全 文 :Chinese Bulletin of Life Sciences
17 2
2005 4
Vol. 17, No. 2
Apr., 2005
1 CA 92521
2 200032
S432.1 A
Nitric oxide and elicitor-induced plant defense responses
HU Xiang-Yang1, CAI Wei-Ming2*
(1 Department of Botany and Plant Sciences, University of California River-side, CA 92521, USA;
2 Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences,
Shanghai 200032, China)
Abstract: Elicitors, derived from cell wall of fungi or plants, can induce a line of defense responses in plants. During
these processes, a multiple of plant signal molecules, such as nitric oxide, reactive oxygen species (ROS),
jasmonic acid, salicylic acid, ethylene etc., play the essential role in conveying the elicitor stimulation to
intracellular defenses responses. In this review, at first we described the classification of elicitors, and intro-
duced briefly the receptor, conveying and responses of plant cell to elicitor stimulation. At last we focused on
the detailed role and new research proceeding of nitric oxide involving elicitor-induced defense responses, and
its interaction with other plant signal molecules.
Key words: nitric oxide; elicitor; plant defense; signal transduction
1004-0374(2005)02-0176-07
2004-05-26 2004-11-29
(39870050)
( 1 9 7 3 ) ( 1 9 6 2 ) *
( h y p e r s e n s i t i v e
responses, HR)
(
)
(systemic acquired responses, SAR)
(elicitor)
(1981)
(endogenous elicitor);
(genuine elicitor)
[1~2]
1
1.1
[3] OGA
( )
[4]
[3]
1.2 1968
Cruickshank Perrin (Mynilinia fructicola)
(monilicolin A)
(phaseollin)
[1]
hepta-β-glucoside-
alditol 10 3~10 4 µmol/L
0.6 ng
(Cladosporium fulvum) AVR9
CF9 HR
(LPS) (EPS CPS)
Harpin
(Eruinia amylovora)
44kD
hrpN hrp
TMV
PVX N
Rx
( )
1.3
2 -
TMV
50 40
(Cladosporium cucumerium)
1.4
178
DNA
2
G
[5~7]
(HRGP)
( N O )
NO
NO
( 1 )
2.1 NO NO
NOS( nitric oxide sythase) L-
NADPH FAD
FMN NOS
NOS
NOS
NOS
NOS iNOS
NOS 130 kD
NOS
[8~9]
NOS NOS
[10] NOS
NO Yamasaki [11] pH 7.0 NADPH
NO2- NO3 NO NO2- NO
NO3
NO2 NO[12]
iNOS iNOS
NO ABA
NO T DNA
Atnos1 ABA NO
[13] NOS
NOS NOS
NOS
Berthke [14] NO
N O
AHb1(hemoglobin AHb1)
S-
AHb1
[15]
NO NO
2.2 NO NO
1996 , NO
NO
[ 1 6 ~ 1 7 ]
NO 1-Hydro-2-oxo-3, 3(2-aminoethyl)-1-
triazene( NOC-18)
NO PBITU NOC-18
1 NO
CA: ; cADPR: ADP ; C4H: 4
CHS: ; cGMP: GMP; GSNO: S
-L- ; JA : ; MARKs:
; NOS: ; OONO-: ; PAL:
; PHE: ; PR-1: -1;
GST: S ; GPX: ; SA:
; SAR: ; SOD:
NO SNP(
) SNP
[18~19]
SNP
DNA [18]
NO
NO
[9]
(lipopolysaccharides LPS)
LPS
NOS
Pseudomonas syringae pv. tomato DC3000
NOS AtNOS1 [20]
NO
SNP
NO
SNP
cPTIO(NO
) [9]
NOS
[ 9 ]
(Nicotiana tabacum cv. Xanthi NC)
(tobacco mosaic virus Nicotiana tabacum cv TMV)
32 TMV
PR ( )
TMV
2~3
NOS 4~5 NOS
L-NMMA DPI TMV
NOS [19,21~22]
DAF-2-DA(NO ) NO
DAF-2-DA
DAF-2 NO
NO
DAF-2
DAF-2
NO Nakatsubo [23] Foissner
[24]
NO NO
NO
NOS
NO
2.3 NO
NO
Noritake [25] NO
NO NO cPTIO
Triton
NO
NO
Caro Puntarulo[26]
NO NO
(half maximal effect) 0.3 3.6
µmol/L
NO Laxalt [18]
2,4- ( )
SHAM(
) NO
NO
PAL
L-NAA
PAL SNP
PAL [9]
cPTIO NOS
PAL CHS
[21] Delledonne [9]
180
CHS NO cPTIO
(sodium nitro prosside, SNP) CHS
NOS
PR-1 NOS L-NAME NO
cPTIO NOS PR-1
NO S-nitroso-L-glutathione GSNO
SNP PR-1
SA
NOS SA
18 h 2 µg/g
(0.01 µg/gFW)
nahG( )
SA
PR-1 NOS PR-1
NOS nahG PR1
NO PR-1 SA
NOS PAL
nahG NOS PAL
NO PAL
SA [21~23,27]
(nitric oxide dioxygenase NOD)
NOD
NO
NOD
[28]
NO
NO mRNA
mRNA mRNA
mRNA
NO
[29~30] (GST)
GST SNP GST
NO GST
[9] 1 NO
NO
NO
2.4 NO
(MAPK)
NO SA [31]
NO
cGMP [17] NO GSNO
PAL
LY835839(6-anilino-5,8-quinolinedinone)
1H-(1,2,4)-oxadiazole[4,3-a]quinoxalin-1-one(ODQ)
GSNO PAL 8-Br-
c-GMP cGMP
LY835839 GSNO PAL
NO NO
cGMP PAL [32]
NO
NO
NO
cGMP
NO [33]
NO
[34] NO
cGMP N A D ADP-
(cADPR) cADPR
[35] cADPR
cADPR cADPR PR-1
PAL
nahG cADPR
PAL PR-1 cADPR
PR-1 PAL
[21~22] NO
NO
NO
NO
[36] ABA
NO
[37] ABA NR
NO[38] GA
NO GA
[39] KT NO [40]
NO [41]
NO
[34] NO
NO
nox1(
NO) NO
nos1 NO
CONSTANS GIGANTEA
FLOWERING LOCUS C
[42]
3
NO
NOS NO
[43]
NO
NO
N O
NO
NO
[1] . [A]. :
. . [M]. :
, 1999. 784~807
[2] . [M]. : , 2003
[3] Hu X Y, Neill S J, Cai W M, et al. Activation of plasma
membrane NADPH oxidase and generation of H2O2 mediate
the induction of PAL activity and saponin synthesis by
endogenous elicitor in suspension-cultured cells of Panax
ginseng. Acta Bot Sin, 2003, 45: 1434~1441
[4] Hu X Y, Neill S J, Cai W M, et al. Induction of defence gene
expression by oligogalacturonic acid requires increases in
both cytosolic calcium and hydrogen peroxide in Arabidopsis
thaliana. Cell Res, 2004, 14: 234~240
[5] Kogel K H, Beckhove U, Dreschers J, et al. Acquired resis-
tance in barley: the resistance mechanism induced by 2,6-
dichloroisonicotinic acid is a phenocopy of a genetically
based mechanism governing race-specific powdery mildew
resistance. Plant Physiol, 1994, 106: 1269~1277
[6] Hahlbrock K, Scheel D, Logemann E, et al. Oligopeptide
elicitor-mediated defense gene activation in cultured parsley
cells. Proc Natl Acad Sci USA, 1995, 92: 4150~4157
[7] Hammond-Kosack K E, Jones J D. Resistance gene depen-
dent plant defence responses. Plant Cell, 1996, 8: 1773~1791
[8] Barroso J B, Corpas F J, Carrasras A. Localization of nitric
oxide synthase in plant peroxisome. J Biol Chem, 1999, 274:
36729~36733
[9] Delledonne M, Xia Y, Dixon R A, et al. Nitric oxide functions
as a signal in plant disease resistance. Nature, 1998, 394:
585~588
[10] Nelson M J. The nitric oxide complex of ferrous soybean
lipoxygenase-1. Substrate, pH, and ethanol effects on the
active-site iron. J Biol Chem, 1987, 262: 12137~12142
[11] Yamasaki H, Sakihama Y, Takahashi S. An alternative path-
way for nitric oxide production in plants: new features of an
old enzyme. Trends Plant Sci, 1999, 4: 128~129
[12] Cooney R V, Harwood P J, Custer L, et al. Light-mediated
conversion of nitrogen dioxide to nitric oxide by carotenoids.
Environ Health Perspect, 1994, 102: 460~462
[13] Guo F Q, Okamoto M, Crawford N M. Identification of a
plant nitric oxide synthase gene involved in hormonal
signaling. Science, 2003, 302: 100~103
[14] Berthke P C, Badger M R, Jones R L. Apoplastic synthesis
of nitric oxide by plant tissue. Plant Cell, 2004, 16: 332~341
[15] Perazzolli M, Dominici P, Romero-Puertas M C, et al.
Arabidopsis nonsymbiotic hemoglobin AHb1 modulates
nitric oxide bioactivity. Plant Cell, 2004, 16: 2785~2794
[16] Beligni M V, Lamattina L. Nitric oxide counteracts cyto-
toxic processes mediated by reactive oxygen species in plants
tissues. Planta, 1999, 208: 337~344
[17] Neill S J, Desikan R, Clarke A, et al. Hydrogen peroxide and
nitrix oxide as signalling molecules in plants. J Exp Bot, 2002,
53: 1237~1247
[18] Laxalt A M, Beligni M V, Lamattina L. Nitric oxide preserves
the level of chlorophyll in potato leaves infected by
Phytophora infestans. Eur J Plant Pathol, 1997, 73: 643~651
[19] Durner J, Klessig D F. Nitrix oxide as a signal in plants. Cur
Opin Plant Biol, 1999, 2: 369~374
[20] Zeidler D, Zahringer U, Gerber I, et al. Innate immunity in
Arabidopsis thaliana: lipopolysaccharides activate nitric
oxide synthase (NOS) and induce defense genes. Proc Natl
Acad Sci USA, 2004, 101: 15811~15816
[21] Durner J, Wendehenne D, Klessig D F. Defense gene induc-
tion in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-
ribose. Proc Natl Acad Sic USA, 1998, 95: 10328~10333
[22] Durner J, Klessig D F. Inhibition of ascorbate peroxidase by
salicylic acid and 2,6-dichloroisonicotinic acid, two inducers
of plant defense responses. Proc Natl Acad Sci USA, 1995,
92: 11312~11316
[23] Nakatsubo N, Kojima H, Kikuchi K, et al. Direct evidence of
nitric oxide production from bovine aortic endothelial cells
using new fluorescence indicators: diaminofluoresceins. FEBS
Lett, 1998, 427: 263~266
[24] Foissner I, Wendehenne D, Langebartels C, et al. In vivo
imaging of an elicitor-induced nitric oxide burst in tobacco.
182
Plant J, 2000, 23: 817~824
[25] Noritake T, Kawakita K, Doke N. Nitric oxide induces phy-
toalexin accumulation in potato tuber tissues. Plant Cell
Physiol, 1996, 37: 113~116
[26] Caro A, Puntarulo S. Nitirc oxide decreases superoxide an-
ion generation by microsomes from soybean embryonic axes.
Physiol Plant, 1998, 104: 357~364
[27] Van Camp W, van Montagu M, Inz D. H2O2 and NO: redox
signals in disease resistance. Trends Plant Sci, 1998, 3: 330~334
[28] Zeier J, Delledonne M, Mishina T, et al. Genetic elucidation
of nitric oxide signaling in incompatible plant-pathogen
interactions. Plant Pysiol, 2004, 136: 2875~2886
[29] Navarre D A, Wendehenne D, Durner J, et al. Nitric oxide
modulates the activity of tobacco aconitase. Plant Physiol,
2000, 122: 573~582
[30] Murgia I, Delledonne M, Soave C. Nitric oxide mediates
iron-induced ferritin accumulation in Arabidopsis. Plant J,
2002, 30: 521~528
[31] Kumar D, Klessig D F. Differential induction of tobacco
MAP kinase by the defense signals nitric oxide, salicylic
acid, ethylene and jasmonic acid. Mol Plant Microbe Interact,
2000, 13: 347~351
[32] Wink D A, Hanbauer I, Krishna M C, et al. Nitric oxide
protects against cellular damage and cytotoxicity from reac-
tive oxygen species. Proc Natl Acad Sci USA, 1993, 90:
9813~9817
[33] O onnell P J, Calvent C, Atzorn R, et al. Ethylene as a signal
mediating the wound response of tomato plants. Science,
1996, 274: 1914~1917
[34] Orozco-Cá denas M L, Ryan C A. Nitric oxide negatively
modulates wound signaling in tomato plants. Plant Physiol,
2002, 130: 487~493
[35] Allen G J, Muir S R, Sanders D. Release of Ca2+ from indi-
vidual plant vacuoles by both InsP3 and cyclic ADP ribose.
Science, 1995, 268: 735~737
[36] Pagnussat G C, Simontacchi M, Puntarulo S, et al. Nitric
oxide is required for root organogenesis. Plant Physiol, 2002,
129: 954~956
[37] Garcí -Mata C, Lamattina L. Nitric oxide induces stomatal
closure and enhances the adaptive plant responses against
drought stress. Plant Physiol, 2001, 126: 1196~1204
[38] Desikan R, Griffiths R, Hancock J, et al. A new role for an old
enzyme: nitrate reductase-mediated nitric oxide generation
is required for abscisic acid-induced stomatal closure in
Arabidopsis thaliana. Proc Natl Acad Sci USA, 2002, 99:
16314~16318
[39] Beligni M V, Fath A, Bethke P C, et al. Nitric oxide acts as
an antioxidant and delays programmed cell death in barley
aleurone layers. Plant Physiol, 2002, 129: 1642~1650
[40] Tun N N, Holk A, Scherer G F E. Rapid increase of NO
release in plant cell cultures induced by cytokinin. FEBS
Lett, 2001, 509: 174~176
[41] Zhao L Q, Zhang F, Guo J K, et al. Nitric oxide functions as
a signal in salt resistance in the calluses from two ecotypes
of reed. Plant Physiol, 2004, 134: 849~857
[42] He Y K, Tang R H, Hao Y, et al. Nitric oxide represses the
Arabidopsis floral transition. Science, 2004, 305:1968~1971
[43] Tuteja N, Chandra M, Tuteja R, et al . Nitric oxide as a unique
bioactive signaling messenger in physiology and
pathophysiology. J Biomed Biotechnol, 2000, 4: 227~237
Martin Kaltenpoth Philanthus triangulum
http://www.eurekalert.org/bysubject/biology.php
· ·