全 文 : 2012 年 7 月 第 10 卷 第 4 期 Chin J Nat Med July 2012 Vol. 10 No. 4 299
Chinese Journal of Natural Medicines 2012, 10(4): 02990302
doi: 10.3724/SP.J.1009.2012.00299
Chinese
Journal of
Natural
Medicines
Chemical constituents of Euphorbia fischeriana
WANG Xiao-Yang1, LIU Li-Ping2, KANG Ting-Guo1, WANG Hong-Bing2, 3*
1School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China;
2School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
3Tongji University-Lishui Institute of Traditional Chinese Medicine, Lishui 323000, China
Available online 20 July 2012
[ABSTRACT] AIM: To investigate the chemical constituents in the roots of Euphorbia fischeriana. METHODS: The chemical con-
stituents were isolated and purified by various chromatographic techniques. Their structures were identified on the basis of spectro-
scopic analyses and physiochemical properties. RESULTS: Eleven compounds were isolated and elucidated as (+)-nyasol (1),
23(Z)-cycloart-23-en-3β, 25-diol (2), cycloart-22-ene-3β, 25-diol (3), ebracteolatain A (4), 2, 4-dihydroxy-6-methoxy-3-formyl-1-
acetophenone (5), α-linolenic acid (6), 24-methylenecycloartanol (7), cycloartenol (8), β-sitosterol (9), 3, 3’-diacetyl-4, 4’-dimethoxy-2,
2’, 6, 6’-tetrahydroxy diphenylmethane (10), 2, 4-dihydroxy-6-methoxy-3-methyl-1-acetophenone (11). CONCLUSION: Compound 1
was found in the genus Euphorbia for the first time and compounds 2−6 were firstly isolated from Euphorbia fischeriana.
[KEY WORDS] Euphorbiaceae; Euphorbia fischeriana; Chemical constituents; Triterpenoids; Acetophenone derivatives
[CLC Number] R284.1 [Document code] A [Article ID] 1672-3651(2012)04-0299-04
1 Introduction
Euphorbia fischeriana Steud (Euphorbiaceae) is a per-
ennial herbaceous plant with milky juice, distributed mainly
in north China. The dried roots, named “lang-du” in tradi-
tional Chinese medicine, have been used as a remedy for the
treatment of cancer, ascites, and edema[1]. The chemical con-
stituents of the roots have been investigated and a variety of
diterpenoids have been reported[2-8]. Two ent-abietane diter-
penoids, jolkinolides A and B, the major components of the
roots, showed cytotoxic activities toward sarcoma 180, Her-
lich ascites, and Hela cells[9-10]. In our ongoing searching for
new bioactive substances from the title plant, eleven com-
pounds (1-11) have been isolated and identified as (+)-nyasol
(1), 23(Z)-cycloart-23-en-3β, 25-diol (2), 22(E)-cycloart-22-
ene-3β, 25-diol (3), ebracteolatain A (4), 2, 4-dihydroxy-6-
methoxy-3-formyl-1-acetophenone (5), α-linolenic acid (6),
24-methylenecycloartanol (7), cycloartenol (8), β-sitosterol
(9), 3, 3’-diacetyl-4, 4’-dimethoxy-2, 2’, 6, 6’-tetrahydroxy
[Received on] 27-Dec.-2011
[Research funding] This project was supported by the National
Natural Science Foundation of China (Nos. 81001369 and 31170327),
and the Fundamental Research Funds for the Central Universities
(No. 2000219078).
[*Corresponding author] WANG Hong-Bing: Prof., Tel:
86-21-65983693, E-mail: hbwang@tongji.edu.cn
These authors have no any conflict of interest to declare.
diphenylmethane (10), 2, 4-dihydroxy-6-methoxy-3-methyl-
1-acetophenone (11). Compound 1 was firstly isolated in the
genus Euphorbia, and compounds 2-6 were obtained for the
first time from the title plant.
2 Experimental
2.1 General
UV spectra were recorded by a Shimadzu UV-2550
UV-visible spectrophotometer. NMR spectra were run on a
Varian Mercury NMR spectrometer at 500 MHz for 1H and
125 MHz for 13C NMR. ESI-MS was carried out on an Es-
quire 3000 plus (Bruker Daltonics) LC-MS. Column chro-
matographic separations were carried out on silica gel H-60
(Qingdao Marine Chemical Group Co., Qingdao, China),
Sephadex LH-20 (Pharmacia Biotech AB, Uppsala, Sweden).
HSGF254 silica gel TLC plates (Yantai Chemical Industrial
Institute, Yantai, China) were used for analytical TLC. All
solvents used were of chemical grade (Shanghai Chemical
Co., Ltd., Shanghai, China).
2.2 Plant material
The roots of Euphorbia fischeriana were collected in
Liaoning Province of China in October, 2009 and were iden-
tified by Dr. Guan ZB from the Yunnan Branch Institute of
Medicinal Plants, Chinese Academy of Medical Sciences.
Voucher specimens are kept in the “Herbarium” of the Institute.
2.3 Extraction and isolation
Air-dried roots of E. fischeriana (5.0 kg) were extracted
WANG Xiao-Yang, et al. /Chinese Journal of Natural Medicines 2012, 10(4): 299302
300 Chin J Nat Med July 2012 Vol. 10 No. 4 2012 年 7 月 第 10 卷 第 4 期
by 95% ethanol three times at room temperature. After filter-
ing, the solvent was evaporated under reduced pressure to
give the EtOH extract (1 005 g), which was suspended in
H2O and then partitioned successively with petroleum ether,
CHCl3, EtOAc and n-BuOH, respectively. The CHCl3 extract
(98 g) was subjected to silica gel column, and eluted with
CHCl3−MeOH gradient to give 8 fractions (Fr. 1−Fr. 8). Fr. 3
was chromatographed over a Sephadex LH-20 column using
CHCl3−MeOH (1 : 1) as eluent and the collected fraction was
repurified by silica gel column chromatography with
CHCl3−MeOH gradient to obtain compounds 5 (32 mg), 7
(12 mg), 8 (2 mg) and 10 (20 mg). Fr.4 was subjected to re-
peated silica gel column chromatography with eluting sys-
tems of CHCl3−MeOH, petroleum ether-EtOAc and petro-
leum ether-acetone, as well as ODS column chromatography
using step gradient MeOH−H2O to afford compounds 1 (32
mg), 2 (5 mg), 3 (2 mg), 4 (4 mg), 6 (15 mg), 9 (110 mg) and
11 (20 mg).
3 Structural Identification
Compound 1 Oil, C17H16O2. 20D]α[ +112° (c 0.4,
CH2Cl2). ESI-MS m/z 252 [M]+. 1H NMR (CDCl3, 500 MHz)
δ: 7.11 (2H, dd, J = 8.4, 1.8 Hz), 7.01 (2H, dd, J = 8.4, 1.7
Hz), 6.74 (2H, d, J = 8.4 Hz), 6.72 (2H, d, J = 8.4 Hz), 6.45
(1H, d, J = 11.2 Hz), 5.99 (1H, ddd, J = 16.5, 9.9, 6.0 Hz),
5.62 (1H, dd, J = 11.2, 10.0 Hz), 5.11 (1H, dd, J = 9.9, 1.7
Hz), 5.06 (1H, dd, J = 16.5, 1.7 Hz), 4.44 (1H, dd, J = 10.0,
6.0 Hz). 13C NMR (CDCl3, 125 MHz) δ: 157.6 (C, C-4’),
156.9 (C, C-4’’), 142.7 (CH, C-4), 135.7 (C, C-1’’), 132.5 (CH,
C-2), 130.9 (CH, C-2’, 6’), 130.0 (C, C-1), 129.6 (CH, C-2’’,
6’’), 129.6 (CH, C-1’), 116.3 (CH, C-3’’, 5’’), 116.0 (CH, C-3’,
5’), 114.7 (CH2, C-5), 48.0 (CH, C-3). Compound 1 was
identified as (+)-nyasol by comparison of the physical and
spectral data with the reported literature[11].
Compound 2 Colorless needles (Petroleum-Aceton),
C30H50O2. mp 175−177 °C. ESI-MS m/z 442 [M]+. 1H NMR
(CDCl3, 500 MHz) δ: 5.60 (2H, brs, H-23, 24), 3.28 (1H, m,
H-3), 1.68 (1H, m, H-15a), 1.62 (1H, m, H-15b), 1.60 (2H, m,
H-16), 1.55(2H, m, H-22), 1.33 (6H, s, H-26, 27), 0.96 (6H, s,
H-29, 18), 0.89 (3H, d, J = 5.9 Hz, H-21), 0.86 (3H, s, H-30),
0.81 (3H, s, H-28), 0.56 (1H, d, J = 4.5 Hz, H-19β), 0.32 (1H,
d, J = 4.5 Hz, H-19α); 13C NMR (CDCl3, 125 MHz) δ: 139.3
(CH, C-24), 125.6 (CH, C-23), 78.9 (CH, C-3), 70.7 (C,
C-25), 52.0 (CH, C-17), 48.8 (C, C-14), 48.0 (CH, C-8), 47.1
(CH, C-5), 45.3 (C, C-13), 40.5 (C, C-4), 39.1 (CH2, C-22),
36.4 (CH, C-20), 35.6 (CH2, C-15), 32.8 (CH2, C-12), 32.0
(CH2, C-1), 30.4 (CH2, C-2), 30.1 (CH2, C-19), 30.0 (CH3,
C-26), 29.9 (CH3, C-27), 28.1 (CH2, C-16), 26.5 (CH2, C-11),
26.1 (C, C-10), 26.0 (CH2, C-7), 25.4 (CH3, C-30), 21.1 (CH2,
C-6), 20.0 (C, C-9), 19.2 (CH3, C-28), 18.2 (CH3, C-21), 18.0
(CH3, C-18), 14.0 (CH3, C-29). Compound 2 was identified
as 23(Z)-cycloart-23-en-3β, 25-diol by comparison of the
physical and spectral data with the reported literature[12].
Compound 3 Colorless needles (Petroleum), C30H50O2.
mp 199−201 °C. ESI-MS m/z 442 [M]+. 1H NMR (CDCl3,
500 MHz) δ: 5.59 (1H, m, H-22), 5.57 (1H, m, H-23), 3.30
(1H, m, H-3), 1.25 (3H, s, H-27), 1.24 (3H, s, H-26), 1.02
(3H, s, H-30), 0.94 (3H, s, H-18), 0.91 (3H, s, H-29), 0.88
(3H, s, H-28), 0.80 (3H, d, J = 6.4 Hz, H-21), 0.56 (d, J = 5.0
Hz, H-19a), 0.35 (d, J = 5.0 Hz, H-19b); 13C NMR (CDCl3,
125 MHz) δ: 139.5 (CH, C-23), 125.7 (CH, C-22), 79.5 (CH,
C-3), 71.2 (C, C-25), 52.2 (CH, C-17), 48.8 (C, C-14), 47.9
(CH, C-8), 47.3 (CH, C-5), 45.3 (C, C-13), 40.4 (C, C-4),
39.0 (CH2, C-24), 36.7 (CH, C-20), 35.6 (CH2, C-12), 33.0
(CH2, C-15), 32.0 (CH2, C-16), 30.5 (CH2, C-2), 29.8 (CH3,
C-27), 29.8 (CH3, C-26), 29.5 (CH2, C-19), 28.0 (CH2, C-7),
26.5 (CH2, C-1), 26.0 (C, C-10), 25.6 (CH2, C-11), 25.2 (CH3,
C-30), 21.1 (CH2, C-6), 20.0 (C, C-9), 19.5 (CH3, C-28), 18.5
(CH3, C-21), 18.2 (CH3, C-18), 14.2 (CH3, C-29). Compound
3 was identified as cycloart-22-en-3β, 25-diol by comparison
of the physical and spectral data with the reported litera-
ture[13].
Compound 4 Yellow needles (CHCl3-MeOH), C20H22O8.
mp 196−198 °C. 20D]α[ +1.2° (c 0.5, CHCl3). ESI-MS m/z
390 [M]+. 1H NMR (CDCl3, 500 MHz) δ: 16.13 (1H, s,
2’-OH), 13.19 (1H, s, 4-OH), 9.15 (1H, s, 6-OH), 8.82 (1H, s,
6’-OH), 6.02 (1H, s, H-5), 3.95 (3H, s, 2-OCH3), 3.84 (3H, s,
4’-OCH3), 3.74 (2H, s, CH2), 2.69 (3H, s, 3’-COCH3), 2.63
(3H, s, 3-COCH3), 2.06 (3H, s, 5’-CH3). 13C NMR (CDCl3,
125 MHz) δ: 204.0, 32.7 (3-COCH3), 202.1, 30.7
(3’-COCH3), 163.1 (C-6), 162.8 (C-4’),162.7 (C-4), 162.6
(C-2’), 160.9 (C-6’), 155.9 (C-2), 110.9 (C-1’), 110.7 (C-5’),
107.8 (C-3’), 105.5 (C-1), 105.3 (C-3), 92.5 (C-5), 64.8
(4’-OCH3), 55.8 (2-OCH3), 16.4 (CH2), 8.1 (5’-CH3). Com-
pound 4 was identified as ebracteolatain A by comparison of
the physical and spectral data with the reported literature[14].
Compound 5 Colorless needles (CHCl3), C10H10O5. mp
132−133 °C. ESI-MS m/z 210 [M]+. 1H NMR (CDCl3, 500
MHz) δ: 15.38 (1H, s, 2-OH), 13.00 (1H, s, 3-CHO), 10.20
(1H, s, 4-OH), 5.90 (1H, s, H-5), 3.95 (3H, s, 6-OCH3), 2.61
(3H, s, 1-COCH3). 13C NMR (CDCl3, 125 MHz) δ: 202.9,
32.6 (1-COCH3), 192.4 (3-CHO), 171.1 (C, C-4), 170.1 (C,
C-6), 168.3 (C, C-2), 104.9 (C, C-3), 104.0 (C, C-1), 90.6
(CH, C-5), 56.0 (6-OCH3). Compound 5 was identified as 2,
4-dihydroxy-6-methoxy-3-formyl-1-acetophenone by com-
parison of the physical and spectral data with the reported
literature[15].
Compound 6 Oil, C18H30O2. mp 230 °C. ESI-MS m/z
278 [M]+. 1H NMR (CDCl3, 500 MHz) δ: 10.9 (1H, brs, OH),
5.41−5.31 (6H, m, C-9, 10, 12, 13, 15, 16), 2.81 (4H, t, J =
6.0 Hz, C-11, 14), 2.35 (2H, t, J = 7.5 Hz, C-2), 2.06 (4H, m,
C-8, 17), 1.64 (2H, m, C-3), 1.32 (8H, m, C-4, 5, 6, 7), 0.98
(3H, t, J = 7.5 Hz, C-18). 13C NMR (CDCl3, 125 MHz) δ:
179.4 (COOH, C-1), 132.0 (CH, C-16), 130.3 (CH, C-9),
128.3 (CH, C-12, 13), 127.8 (CH, C-10), 127.1 (CH, C-15),
33.9(CH2, C-2), 29.7 (CH2, C-7), 29.1 (CH2, C-5, 6), 29.0
WANG Xiao-Yang, et al. /Chinese Journal of Natural Medicines 2012, 10(4): 299302
2012 年 7 月 第 10 卷 第 4 期 Chin J Nat Med July 2012 Vol. 10 No. 4 301
Fig. 1 Compounds 1-11 isolated from E. fischeriana
(CH2, C-4), 27.2 (CH2, C-8), 25.6 (CH2, C-11, 14), 24.7 (CH2,
C-3), 20.6 (CH2, C-17), 14.3 (CH3, C-18). Compound 6 was
identified as α-linolenic acid by comparison of the physical
and spectral data with the reported literature[16-17].
Compounds 7−11 were identified as 24-methylenecyc-
loartanol[18], cycloartenol[19], β-sitosterol[20], 3, 3’-diacetyl-4,
4’-dimethoxy-2, 2’, 6, 6’-tetrahydroxy diphenylmethane[21], 2,
4-dihydroxy-6-methoxy-3-methyl-1-acetophenone[22] by
comparison of the spectral data reported in literature.
References
[1] Jiangsu New Medical College. Dictionary of Chinese Herb
Medicines [M]. Shanghai: Shanghai Scientific and Technologic
Press, 1986, 1898-1900.
[2] Ma GQ, Liu WZ, Wu XY, et al. Diterpenoids from Euphorbia
fischeriana [J]. Phytochemistry, 1997, 44(4): 663-666.
[3] Che CT, Zhou TX, Ma QG, et al. Diterpenes and aromatic
compounds from Euphorbia fischeriana [J]. Phytochemistry,
1999, 52(1): 117-121.
[4] Zhou TX, Bao GH, Ma GQ, et al. Langduin C, a novel dimeric
diterpenoid from the roots of Euphorbia fischeriana [J]. Tetra-
hedron Lett, 2003, 44(1): 135-137.
[5] Pei YH, Koike K, Han B, et al. Fischeria A, a novel norditer-
pene lactone from Euphorbia fischeriana [J]. Tetrahedron Lett,
1999, 40(5): 951-952.
[6] Wang YB, Yao GM, Wang HB, et al. A novel diterpenoid from
Euphorbia fischeriana [J]. Chem Lett, 2005, 34(8): 1160-1161.
[7] Wang YB, Huang R, Wang HB, et al. Diterpenoids from the
roots of Euphorbia fischeriana [J]. J Nat Prod, 2006, 69(6):
967-970.
[8] Wang HB, Chu WJ, Wang Y, et al. Diterpenoids from the roots
of Euphorbia fischeriana [J]. J Asian Nat Prod Res, 2010,
12(12): 1038-1043.
[9] Liu GF, Fu YQ, Yang ZQ, et al. Isolation and identification of
antitumor constituents of diterpenoids lactone in Euphorbia fi-
scheriana Steud [J]. Bull Chin Mater Med, 1988, 13(5): 291-292.
[10] Uemura D, Katayama C, Hirata Y. Crystal and molecular
structure of jolkinolide B, a novel oxidolactone diterpene [J].
Tetrahedron Lett, 1977, 18(3): 283-284.
[11] Yang YY, Wang ZX. Isolation and identification of chemical
constituents from the rhizome of Asparagus cochinchinensis [J].
J Shenyang Pharm Univ, 2009, 26 (10): 796-799.
[12] Pei YG, Wu QX, Shi YP. Triterpenoids and other constituents
from Euphorbia humifusa [J]. J Chin Chem Soc, 2007, 54(6):
1565-1572.
[13] Tian MQ, Bao GM, Ji NY, et al. Triterpenoids and steroids
from Excoecaria agallocha [J]. China J Chin Mater Med, 2008,
33(4): 405-408.
[14] Fu GM, Yu BY, Zhu DN. Two novel phloroglucinol derivatives
from Euphorbia ebracteolata hayata [J]. J Asian Nat Prod Res,
2006, 8(1-2): 149-153.
[15] Deng B, Mu SZ, Hao XJ. Chemical constituents from Euphor-
bia ebracteolata [J]. Chin J Nat Med, 2010, 8(3): 183−185.
[16] Yu XY. Chemical constituents of Paederia scandens [J]. Chin
Tradit Herb Drugs, 2011, 42(4): 661-663.
[17] Yang Q, Wang SW, Wang JB, et al. Study on extraction and
identification of α-linoleic acid from Semen zanthoxyli Bun-
geani [J]. Chin J New Drugs, 2008, 17(4): 318-320.
[18] Wu QC, Tang YP, Ding AW, et al. Diterpenes and triterpenes
from the roots of Euphorbia fischeriana [J]. Chin J Nat Med,
2010, 8(2): 101-103.
[19] Jin L, Lu J, Yang XN, et al. Chemical constituents from the
roots and stems of Ervatamia hainanensis [J]. Chin J Nat Med,
2008, 6(4): 271-274.
[20] Zhang Y, Li WJ, Meng XL, et al. Chemical constituents of
Tibet drug Pterocephalus hookeri ( C. B. Clarke) Hoeck [J]. J
Chengdu Univ TCM, 2002, 25(3): 41-42.
[21] Wang WX, Ding XB. Acetophenone derivatives from Euphor-
bia ebracteolata hayata [J]. Acta Pharm Sin, 1999, 34(7):
514-517.
[22] Pei YH, Han B, Feng BM, et al. Studies on chemical constitu-
ents of Euphorbia fischeriana [J]. Chin Tradit Herb Drugs,
2002, 33(7): 591-592.
WANG Xiao-Yang, et al. /Chinese Journal of Natural Medicines 2012, 10(4): 299302
302 Chin J Nat Med July 2012 Vol. 10 No. 4 2012 年 7 月 第 10 卷 第 4 期
狼毒大戟的化学成分
王晓阳 1, 刘丽萍 2, 康廷国 1, 王红兵 2, 3*
1辽宁中医药大学药学院, 大连 116600;
2同济大学生命科学与技术学院, 上海 200092;
3同济大学丽水中药研究院, 丽水 323000
【摘 要】 目的:研究狼毒大戟根的化学成分。方法:用多种层析方法对化合物进行分离纯化, 根据光谱数据和理化性质
鉴定结构。结果:分离并鉴定了 11 个化合物, 即(+)-nyasol (1), 23(Z)-环阿尔廷-23-烯-3β, 25-二醇(2), 环阿尔廷-22-烯-3β,
25-二醇(3), 月腺大戟素 A (4), 2, 4-二羟基-6-甲氧基-3-醛基苯乙酮(5), α-亚麻酸(6), 24-亚甲基环木菠萝烷醇(7), 环阿尔廷醇(8),
-谷甾醇(9), 3, 3’-二乙酰基-4, 4’-二甲氧基-2, 2’, 6, 6’-四羟基二苯甲烷(10), 狼毒乙素(11)。结论:化合物 1为该属首次分离, 化
合物 2-6为该种植物首次分离。
【关键词】 大戟科; 狼毒大戟; 化学成分; 三萜; 乙酰间苯三酚衍生物
【基金项目】 国家自然科学基金(Nos. 81001369 , 31170327), 中央高校基本科研业务费专项资金(No. 2000219078)资助项目