全 文 :西北林学院学报 2012,27(4):194~198
Journal of Northwest Forestry University
doi:10.3969/j.issn.1001-7461.2012.04.39
太白山北坡太白红杉(Larix chinensis)胸径生长规律研究
收稿日期:2010-05-25 修回日期:2011-11-07
基金项目:财政部国家级自然保护区专项资金项目“陕西太白山国家级自然保护区综合科学考察”(2006)。
作者简介:肖东耀,男,硕士研究生,研究方向为林业生态工程。
*通讯作者:廖超英,男,教授,博士生导师。Email:chaoying95@163.com
肖东耀1,2,廖超英1,2*,杨晓娟1,2,田联会3,何晓军3,张 斌1,2,唐海滨1,2,田石磊4
(1.西北农林科技大学 资源环境学院,陕西 杨陵712100;2.农业部西北植物营养与农业环境重点实验室,陕西 杨陵712100;
3.陕西太白山国家级自然保护区管理局,陕西 眉县722300;4.河南省信阳市潢川经济开发区经济发展局,河南 潢川465150)
摘 要:应用5种常用的生长模型分别对太白红杉林源中心、适生区及高山林线范围内的太白红杉
平均胸径生长过程进行拟合,选择了最优模型,并分析其生长量变化规律。结果表明:二次方程模
型最适用林源中心和适生区太白红杉胸径的生长,而高山林线范围内胸径生长需通过幂函数和
Logistic方程分段拟合;林源中心和适生区的连年生长量和年平均生长量均大于高山林线处,分别
达0.30和0.20cm;在高山林线处,树龄70a左右年平均生长量达最大值,而林源中心和适生区均
在40a左右达到最大,早于高山林线处。
关键词:太白红杉;生长模型;胸径;生长分析;太白山
中图分类号:S758.55 文献标志码:A 文章编号:1001-7461(2012)04-0194-05
Regularities of DBH Growth of Larix chinensis in the North Slope of Taibai Mountain
XIAO Dong-yao1,2,LIAO Chao-ying1,2,YANG Xiao-juan1,2,TIAN Lian-hui 3,
HE Xiao-jun3,ZHANG Bin1,2,TANG Hai-bin1,2,TIAN Shi-lei 4
(1.College of Resources and Environment,Northwest A&F University,Yangling,Shaanxi 712100,China;
2.Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China,Ministry of Agriculture,Yangling,
Shaanxi 712100,China;3.Taibaishan Nature Reserve Administrative Bureau,Meixian,Shaanxi 722300,China;
4.Huangchuan Economic Development Zone Economic Development Bureau,Huangchan Henan 465150,China)
Abstract:Five commonly used growth models were applied in fitting the average DBH growth process of
Larix chinensis growing in the origin center,suitable region,and alpine timberline,respectively.The op-
timal models were selected and the variation regularities of the growth were analyzed.The results demon-
strated that the quadratic model was the most suitable one for the growth of L.chinensis growing in the
origin center and suitable regions,while those growing in alpine timberline had to be fitted piecewise by
power function and Logistic equation.Current annual increment and mean annual increment growing in the
origin center and suitable regions were higher than that in alpine timberline,reached to 0.30cm and 0.20
cm,respectively.The maximum average annual growth was observed in the trees with the age of about 70
agrowing in alpine timberline,while it was about 40ain the origin center and suitable regions,earlier
than those in alpine timberline.
Key words:Larix chinensis;growth model;DBH;growth analysis;Taibai Mountain
太白红杉(Larix chinensis)是松科落叶松属植
物,属国家二级保护植物[1],现仅分布于我国秦岭地
区海拔3 000~3 500m的高山、亚高山地带,是林
线以下森林的主要建群种,对高海拔地区水源涵养、
固石保土、生物多样性维护具有重要作用[2-5]。近年
来,虽然有一些类似太白红杉生长环境的树种生长
方程的研究[6],而对太白红杉生长模型的研究并不
多见。如王孝安等通过比较4种竞争指数下生长方
程的拟合效果,构建太白红杉单木生长的最优模
型[7],也仅是在一定的海拔条件下对太白红杉进行
拟合,而同一树种在不同海拔下的生长过程差异很
大,很难用一种模型完全概括[8]。因此,笔者试图通
过建立不同海拔太白红杉生长的最优生长模型,探
讨太白红杉的生长变化规律,为保护太白红杉及其
群落生态系统的完整性提供依据。
1 研究地概况
研究区位于太白山北坡的秦岭太白山国家森林
公园和太白山国家级自然保护区,海拔2 900~
3 500m,上与高山灌丛带相接,下与巴山冷杉(Abies
fargesi)林带相连;该区年平均降水量500~956
mm;年均温5.9~7.5℃,土壤类型主要为暗棕壤、高
山和亚高山草甸森林土,森林线附近土层厚度不及
30cm,而在太白红杉分布的下限地区土层厚达80cm
左右,腐殖质层深厚,pH值为6~6.8[9]。
2 研究方法
2. 1 数据采集
根据徐林军[10]等对太白红杉分布的定量描述,
海拔3 000~3 100m为太白红杉林源中心,3 100~
3 400m为太白红杉适生区,3 400~3 500m为高山
林线处。因此,本研究分别于上述3个海拔段内设
置标准地,选择标准木,测定树高、胸径,并钻取树
芯。所有的树芯经过固定后用不同粗细的砂纸逐级
打磨,使样木达到光、滑、亮的标准,直到树木年轮的
轮界清晰为止。利用树木年轮分析仪 WinDEN-
DROTM(Regent instrument inc.Canada)测定样芯
的年轮宽度。每个海拔段拟合样本数127个,检验
样本50个,样本总数531个。
2. 2 生长方程的选择
生长方程比较复杂,有大量经验公式和理论方
程可以描述所观察树木的生长曲线[13],本文选择
对数方程:
D=b1lnt+b0 (1)
指数方程:
D=b0eb1t (2)
幂函数方程:
D=b0tb1 (3)
二次三项式方程:
D=b2t2+b1t+b0 (4)
逻辑斯蒂方程:
D= b01+b1e-b2t
(5)
其中D为胸径,t为树龄,b1、b2、b0 为参数。
2. 3 数据分析
通过比较决定系数R2 来选择模型,R2 最大者
为最佳模型。评价模型拟合效果的指标有均方根误
差(RMSE)、模型效率(EF)、决定系数(R2)、平均差
(MD)、相对误差(RE)和整体剩余系数(CRM),具
体计算方法见参考文献[11]。数据分析使用SPSS
和EXCEL软件完成。
3 结果与分析
3. 1 林源中心太白红杉胸径生长过程
3.1.1 生长模型的拟合 5种生长方程对林源中
心太白红杉胸径的拟合效果可知(表1),除指数方
程R2 小于0.90外,其余四种生长方程的拟合效果
都是比较满意的,其中二次三项式方程R2 最大,拟
合效果最好,因此选择二次三项式方程为该区段太
白红杉胸径生长的最佳模型。
表1 林源中心太白红杉胸径生长方程拟合结果
Table 1 Fitting results of DBH growth equation of Larix chinensis growing in origin center
方程名称 拟合的方程 相关系数R2 F值 显著性p
对数方程 D=-18.318 7lnt+7.894 7 0.903 8 226.44 0.000
二次三项式方程 D=-0.000 9t2+0.302 0t-1.963 5 0.995 5 2 626.87 0.000
幂函数方程 D=0.128 5t1.099 3 0.986 8 1 793.49 0.000
指数方程 D=0.774 4e0.022 2t 0.774 4 83.37 0.000
逻辑斯蒂方程 D= 21.954 41+13.476 7e-0.051 2t 0.978 2 1 079.93 0.000
将检验样本中各树木胸径作为实测值,对建立
的二次三项式生长模型效果进行检验(表2),结果
显示,RMSE 较小,说明模型较精确;MD 接近0,
RE<RE0.05,说明模型拟合良好;R2 接近1,说明理
论值变异度与实际值变异度相符合;CRM 接近0,
说明系统误差很小;EF大于95%,满足林业生产要
求。因此,二次三项式方程用来模拟该区段内太白
红杉胸径生长具有较高的精度和稳定性,可以在该
591第4期 肖东耀 等:太白山北坡太白红杉(Larix chinensis)胸径生长规律研究
范围内使用。
表2 林源中心太白红杉胸径生长模型检验结果
Table 2 Inspection findings of DBH growth equation of
L.chinensis growing in origin center
林分
变量
RMSE
/%
RE
/%
RE0.05
/%
R2 CRM MD
EF
/%
胸径 3.46 4.09 4.87 0.9721 0.0003 0.004 99.58
3.1.2 胸径生长规律 根据以上所得的太白红杉
胸径理论值计算其平均生长量和连年生长量,并依
此值绘制该区段胸径连年生长量和平均生长量曲线
(图1),由图可知,连年生长量和平均生长量的曲线
符合生物生长的变化特征:在生长初期,连年生长量
和平均生长量都随年龄的增大而变大,且连年生长
量较平均生长量有更快的增长速率;连年生长量在
20a左右达到最大值0.28cm,随后逐步降低;当树
龄在40a时,平均生长量达到最大值0.20cm,并与
连年生长量相等,而后,平均生长量始终大于连年生
长量。这是由于在这一区段,随着太白红杉的生长,
其与周围的冷杉等植物的竞争增强,生长受限所致。
图1 林源中心连年生长量和平均生长量曲线
Fig.1 Curves of current annual increment and mean annual
increment in origin center
3. 2 适生区太白红杉胸径生长模型的拟合
3.2.1 生长模型的拟合 5种生长方程对适生区太
白红杉胸径生长的拟合(表3)。结果显示,除指数
方程R2 较小外,其他四种生长模型对胸径的拟合效
果均较好,其中二次三项式方程R2 最大,因此选择该
方程为太白红杉于该范围内的最佳生长模型。
应用以上建立的最佳模型对检验样本中树木胸
径实测值与理论值进行检验,检验结果(表4)显示,
RMSE较小,说明模型较精确;MD为0,RE<RE0.05,
说明模型拟合良好;R2 接近1,CRM 为0,EF>95%,
说明模型精确度高。因此,二次三项式方程用来模拟
该海拔段太白红杉胸径生长是可行的。
3.2.2 胸径生长规律 绘制胸径平均生长量和连
年生长量曲线(图2)。由图可知,连年生长量在10年
左右达到最大值0.3cm,而后逐渐降低,在40年附近
和平均生长量曲线相交,此时的平均生长量达到最大
值0.21cm,在40年之前,连年生长量总大于平均生
长量,太白红杉处在一个快速增长的阶段,之后,平均
生长量大于连年生长量,太白红杉的增长速度减缓,
这是因为此海拔段为太白红杉纯林的适生范围,根据
K选择对策,太白红杉的幼龄树皆具有较强的生存
力,且受到成林的保护作用,因此,胸径快速增长,但
随着年龄的增长,到达40年左右时,种内的保护作用
变成竞争作用,胸径生长速度开始减慢。
图2 适生区连年生长量和平均生长量曲线
Fig.2 Curves of current annual increment and mean annual
increment at suitable regions
表3 适生区太白红杉胸径生长方程拟合结果
Table 1 Fitting results of DBH growth equation of L.chinensis in suitable regions
方程名称 拟合的方程 决定系数R2 F值 显著性p
对数方程 D=-11.193 3lnt+5.422 7 0.913 9 149.62 0.000
二次三项式方程 D=-0.001 6t2+0.326 0t-2.013 8 0.988 2 589.14 0.000
幂函数方程 D=0.067 6t1.271 4 0.976 2 574.86 0.000
指数方程 D=1.117 2e0.040 1t 0.781 2 50.98 0.000
逻辑斯蒂方程 D= 13.490 51+20.495 4e-0.095 8t 0.976 4 580.48 0.000
表4 适生区太白红杉胸径生长模型检验结果
Table 4 Inspection findings of DBH growth equation of
L.chinensis in suitable regions
林分
变量
RMSE
/%
RE
/%
RE0.05
/%
R2 CRM MD
EF
/%
胸径 5.63 2.19 2.33 0.964 3 0.000 0.000 98.99
3. 3 高山林线处太白红杉胸径生长模型的拟合
3.3.1 胸径生长模型的拟合 由表5可知,幂函数
方程R2 最大,因而选择其为该区段太白红杉生长
的最佳模型。
应用幂函数方程对检验样本中树木胸径实测值
和理论值进行拟合(图3)。结果可以看出,理论值
691 西北林学院学报 27卷
和实测值在太白红杉生长的前期拟合效果很好,但
在50年以后,幂函数的理论胸径值与实测值差异较
大并在趋势变化上出现偏差。因此考虑选择R2 较
幂函数稍低的逻辑斯蒂方程作为最佳方程。由图3
可知,逻辑斯蒂方程的理论胸径值和实测值在太白
红杉生长前期有较大偏差。因此,考虑分段表示太
白红杉胸径生长的规律。以40年为分界点,树龄在
40年以前,幂函数方程为最佳方程,40年以后,螺旋
斯蒂方程为最佳方程(表6)。表7为分段检验
结果。
图3 幂函数和Logistic方程对高山林线处胸径的拟合曲线
Fig.3 Fitting curve of power equation and logistic equation
at alpine timberline
表5 高山林线处太白红杉胸径生长方程拟合结果
Table 5 Fitting results of DBH growth equation of L.chinensis in alpine timberline
方程名称 拟合的方程 相关系数R2 F值 显著性p
对数方程 D=4.608 3lnt+10.263 4 0.826 7 72.56 0.000
二次三项式方程 D=0.000 1t2+0.159 6t+0.961 4 0.983 4 444.84 0.000
幂函数方程 D=0.044 5t1.291 0 0.995 3 3 162.01 0.000
指数方程 D=0.761 2e0.040 3t 0.874 3 105.35 0.000
逻辑斯蒂方程 D= 12.440 11+24.092e-0.072 1t 0.988 9 1 339.85 0.000
由表7可知,分段表示太白红杉胸径生长的精
度较高、系统误差很小、模型拟合度较好,因此可用
于该区段太白红杉胸径的生长。
3.3.2 胸径生长规律 同上,将树龄代入分段函数
中,绘制胸径平均生长量和连年生长量曲线,结果见
图4。由图可知,连年生长量在50年左右达到最大
值0.23cm,而后逐年降低,在70年左右,太白红杉
平均生长量达到最大值0.15cm。
图4 高山林线处连年生长量和平均生长量曲线
Fig.4 Curves of current annual increment and mean annual
increment in alpine timberline
表6 胸径的实测值、理论值及残差表
Table 6 DBH measured,the theoretical value
and the residuals
树龄
/a
实测胸径
值/cm
幂函数
理论胸径
值/cm
残差
/cm
逻辑斯蒂方程
理论胸径
值/cm
残差
/cm
5 0.4 0.4 0.0 0.6 -0.2
10 0.8 0.9 -0.1 0.9 -0.1
15 1.4 1.5 -0.1 1.2 0.2
20 2.0 2.1 -0.1 1.7 0.3
25 2.7 2.8 -0.1 2.3 0.4
30 3.5 3.6 -0.1 3.1 0.4
35 4.3 4.4 -0.1 4.1 0.2
40 5.2 5.2 0.0 5.2 0.0
45 6.2 6.1 0.1 6.3 -0.1
50 7.3 6.9 0.4 7.5 -0.2
55 8.5 7.9 0.6 8.5 0.0
60 9.6 8.8 0.8 9.4 0.2
65 10.4 9.7 0.7 10.2 0.2
70 11.0 10.7 0.3 10.8 0.2
75 11.2 11.7 -0.5 11.3 -0.1
80 11.3 12.7 -1.4 11.6 -0.3
表7 高山林线处太白红杉胸径生长模型检验结果
Table 7 Inspection findings of DBH growth equation of L.chinensis in alpine timberline
林分变量 RMSE/% RE/% RE0.05/% R2 CRM MD EF/%
40年前 4.66 2.28 2.33 0.988 9 -0.025 5 -0.066 4 99.70
40年后 5.64 1.85 1.99 0.927 0 0.012 5 0.018 8 95.34
791第4期 肖东耀 等:太白山北坡太白红杉(Larix chinensis)胸径生长规律研究
4 结论
1)在太白红杉林源中心和适生区范围内,二次三
项式方程对胸径的生长拟合效果较其他方程好,连年
生长量和平均生长量均符合生物生长的特征。因此,
可作为该区段内太白红杉生长规律理论研究的模型。
2)在高山林线范围内,由于温度,风力等立地
因素的不稳定性,该区段太白红杉的生长规律比较
复杂,需通过分段函数等方式拟合生长模型,树龄在
40年以前,幂函数方程为最佳方程,40年以后,Lo-
gistic方程为最佳方程。
3)高山林线处太白红杉连年生长量的增长速率
及最大连年生长量均小于林源中心和适生区,且其
平均生长量和连年生长量最大值出现的时间也较林
源中心和适生区晚。
参考文献:
[1] 许林军,彭鸿,陈存根.太白红杉林径级和龄级结构的研究
[J].西北植物学报,2005,25(3):460-465.
XU L J,PENG H,CHEN C G.Size-class and age-class struc-
tures of Larix chinensis forests[J].Acta Botanica Boreali-occi-
dentalia Sinica,2005,25(3):460-465.(in Chinese)
[2] 吴征镒.中国植被[M].北京:科学出版社,1980:172-173.
[3] 中国科学院西北植物研究所.秦岭植物志[M].北京:科学出
版社,1978:15-20.
[4] 牛春山.陕西森林[M].西安:陕西科学技术出版社,1986:
153-156.
[5] 张文辉,王延平,康永祥,等.太白红杉种群结构与环境的关系
[J].生态学报,2004,24(1):41-48.
ZHANG W H,WANG Y P,KANG Y X,et al.Study on the
relationship between Larix chinensis population s structure
and environment factors[J].Acta Ecologica Sinica,2004,24
(1):41-48.(in Chinese)
[6] 闫明准,刘兆刚.帽儿山地区次生林椴树单木胸高断面积生长
模型的研究[J].森林工程,2009,25(2):1-5.
YANG M Z,LIU Z G.Study on growth model of section area
of breast height of Tilia amurensis individual tree of secondary
forest in Maoershan Mountain Region[J].Forest Engineering,
2009,25(2):1-5.(in Chinese)
[7] 王孝安,段仁燕,王明利.太白红杉单木胸径生长模型的研究
[J].武汉植物学研究2005,23(2):157~162.
WANG X A,DUAN R Y,WANG M L.Study on DBH incre-
ment model of individual trees growing for Larix chinensis[J].
Journal of Wuhan Botanical Research,2005,23(2):157~162.
(in Chinese)
[8] 张俊,孙玉军,许俊利.东北地区兴安落叶松人工林生长过程
研究[J].西北林学院学报,2008,23(6):179-181.
ZHANG J,SUN Y J,XU J L.Research on growing process
of Larix gmeini plantation in Northeast of China[J].Journal
of Northwest Forestry University,2008,23(6):179-181.(in
Chinese)
[9] 杜俊平,廖超英,田联会,等.太白山自然保护区土壤重金属含
量及其分布特征研究[J].西北林学院学报,2007,22(3):84-87.
DU J P,LIAO C Y,TIAN L H,et al.Distribution and con-
tents of heavy metals in soils of Taibaishan Nature Reserve
[J].Journal of Northwest Forestry University,2007,22(3):
84-87.(in Chinese)
[10] 许林军,彭鸿,陈存根,等.秦岭太白红杉林分布及太白山高
山林线特征的定量分析[J].西北植物学报,2005,25(5):
968-972.
XU L J,PENG H,CHEN C G,et al.Quantitative analysis
of the Larix chinensis forests distributionat Qinling
Mountains and the character ofthe alpine timberline at Taibai
Mountain[J].Acta Botanica Boreali-occidentalia Sinica,
2005,25(5):968-972.(in Chinese)
[11] 周鸿飞,陈志斌,关欣.评价回归模型拟合效果的数量化方法
[J].沈阳农业大学学报,2001,32(6):455-458.
ZHOU H F,CHEN Z B,GUAN X.Quantitative methods
for evaluating the performance of regression models[J].
Journal of Shenyang Agricultural University,2001,32(6):
455-458.(in Chinese
櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲
)
(上接163页)
[8] 胡锦矗,张泽钧,魏辅文.中国大熊猫保护区发展历史、现状及
前瞻[J].兽类学报.2011,31(1):10-14.
HU J C,ZHANG Z J,WEI F W.History,current situation
and prospects on nature reserves for giant pandas(Ailuropoda
melanoleuca)in China[J].Acta Theriologica Sinica.2011,31
(1):10-14.(in Chinese)
[9] 金学林.秦岭大熊猫的保护现状及易地保护研究[J].西北大
学学报:自然科学版,2008,38(2):248-252.
JIN X L.The research on present situation and ex-situ conser-
vation of Qinling Mountain panda Ailuropoda melanoleuca qin-
lingensis[J].Journal of Northwest University:Natural Science
Edition,2008,38(2):248-252.(in Chinese)
[10] 刘新玉,张泽钧,郑晓燕,等.从长期监测数据看佛坪自然保
护区大熊猫种群的发展趋势与生态习性[J].兽类学报,
2008,28(2):174-179.
LIU X Y,ZHANG Z J,ZHENG X Y,et al.Population
trends and ecological traits of giant pandas in Foping Nature
Reserve based on long-term monitoring data[J].Acta Therio-
logica Sinica.2008,28(2):174-179.(in Chinese)
[11] 雍严格.佛坪大熊猫产仔巢穴的初步观察[J].动物学杂志,
1989.24(4):36-39.
[12] 张泽钧,张陕宁,魏辅文,等.移地与圈养大熊猫野外放归的探
讨[J].兽类学报,2006,26(3):292-299.
ZHANG Z J,ZHANG S N,WEI F W,et al.Translocation
and discussion on reintroduction of captive giant panda[J].
Acta Theriologica Sinica.2006,26(3):292-299.(in Chinese)
[13] 赵学敏.大熊猫研究进展[M].北京:科学出版社,2007:15-
19,20-33.
891 西北林学院学报 27卷