作 者 :LI Lian-Chao, WANG Xue-Chen and JING Jia-Hai
Keywords:Expansin, Wall proteins, Wall extension, Glycine max,
Abstract:Expansins, a newly discovered class of cell wall proteins, were the only proteins that, to date, have been shown to have the ability to restore the "acid growth" response of the heat-inactivated cell wall in an in vitro assay. In order to characterize these proteins, an automatic extensometer had been previously constructed by modification of an equal-arm mechanical balance with a linear variable differential transformer (LVDT) and with some easily available laboratory equipment. The objective of this study was to confirm and complement the work on expansin in cucumber ( Cucumis sativus L. ) seedlings carried out in the expansin-discoverers‘ laboratory and in addition, to further examination of the extensometer built in the authors‘ laboratory. It was reported that, firstly, expansin activity was maximal in cell wall from the growing region of soybean (Glycine max L. ) hypocotyls but was negligible or lacking in that from mature, basal regions and cotyledons. Corre- spondingly, walls from the growing tissue had a strong susceptibility to the action of expansin, whereas the nongrowing tissues became insensitive to the expansin action. It was concluded that the growth of soybean hypocotyl was associated with an increase in both expansin activity and wall susceptibility to the expansin action. Secondly, the heat-inactivated wall extension could be induced by cross reconstitution with crude expansin extract between soybean and cucumber species. Thirdly, once the heat-inactivated wall has been pretreated with the exogenous expansin, the reconstituted wall required no further expansin for extension indicating that exogenous expansin could specifically bind to cell wall and be enough to repeatedly exert its action without releasing from the cell wall into the external solution, i.e., a single expansin molecule could gradually break a series of load-bearing bonds one by one while moving along the cell wall, and thereby permitting the wall to extend. Fourthly, reconstitution of the wall extension activity was evidently dependent on the expansin concentration and the pH of the bathing solution, which was consistent with the catalytic characteristics of classical enzymes. Finally, endogenous and reconstituted wall extension could be significantly induced in 50 mmoL/L sodium acetate at pH 4.5 and completely inhibited in 50 mmol/L Hepes at pH 6.8, especially these phenomena could continuously be caused by switching incubation buffer from one to the other alternately, suggesting that change in pH of bathing solution could only affect the conformation of expansin (thus leading to denaturation or renaturation of it) but not the affinity of it for cell wall. In summary, these observations lend further support to the fact that expansin could mediate the acid-induced extension of the isolated wall, probably through a biochemical or enzymatic process exerting directly to the cell wall. This protein may play an essential role in the control of plant cell growth in vivo.
全 文 :