Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton (Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular intervals there after within 15 d. Photoinhibition occurred in shade-grown cotton leaves immediately after exposed to full sunlight. The chlorophyll fluorescence parameter Fv / Fm and ΦPSⅡ , which reflect the efficiency of PSⅡ, obviously decreased in shade-grown leaves, much lower than that of the full sunlight-grown leaves. On the contrary, Fo value was sharply increased. Neither of these parameters could completely recover till next morning. The photoinhibition was chronic and continued for about 4 d, while the Fv / Fm and the net photosynthetic rate ( Pn ) continued to decline, then began to increase gradually 6 d later and turned stable after 10-12 d, appearing as an acclimation phenomenon. However, the final value of Fv / Fm and Pn did not reach the level as in those leaves grown in the full sunlight ever before. The final Pn was higher by 60% than that before exposure, but lower for more than 40% than that of the full sunlight-grown leaves. The most notable response of chloroplast pigment composition was a pronounced increase in the pool size of carotenoids in xanthophyll cycle over a period of 3 d. The results indicated that when shade-grown cotton seedlings were suddenly transferred to the full sunlight, the decline of Fv / Fm and Pn might associate with the damage of the PSⅡ reaction center. During the light acclimation, photoprotective mechanisms such as the xanthophyll cycle-dependent energy dissipation were increased, so that photodamage in leaves transferred from low to high light might be reduced.
遮荫棉花转入强光后光合作用的光抑制及其恢复
杨兴洪1,2 邹琦1* 王玮1
(1. 山东农业大学生命科学学院,泰安"271018;
2. 中国科学院植物研究所光合作用基础研究开放实验室,北京100093)
关键词: 棉花;遮荫;光抑制;光保护;叶黄素循环
全 文 :