-
richingnitrogenandphosphorous.Withtheadvantagesoflow
investmentcost, simpleoperationandecologicalenvironment
protection, pluswithoutsecondarypolution, man-madefloating
culturebedhasawideapplicationprospect.Inrecentyears,
manystudiesonwaterremediationbymeansofterrestrialand
aquaticplant(rice, ryegrass, waterdropwort, vetivergrass,
cannawaterspinachandsoon)infloatingbedwerecarriedout
bydomesticandforeignscholars, andwaterspinachwaswidely
usedinman-madefloatingculturebed[ 2-9] .
AsanannualherbaceousplantofConvolvulaceae, Ipo-
moea, waterspinachisalsocaledswampcabbage, Ipomoea
aquaticaandmorninggloryandhasgreathigheconomical
valuebecauseitisadelicious, nourishingvegetablewithhigh
yieldandquality.Waterspinachcangrowwelundermoist
environmentwithhightemperatureandhasstronghightem-
peratureandstainresistance, anditissuitableforwatercul-
tureandbelongstomulti-harvestedvegetable[ 10] .Ifwater
spinachisplantedineutrophicationwater, nitrogenandphos-
phorousinwatercanbeabsorbedbywaterspinachasnutri-
entsandleavewaterafterharvestingwaterspinach, soasto
controleutrophicationwater.Bymeansofartificialsubstrate,
theapplicationofwaterspinachinsoilesscultureinpurifying
eutrophicationwatercouldbringaboutobviousenvironmental
andeconomicalbenefit, soman-madefloatingculturebed
withwaterspinachhasbeenwidelyusedtocontroleutrophica-
tionwaterinthecountryside.Presently, thereweremany
studiesonthepurificationabilityoffloatingbedwithwater
spinachinwateranditseconomicalbenefit, buttherewas
nearlynoresearchontheeffectofwatercultureonphysiologi-
calcharacteristicofwaterspinach.Astudyshowedthatthere
weremanyphysiologicalandbiochemicalchangesunderhy-
poxiastress, suchasthedecreasingabsorptionofwaterand
nutrientbyplantroot, weakenedphotosynthesis, changeof
respiratorymetabolismpathwayandproteincomponent, lack
ofenergysubstance, inhibitedaerobicproteinsynthesis, pro-
motedanaerobicproteinsynthesisandsoon, furtherresulting
intotheinhibitionofplantgrowth[ 11] .Thus, waterspinachwas
plantedinthehypoxiceutrophicationwaterbyusingfloating
bed, andthechangesofphysiologicalindexes(chlorophyl,
Pro, MDA, solublesugarandsolubleprotein)inwaterspin-
achleavesatmaturestagewereresearched, whiletheeffect
ofwatercultureonthephysiologicalcharacteristicofwater
spinachandthehypoxiatoleranceofwaterspinachweredis-
cussedinourpaper, soastoprovidetheoreticalbasisforthe
applicationofwaterspinachinfloatingbed.
MaterialandMethod
Testmaterial
TestmaterialisJiangxiHuaganlargeleaveswater
spinachwhichisfromthebaseofvegetablesplantinginWu-
hansuburb.
Testdesign
AfterbreedingandemergenceattheendofApril2010,
AgriculturalScience&Technology, 2010, 11(11-12):73-76
Copyright 2010, InformationInstituteofHAAS.Alrightsreserved. PlantPhysiologyandBiochemistry
DOI :10.16175/j.cnki.1009-4229.2010.z2.010
waterspinachwastransplantedintosewagepondnearSand
LakeinHubeiUniversityonMay20, andtestwasendedin
August.Pondareawasabout3 000 m2 , andaveragedepth
ofwaterwasupto1.5 m, whiledomesticsewagewasdis-
chargedintoponddiscontinuously.Waterqualityindexesof
pondwaterweredeterminedduringthetest, suchasTN(15
mg/L), TP(0.8 mg/L)andDO(1.94 -2.55 mg/L), be-
longingtobelowclassV.Waterspinachwasplantedonthe
surfaceofwaterbymeansoffloatingbedwhoseouterframe
withthesizeof1 m×2 mwasmadebyPVCpipe, andnet-
workstructureinthemiddleoffloatingbedwascomposedof
nylon, withthegridof16 cm×16cm.
Effectofdifferentplantingpatternsonwaterspinach
growth
Hypoxicwaterculture:66 waterspinacheswereplanted
atthegridapexofeachfloatingbed, andplantspacingwas
16 cm, withfiverepetitions;soilculture:20 seedlingswiththe
samegrowthwereplantedinsoilnearpond, withtheplant
spacingof16 cm.TestwasbegunonMay20, 2010, andtwo
harvestswerecarriedoutduringthetest, whilethephysiologi-
calindexesofleavesweremeasuredafterthethirdharveston
August2 (matureperiod).
Effectofdifferentplantdensityonwaterspinachgrowth
Threetreatments(T1, T2andT3)weresetaccordingto
diferentplantdensity, namely15, 33 and66 seedlingswere
plantedineachfloatingbed, respectively, withthreerepeti-
tions.TestwasstartedonJune24, 2010, andtherewasone
harvestduringthetest, whilethephysiologicalindexesof
leavesweredeterminedafterthesecondharvestonAugust4
(matureperiod).
Determinationmethod
Thecontentofchlorophyl, Pro, MDA, solublesugarand
solubleproteinweremeasuredbyethanolextraction, acidic
ninhydrincoloration, thiobarbituricacidcolorimetry, phenol
colorimetryandbiuretmethod, respectively[ 12] .Inaddition,
varianceanalysis(ANOVA)andLSDtestofdatawascarried
outbymeansofSPSS10.0.
ResultsandAnalyses
Effectofhypoxiceutrophicationwateronphysiological
indexesofwaterspinach
Chlorophyl FromTable1, comparedwithsoilculture, the
contentofchlorophyla, chlorophylbandtotalchlorophylinwa-
terspinachleavesunderwaterculturedecreasedby24.7%,
28.5% and25.6%, respectively.Moreover, therewasobvi-
ousdiferenceofchlorophyla, chlorophylbandtotalchloro-
phylcontentunderdiferentplantingpaterns(P<0.05), but
therewasnosignificantdiferenceinchlorophyla/b, which
showedthattherewaschangeintotalchlorophylcontentand
nochangeinchlorophylcomponent.
Pro Table2 showedthattherewasverysignificantdifer-
enceofProcontentinwaterspinachleavesunderwaterand
soilculture, namelyProcontentinwaterspinachleavesunder
waterculturewas65.4% higherthansoilculture, anditre-
vealedthataccumulatedProunderhypoxicwaterculture
madeplantinstress.
MDA FromTable2, therewassignificantdiferenceofMDA
contentinwaterspinachleavesunderwaterandsoilculture,
namelyMDAcontentunderwaterculturewas45.0% lower
thanthatofsoilculture, andtheresultshowedthatleaves
celsundersoilcultureweredamagedmoregreatly.
Solublesugar Thedifferenceofsolublesugarcontentin
waterspinachleaveswasverysignificantundervariouscul-
tures, andsolublesugarcontentundersoilculturewas2.6
timesofwaterculture(Table2).
Table1 Chlorophylcontentofwaterspinachleavesunderdiferentplantingpaterns(FW) mg/g
Plantingpatern Chlorophyla Chlorophylb Totalchlorophyl Chlorophyla/b
Waterculture 0.966±0.133a 0.298±0.061a 1.264±0.192 a 3.294±0.333 a
Soilculture 1.283±0.105b 0.417±0.051b 1.700±0.156 b 3.085±0.135 a
Differentlowercasesinthesamecolumnstandforsignificantdiference(P<0.05), thesameasfolows.
Table2 Physiologicalindexesofwaterspinachleavesunderdiferentplantingpaterns(FW)
Plantingpatern Pro∥μg/g MDA∥μmol/g Solublesugar∥mg/g Solubleprotein∥mg/g
Waterculture 173.71±9.20A 0.007 7±0.002 2a 45.07±4.50A 44.76±8.55 a
Soilculture 105.01±10.33B 0.014 0±0.004 9b 116.86±3.49B 48.41±15.44a
Differentcapitalletersinthesamecolumnstandforextremelysignificantdiference(P<0.01).
Solubleprotein FromTable2, therewasnoobviousdifer-
enceofsolubleproteincontentinwaterspinachleavesunder
waterandsoilculture.
Effectofplantingdensityonphysiologicalindexesofwa-
terspinachinhypoxiceutrophicationwater
Chlorophyl From Table3, chlorophylcontentinwater
spinachleavesunderwatercultureshoweddecreasetrend
withtheincreaseofplantingdensity.Forthecontentofchlo-
rophyla, chlorophylbandtotalchlorophyl, therewasnoob-
viousdiferencebetweenT1andT2, whilesignificantdiference
couldbefoundbetweenT1 andT3, namelyT3 was18.4%,
13.7% and17.6% lowerthanT1, respectively.Forchloro-
phyla/b, differencewassignificantbetweenT2andT3, with-
outsignificantdiferencebetweenT1 andT2.Itshowedthat
therewasnoefectofplantingdensitywith15 or33 plantson
totalchlorophylcontent, butwhenplantingdensityreached66
plants, totalchlorophylcontentandchlorophyla/breduced
obviously, afectingphotosyntheticefficiency.
Pro Table4 revealedthatProcontentinwaterspinachleav-
esunderT1 treatmentwassignificantlydiferentfromT2 and
T3, namelyT1 was20.1% and23.1% higherthanT2 and
T3, respectively, andtherewasnoobviousdiferencebe-
tweenT2 andT3.ItshowedthatProwasaccumulatedinwa-
terspinachleaveswiththeplantingdensityof15 plantswhich
couldbringstresstoplant, whilewaterspinachgrewwel
whenplantingdensitywasmorethan33 plants.
MDA FromTable4, forMDAcontentinwaterspinachleav-
es, therewasnoobviousdiferenceamongvarioustreat-
ments, anditshowedthatplantingdensitydidnotdamagecel
membraneofwaterspinachleavesandaffectitsgrowth.
Solublesugar Table4 revealedthattherewasnoobvious
diferenceofsolublesugarcontentinwaterspinachleaves
74 AgriculturalScience&TechnologyVol.11, No.11-12, 2010
amongvarioustreatments, whichshowedthattherewasno
efectofplantingdensityonthesynthesisofphotosynthetic
product.
Table3 Chlorophylcontentofwaterspinachleavesunderdiferentplantingdensity(FW) mg/g
Treatment Chlorophyla Chlorophylb Totalchlorophyl Chlorophyla/b
T1 1.675±0.066a 0.371±0.011a 2.047±0.068 a 4.511±0.203ab
T2 1.593±0.174ab 0.342±0.038a 1.935±0.212 a 4.663±0.067a
T3 1.366±0.082b 0.320±0.016b 1.687±0.092 b 4.269±0.213b
Table4 Physiologicalindexesofwaterspinachleavesunderdiferentplantingdensity(FW)
Treatment Pro∥μg/g MDA∥μmol/g Solublesugar∥mg/g Solubleprotein∥mg/g
T1 260.27±4.76a 0.012 7±0.000 3a 19.26±1.32 a 27.09±2.06 a
T2 216.72±5.92b 0.012 1±0.001 8a 18.51±1.86 a 35.49±5.09 a
T3 211.31±10.23b 0.010 8±0.001 3a 20.62±2.09 a 46.47±7.15 b
Solubleprotein FromTable4, thehighertheplantingden-
sity, thehigherthesolubleproteincontentinwaterspinach
leaves.T1 wassignificantlydifferentfrom T2 andT3, and
therewasnoobviousdiferencebetweenT1andT2, whileT3
was71.5% and30.9% higherthanT1 andT2, respectively.
Discussions
Effectofhypoxiceutrophicationwateronwaterspinach
growth
Chlorophylisthebasisofphotosynthesisforgreenplant,
andsolublesugaristheprimaryproductofphotosynthesis,
whiletheircontentcanreflectthephotosynthesisofplantin
specificenvironment.Ourstudyshowedthattotalchlorophyl
andsolubleproteincontentinwaterspinachleavesunderhy-
poxiceutrophicationwaterculturewas25.6% and61.4%
lowerthansoilculture, respectively, whichwasinagreement
withtheresultofWangHuileietal[ 13] .However, therewasno
changeofchlorophylcomponentinwaterspinachleaves, and
thefreshweightofwaterspinachleavesunderwaterculture
was5.21 timesofsoilculture[ 9] , sothephotosynthesisofwa-
terspinachwasnotweakenedunderhypoxicwaterculture,
showinghypoxiatolerancewhichmightrelatetoenormous
rootsanditsstrongabsorptioncapacity.
Proisthebioactivesecondarymetaboliteinnitrogenme-
tabolismandplaysanimportantroleintheadaptionofplant
celtostress[ 14] .OurresultsrevealedthatProcontentinwa-
terspinachleavesunderhypoxiceutrophicationwaterculture
wasobviouslyhigherthansoilculture, anditcouldprovide
normalcelswelingpressureandmoreenergyforplantand
decreasethedamagecausedbyenergylimitationinanuerobic
respiration, sowaterspinachshowedstronghypoxiatoler-
ance.Moreover, astheindexofdamagedegreeofplantcel,
MDAcontentinwaterspinachleavesunderhypoxiceutrophi-
cationwaterculturewasobviouslylowerthansoilculture,
whichfurtherrevealedthatwaterspinachhadstronghypoxia
tolerance.
Mostsolubleproteininplantisenzymetakingpartinvari-
ousmetabolismsanditscontentcanreflectthemetabolism
levelofplant[ 15] .Highcontentofsolubleproteinisbeneficial
tomaintaininglowerosmoticpotentialinplantcelwhichcan
bearwater[ 16] , saltandalkalistress[ 17] toacertainextent.A
studyshowedthatsolubleproteincontentwashigherinplant
andvarietywithstrongdroughttolerance[ 16] .Ourresearchre-
vealedthattherewasnoobviousdifferenceofsolubleprotein
contentinwaterspinachleavesbetweenwaterandsoilcul-
ture, anditshowedthatwaterspinachhadstrongtoleranceto
hypoxiaeutrophicationwater.Nitrogeninwaterspinachwas
mainlyfromeutrophicationwateranditrevealedthateutrophi-
cationwatercouldoffernitrogenfornitrogenmetabolism in
waterspinachgrowth.
Effectofplantingdensityonphysiologicalindexesofwa-
terspinachinhypoxiceutrophicationwater
Ourstudyshowedthatplantingdensityaffectedtotal
chlorophylandsolubleproteincontentgreatly.Thegrowthof
waterspinachineutrophicationwaterwasaffectedbyphoto-
synthesisandthenutrientabsorptionofrootwhichwereclose-
lyrelatedtoplantingdensity, namelytheincreaseofplanting
densitycouldbringaboutshadeamongleaves, lackoflight
andreductionoftotalchlorophylcontent.Inaddition, water
spinachhaddevelopedaerenchymaandrootwhichwerefa-
vorableforthetransferandreleaseofoxygen, withvery
strongcapabilitytoexcreteoxygen, sothehighertheplanting
density, thebetertheoxygensupplyconditionofroot, which
wasbeneficialtotheabsorptionofnitrogen, phosphorousand
otherplantnutrientsinwaterandtheincreaseofsolublepro-
teincontentinwaterspinachleaves.Ineutrophicationwater,
hypoxiccouldbringstresstowaterspinachgrowth, soin-
creasingtheplantingdensityofwaterspinachcouldimprove
thehypoxicenvironmentofroot, relieveenvironmentalstress
andpromotethegrowthofwaterspinachbeter, whilethe
bestplantingdensityofwaterspinachwas66 plantsperfloat-
ingbedwiththeareaof2 m2.
References
[ 1] MinistryofEnvironmentalProtectionofthePeople sRepublicof
China(中华人民共和国环境保护部).Thestateofenvironmentin
Chinain2009(2009年中国环境状况公报)[EB/OL].(2010-06-
03) htp://jcs.mep.gov.cn/hjzl/zkgb/2009hjzkgb/201006/
t20100603 190435.htm.
[ 2] SIYB(司友斌), BAOJJ(包军杰), CAODJ(曹德菊), etal.Purifi-
cationofeutrophicatedwaterbodybyVetiveriazizanioids(香根草对
富营养化水体净化效果研究)[ J].ChineseJournalofApplied
Ecology(应用生态学报), 2003, 14(2):277-279.[ 3] SUNLP, LIUY, JINH.Nitrogenremovalfrompolutedriverbyen-
hancedfloatingbedgrowncanna[ J] .EcolEng, 2009, 35(1):
135-140.
[ 4] LUOGY(罗固源), ZHENGJF(郑剑锋), XUXY(许晓毅), etal.
Comparisonofthegrowthcharacteristicsandnutrientuptakeof
fourkindsofplantscultivatedonafloating-bed(4种浮床栽培植物
生长特性及吸收氮磷能力的比较)[J].ActaScientiaeCircumstanti-
ae(环境科学学报), 2009, 29(2):285-290.
[ 5] BUFP(卜发平), LUOGY(罗固源), XUXY(许晓毅), etal.Can-
naindicaandAcoruscalamusecologicalfloatingbedsforpurifica-
tionofmicro-polutedsourcewater(美人蕉和菖蒲生态浮床净化微污染源水的比较)[J] .ChinaWater&Wastewater(中国给水排水),
75LIYan-qiangetal.StudyontheChangesofPhysiologicalIndexesofWaterSpinachinEutrophicationWater
2010, 26(3):14-17.
[ 6] DOUY(窦寅), HUANGYF(黄越峰), HUANGC(黄成), etal.Studyonphosphorusremovalefectofeco-concretewithIpomoea
aquaticainProcambarusclarkiaquaculturewastewater(水蕹菜植
生型混凝土对克氏原螯虾养殖污水除磷效果的研究)[ J].Journalof
AnhuiAgriculturalSciences(安徽农业科学), 2010, 38(2):766-
768.
[ 7] XUXF(徐晓锋), GUOYX(郭永新).Influenceofwastewatercon-
centrationonnitrogenandphosphoruspurifyingefectbyplant-hy-
droponicwastewaterpurifyingsystem(污水浓度对水培净化系统净
化效果的影响)[ J].JournalofAnhuiAgriculturalSciences(安徽农
业科学), 2007, 35(13):3983-3985, 4005.[ 8] LIYR(李欲如), CAOJS(操家顺), XUF(徐峰).Purificationof
heavilypolutedwaterbodiesinSuzhoubyIpomoeaaqutica(水蕹
菜对苏州重污染水体净化功能的研究)[J] .EnvironmentalPolution
andControl(环境污染与防治), 2006, 28(1):69-71.
[ 9] HUANGJ(黄婧), LINHF(林惠凤), ZHULD(朱联东).Biological
featuresandwaterpurificationeficiencyofIpomoea aquatica
Forsskalplantedonthefloating-bed(浮床水培蕹菜的生物学特征及
水质净化效果)[ J].EnvironmentalScienceandManagement(环境
科学与管理), 2008, 33(12):92-94.[ 10] JIANGWJ(蒋卫杰), LIUW(刘伟), ZHENGGH(郑光华).New
technologyforsoilesscultivationofvegetables(蔬菜无土栽培新技
术)[M] .Beijing:GoldenShieldPress(北京:金盾出版社), 1999:
167-168.
[ 11] GAOGR(高国人).Thestandardofsoilesscultivationtechniques
forvegetables(蔬菜无土栽培技术操作规程)[ M].Beijing:Golden
ShieldPress(北京:金盾出版社), 2007:46-47.
[ 12] ZHANGZL(张志良).Theexperimentalguideforplantphysiology
(植物生理学实验指导)[M].Beijing:HigherEducationPress(北京:高等教育出版社), 2001.
[ 13] WANGHL(王慧蕾), TANGXF(唐小付), LONGMH(龙明华).
Efectofhypoxiastressonseveralresistantphysiologicalindexes
ofmuskmelongraftedseedlings(营养液低氧胁迫对网纹甜瓜嫁接
苗逆境指标的影响)[J] .ChinaVegetables(中国蔬菜), 2008(3):
26-29.
[ 14] YOSHIBAY, KIYOSUET.Regulationoflevelsofprolineasan
osmolyteinplantsunderwaterstress[ J] .PlantCelPhysio,
1997, 83:1095-1102.
[ 15] LIUHF(刘惠芬), GAOYB(高玉葆), ZHANGQ(张强), etal.Physio-ecologicalresponsesandtheiradaptationofdiferentgeo-
graphicLeymuschinensispopulationstosoildroughtstress(不同
种群羊草幼苗对土壤干旱胁迫的生理生态响应)[J].ActaScientia-
rumNaturaliumUniversitatisNankaiensis:NaturalScienceEdition
(南开大学学报:自然科学版), 2004, 12(4):105-110.
[ 16] LUOQ(罗群), TANGZH(唐自慧), LILE(李路娥), etal.The
efectofdroughtstressonsolubleproteinsinnineCompositae
weeds(干旱胁迫对 9种菊科杂草可溶性蛋白质的影响)[ J].Jour-
nalofSichuanNormalUniversity:NaturalScience(四川师范大学学报:自然科学版), 2006, 29(3):356-359.
[ 17] TANWW(谭巍巍), LIFS(李凤山), ZHANGYX(张玉霞), etal.
ComparisonofthestressefectsofNaClandNaCO3 ontheas-paragus(氯化钠和碳酸钠对芦笋的胁迫效应比较)[ J].Chinese
AgriculturalScienceBuletin(植物生理科学), 2006, 22(7):322-
325.
Responsibleeditor:YANGYing-ying Responsibleproofreader:WUXiao-yan
富营养化水体中蕹菜生理指标的变化研究(摘要)
李艳蔷 1, 2* ,李兆华 2 ,姜应和1 ,宛 晶2 ,赵丽娅 2 (1.武汉理工大学土木与建筑学院 ,湖北武汉 430070;2.湖北大学资源环境学
院 ,湖北武汉 430062)
[目的 ]探讨低氧水培对蕹菜生理特征的影响及蕹菜对低氧耐受性特征。
[方法]采用浮床在低氧富营养化水面种植蕹菜 ,与土培的蕹菜进行比较 ,研究了成熟期蕹菜叶片中叶绿素、脯氨酸、丙二醛、可溶性糖和可溶
性蛋白等生理指标变化 ,探讨了蕹菜对低氧的耐受性特征及种植密度对蕹菜生长的影响。
[结果]在低氧富营养水体中 ,蕹菜叶片的总叶绿素 、丙二醛、可溶性糖和可溶性蛋白含量低于土培处理的 ,而脯氨酸含量高于土培处理 ,这说
明蕹菜对低氧的富营养水体环境有较好的耐受性;种植密度越高 , 蕹菜的叶绿素含量越低 ,种植密度对叶片中脯氨酸和丙二醛含量影响不
显著 ,高密度种植可提高可溶性蛋白含量。
[结论 ]每 2m2 的浮床种植 66株蕹菜最佳 ,为蕹菜浮床的应用提供了理论依据。
关键词 蕹菜;富营养化水体;种植密度;生理指标
基金项目 科技部农业科技成果转化资金项目(2009GB23320484);国家星火计划项目(2010GA760003)。
作者简介 李艳蔷(1977 -),女 ,湖北孝感人 ,在读博士 ,讲师,从事富营养化水体生态修复研究 , E-mail:dark@hubu.edu.cn。*通讯作者。
收稿日期  2010-12-08  修回日期  2011-01-11
(上接第 46页)
甜瓜属野生种耐铝盐胁迫的初步研究(摘要)
王永平1, 2* ,史红林 1 ,陈劲枫 2 (1.江苏农林职业技术学院 ,江苏镇江 212400;2.南方蔬菜遗传改良重点开放实验室 ,南京农业大学 ,江
苏南京 210095 )
[目的 ]初步研究甜瓜属野生种耐铝盐胁迫的能力。
[方法]以甜瓜属野生种和 3种栽培种黄瓜为供试材料 ,研究铝盐胁迫下叶片中POD活性 、SOD活性、电解质外渗透率 、丙二醛(MDA)、脯氨
酸(Pro)、可溶性糖含量等生理指标的变化。
[结果 ]甜瓜属野生种的POD活性、SOD活性、脯氨酸含量和可溶性糖含量均高于 3种栽培种黄瓜 ,电解质外渗透率和 MDA含量均低于 3种
栽培种黄瓜 ,这表明甜瓜属野生种的耐铝胁迫性强于栽培种黄瓜。
[结论 ]该研究为利用甜瓜属野生种改良栽培黄瓜种的研究奠定了基础。
关键词 甜瓜属里生种;栽培种黄瓜;铝盐胁迫;生理指标
基金项目 国家自然科学基金(30671419)。
作者简介 王永平(1961 -),男 ,江苏宜兴人 ,教授,从事园艺植物遗传与育种研究 , E-mail:wyue12170059@sina.com。 *通讯作者。
收稿日期  2010-12-09  修回日期  2010-12-28
76 AgriculturalScience&TechnologyVol.11, No.11-12, 2010