全 文 :第 35 卷第 2 期
2015年 1月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.2
Jan.,2015
http: / / www.ecologica.cn
基金项目:国家自然科学基金项目(30972296)
收稿日期:2013鄄11鄄10; 摇 摇 网络出版日期:2014鄄07鄄03
*通讯作者 Corresponding author.E鄄mail: zpx666@ aliyun.com
DOI: 10.5846 / stxb201311202774
高小莉,赵鹏祥,郝红科,杨延征.基于 LANDIS鄄II的陕西黄龙山森林景观演变动态模拟.生态学报,2015,35(2):254鄄262.
Gao X L, Zhao P X, Hao H K, Yang Y Z.Simulation of forest landscape dynamic change based on LANDIS鄄II in Huanglongshan, Shaanxi Province.Acta
Ecologica Sinica,2015,35(2):254鄄262.
基于 LANDIS鄄II的陕西黄龙山森林景观演变动态模拟
高小莉,赵鹏祥*,郝红科,杨延征
西北农林科技大学,杨凌摇 712100
摘要:应用空间直观景观模型 LANDIS鄄II 模拟了陕西黄龙山森林景观在不考虑风、火、病虫害及采伐等干扰因素前提下 300a
(2004—2304年)的自然演替进行动态,采用景观格局统计软件 APACK计算了林区内优势树种所占的面积百分比以及反映物
种分布格局的聚集度指数,分析了各个树种在模拟的时间尺度上龄级组成的变化趋势。 结果表明:油松是针叶树中的优势种,
辽东栎是阔叶树中的优势种;在演替后期油松取代辽东栎成为所占面积比例最大的优势树种;油松和辽东栎的相对聚集度较其
它几类树种小;随着模拟年代的推进,树种年龄结构发生显著变化,呈现出复杂多样的异龄林空间分布格局。
关键词:LANDIS鄄II ;森林景观 ;自然演替 ;模拟
Simulation of forest landscape dynamic change based on LANDIS鄄II
in Huanglongshan, Shaanxi Province
GAO Xiaoli, ZHAO Pengxiang*, HAO Hongke, YANG Yanzheng
Northwest Agriculture and Forestry University, Yangling 712100, China
Abstract: LANDIS鄄II is a spatially explicit landscape model developed by University of Wisconsin at Madison, including
extension modules such as succession, disturbance, seed propagation, forest management, carbon dynamics and climate
change. LANDIS鄄II regards landscape as grids which are composed of interactional pixels. Each pixel records information of
dominant tree species and ages at ten鄄year interval. All pixels belong to different land types. Each land type has the same
species establishment coefficient, fire cycle period, fuel accumulation rate and decomposition rate. In each pixel, species,
age composition of species, history of interference and fuel accumulation interact with species group, succession, seed
propagation, wind and fire disturbance and cutting. LANDIS鄄II model simulates the forest landscape忆s dynamic change at
large space and long term scales through tracking information of the survival and ages of the species on the site.
Huanglongshan forests located in the southeast of loess plateau in northern shaanxi, between the Yellow River and the Luohe
River, has unique geographical location and cultural and historical atmosphere. It also has the most dense forest and most
abundant wildlife resources. Huanglongshan forests are the main ecological barrier that protects the south of loess plateau
and the central Shaanxi Plain, and also the key region of the national ecological environment construction plan. Therefore,
Huanglongshan forests have important social and ecological value. It is too difficult to observe the dynamic change of forest
landscape at large space and long term scales using the traditional field observation method. Recently, with increasing
ability of the computer simulation, using the model to simulate the landscape dynamic change becomes a very popular way
throughout the world. In this paper, a spatially explicit landscape model LANDIS鄄II was applied to simulate the dynamic
natural succession of forests without considering the disturbance such as wind, fire, harvest, diseases and insect pests in
http: / / www.ecologica.cn
Huanglongshan, Shanxi within 300 years (2004—2304). The landscape statistical software package APACK was used to
calculate the area percentage of dominant tree species and the aggregation index reflecting the spatial patterns of species.
Variation tendency of all species忆 age鄄classes during simulation time were analyzed. The result showed that Pinus
tabulaeformis was the dominant species of coniferous trees and Quercus liaotungensis was the dominant species of deciduous
trees. During the late succession stage, Pinus tabulaeformis replaced Quercus liaotungensis becoming the largest areal
proportion of dominant tree species. The aggregation index of Pinus tabulaeformis and Quercus liaotungensis were lower than
the other species. Species忆 age structure changed significantly with the progress of succession, and presented a complex and
various spatial distribution patterns of uneven鄄aged forests. The simulating of the natural succession of Huanglongshan forests
at large space and long term scales, could provide a scientific basis for rational allocation of forest resources and forest
management.
Key Words: LANDIS鄄II; forest landscape; natural succession; simulation
森林作为地球上可再生自然资源及陆地生态系统的主体,在人类的生存环境中起着不可替代的作用。 对
森林景观格局及其动态变化进行研究,不仅可以了解林区景观现状和获知森林资源变化,还可以预测未来走
势,有效保护森林资源,合理规划林区发展[1]。
黄龙山林区横亘黄洛两河之间,是关中与陕北小文化区的边缘地带,具有独特的地理位置和历史文化氛
围,同时也是是陕西黄土高原森林分布最集中、野生动植物资源最丰富的地区,是庇护陕北黄土高原南部与渭
北高原和关中平原的主要生态屏障[2]。 该林区作为关中平原、洛河下游流域的绿色屏障的重要组成部分,其
森林生态功能能否良好发挥将直接影响葫芦河流域、洛河下游、关中平原乃至黄河中下游地区的国土生态安
全[3]。 基于黄龙山林区如此重要的生态地位,研究林区森林景观的动态变化有助于了解和把握森林资源变
化的原因,从而可以通过人为地调整来使森林资源的数量、分布和格局更加趋于合理,使得黄龙山林区在黄土
高原上发挥更好的生态效益。
传统的野外观测方法很难做到对森林景观在大范围内长期的动态变化进行观测,而森林景观的动态变化
往往是在大的时间和空间尺度上来体现的[4],所以森林景观动态变化的研究要趋于大范围、长期化。 近年
来,随着计算机模拟能力的增强,利用模型来模拟景观动态变化已经成为国内外竞相采用的研究方法[5鄄6]。
本研究在查询黄龙山森林资源二类调查数据库、资料分析和咨询国内外有关 LANDIS 模型应用专家的基础
上,用 LANDIS鄄II 空间直观景观模型在大的空间尺度上对黄龙山林区森林景观进行了长达 300a 的动态变化
模拟[7],以期为指导林区经营、合理配置森林资源、维持森林景观及提高森林质量提供科学依据。
1摇 研究地区
黄龙山林区地处陕北黄土高原东南部(35毅28忆46忆—36毅02忆01忆忆N,109毅38忆49忆忆—110毅12忆47忆忆E),海拔约
1000—1300 m,总面积为 19.4万 hm2,属于大陆性暖温带半湿润气候类型,受地形和植被影响呈现夏季高温多
雨,冬季寒冷干燥的特点,四季分明,年平均降水量 350—600 mm,相对湿度 60%以上,年平均气温 8—12益。
黄龙山林区属于黄土高原丘陵沟壑区,地形复杂多变,林区被 11 条不同的山梁分割成复杂的川、塬、沟地貌,
坡度陡峭,林区土壤属于典型的黄土高原土壤类型,主要有褐土、灰褐土和黄土 3种土类,内有多条河流,为林
区动植物生长提供了充足的水资源。 该林区属于天然次生林,天然植被覆盖率高,林内植物种类繁多,树木生
长状况良好,活立木蓄积量大,森林覆盖率将近 90%,构成森林植物群落的主要优势树种有油松(Pinus
tabuliformis)、侧柏 (Platycladus orientalis)、辽东栎 (Quercus liaotungensis)、山杨 ( Populus davidiana)、白桦
(Betula platyphylla)等,林内栖息着多种野生珍稀动物[8]。 黄龙山林区在陕西省延安市的地理位置如图 1
所示。
552摇 2期 摇 摇 摇 高小莉摇 等:基于 LANDIS鄄II的陕西黄龙山森林景观演变动态模拟 摇
http: / / www.ecologica.cn
图 1摇 黄龙山林区地理位置示意图
Fig.1摇 Geographic location of Huanglongshan forest region
2摇 数据来源与研究方法
2.1摇 模型参数化数据获取
陕北黄龙山林区 2004年森林资源二类调查数据及
数字化的林相图;黄龙山林区数字高程模型 DEM数据;
树种的生活史参数从相关文献[8鄄9]和实地调查中获得,
树种建群系数通过生态系统过程模型获得[10鄄11]。
2.2摇 研究方法
2.2.1摇 LANDIS鄄II简介
LANDIS 模型是由美国威斯康辛大学麦迪逊分校
于 1991开发的用于模拟森林景观在大的时空尺度上的
演替、种子传播、干扰大尺度的景观动态,包括演替、干
扰、种子传播、森林管理、碳动力和气候变迁影响等动态
变化的空间直观景观模型[12],模型于 1993 年形成初型
并首次应用,到目前为止在国外已得到广泛应用[13鄄16],
国内现在对 LANDIS 模型应用较多的主要是中科院沈
阳生态所的专家学者[17鄄21]。 LANDIS鄄II是在 LANDIS模
型的基础上对景观动态的模拟和景观动态与模型与之间的相互作用进行了优化后的精化版[22]。 LANDIS鄄II
将景观看作由相互作用的像元组成的网格,每个像元记录优势树种及其以 10a 为间隔的年龄信息,像元初始
的物种信息由遥感影像或树种分布图获得。 每个像元被归入环境相似的土地类型,每种土地类型具有相同的
物种建群系数、火烧轮回期和可燃物的积累速率和分解速率。 LANDIS鄄II 跟踪每个像元上存在的物种、物种
的年龄组成、干扰史及可燃物的积累,这些信息通过物种的建群、演替、种子传播、风和火干扰、采伐与像元发
生相互作用继而发生变化。 在这种变化之后,模型通过跟踪样地上物种的存在与否来模拟森林景观在大的时
空尺度上的动态变化[23鄄24]。
表 1摇 研究区立地类型划分及统计
Table 1摇 Site type classification and statistic of study area
立地类
型代码
Land type
code
立地类型说明
Land type illustrate
面积
Area /
hm2
相对面积
Relative
area / %
0 非林地 140769 44.66
1 阳坡,坡度臆25毅,海拔臆1300 m 10397 3.30
2 阳坡,坡度臆25毅,海拔逸1300 m 38976 12.37
3 阴坡,坡度臆25毅,海拔臆1300 m 11597 3.68
4 阴坡,坡度臆25毅,海拔逸1300 m 38140 12.10
5 阳坡,坡度逸25毅,海拔臆1300 m 8353 2.65
6 阳坡,坡度逸25毅,海拔逸1300 m 11675 3.70
7 阴坡,坡度逸25毅,海拔臆1300 m 13547 4.30
8 阴坡,坡度逸25毅,海拔逸1300 m 24344 7.72
2.2.2摇 树种组成图制作
通过对小班属性数据库的查询、转换及重新分类对像元进行赋值从而获得黄龙山林区最主要的五类优势
树种侧柏、油松、山杨、白桦、辽东栎的树种组成图[25],如图 2所示。 考虑到计算机的模拟速度,将栅格图的像
元大小设置为 100 m伊100 m,模拟的年限为 300a。
2.2.3摇 立地类型图制作
LANDIS鄄II模型把异质的景观分成相对均质的土
地类型单元,在每一种土地类型中,假设其对于每一个
物种具有相同的环境条件[26]。 在该研究中,把研究区
分为无效土地类型和有效土地类型。 无效土地类型包
括水域、居民点等非林地,在 LANDIS 中不模拟其植被
动态,有效土地类型分为 8 种[27],具体见表 1。 用
ArcGIS对 DEM 数据在坡度、坡向和高程方面进行分级
并重新组合得到了立地类型图[28],如图 3所示。
2.2.4摇 树种生活史参数及建群系数设置
LANDIS鄄II模型需要输入的参数信息包括物种生
活史特征参数、物种在各立地类型中的建群系数、树种
分布图和立地类型图。 物种生活史特征参数包括寿命、
652 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
成熟年龄、耐阴性、耐火性、有效传播距离、最大传播距离、萌发概率和最小萌发年龄等[29],具体参数值见表
2。 建群系数是用来测度环境条件如湿度、气候和养分等对树种生长的适合程度,其值越大表示物种越容易存
活在该立地类型上[11],研究区主要优势树种的建群系数见表 3。
图 2摇 黄龙山林区优势树种分布图
Fig.2 Distribution map of dominant tree species on Huanglongshan
Forest Bureau
图 3摇 黄龙山林区立地类型图
Fig.3摇 Land type map of Huanglongshan Forest Bureau
2.2.5摇 模拟方案设计
模型以 10a为模拟间隔,模拟年限为 300a;栅格图像的像元大小确定为 100 m伊100 m;模拟的树种为侧
柏、油松、山杨、白桦、辽东栎 5类;模型采用不用的随机数重复模拟 5次,取其均值;模型输出结果包括每个树
种以 10a为间隔的分布图及所有树种以 10a为间隔的龄级分布图;运用景观格局指数统计软件包 APACK2.23
统计各树种在不同模拟年代的面积比例和相对聚集度指数[30],以及各树种在不同模拟年份的龄级组成。
3摇 结果与分析
3.1摇 树种相对面积分布的变化
Ai =
C i
移C
é
ë
ê
ê
ù
û
ú
ú
i
伊 100% (1)
式中, Ai 为树种 i在当前输出图像中所占的面积比例, C i 为树种 i所占的像元数,移C i 为总像元数, Ai 的取
值范围为 0—100%,表示在某个特定时间该树种占整个研究区面积比例[31]。
从图 4可以看出,辽东栎和油松是研究区内占地面积最大的优势树种,其中辽东栎是阔叶树种的优势种,
油松是针叶树种的优势种。 在当前的立地类型条件下,辽东栎和油松所占面积在整个模拟演替年代的变化波
动是比较大的,而且,这两个树种的波动峰值出现相互交替的现象。 从辽东栎的适合生境来看,它适于排水良
好的沙质土壤,在低海拔地区喜透风良好的山顶山脊,高海拔地区喜光热条件良好的阳坡或半阳坡[9]。 油松
752摇 2期 摇 摇 摇 高小莉摇 等:基于 LANDIS鄄II的陕西黄龙山森林景观演变动态模拟 摇
http: / / www.ecologica.cn
图 4摇 不同模拟年限代表树种相对面积分布
摇 Fig.4摇 Relative area distribution of representative tree species at
different simulation years
的天然分布环境与辽东栎大致相同,由此发生了相似生
境的争夺。 研究区内的油松林虽然有很多天然次生林,
但占据着良好的立地环境,林分生长发育良好,在与辽
东栎的演替竞争中有了更高的生态位。 所以,虽然在模
拟初期油松所占的面积比例低于辽东栎,但随着演替的
推进,油松将取代辽东栎成为黄龙山林区空间分布最为
广泛且分布面积最大的优势树种。
山杨林和白桦林都是不稳定林分,种子扩散和根蘖
能力很强,具有良好的天然更新能力,喜光,生长迅速但
寿命较短,属于过渡性森林类型中的先锋树种,在自然
演替下会逐渐被耐阴性更强的森林树种所取代[9]。 表
现在大的时间尺度上其面积比例曲线变化较大,整体呈
下降趋势,表明虽然这两类树种也有进展性演替,但在
整个研究区内还是以油松和辽东栎为主要优势树种所
组成的森林类型占据了空间优势。
表 2摇 黄龙山林区主要树种生活史特征参数
Table 2摇 Life history parameters of species attributes of Huanglongshan Forest Bureau
树种
Species
寿命
Longevity /
a
成熟年龄
Maturity age /
a
耐阴性
Shade
tolerance
耐火性
Fire
tolerance
种子有效
传播距离
ED / m
种子最大
传播距离
MD / m
萌发率
Generation
rate
萌发年龄
Generation
age / a
侧柏 Platycladus orientalis 500 40 1 2 45 60 0.5 200
油松 Pinus tabuliformis 200 40 4 1 50 200 0 0
山杨 Populus davidiana 150 20 1 3 600 5000 0.4 40
白桦 Betula platyphylla 150 15 1 3 200 2000 0.5 40
辽东栎 Quercus liaotungensis 300 45 3 2 30 1000 0.6 50
摇 摇 ED:Effective distance of seed propagation;MD:Maxinum distance of seed propagation
表 3摇 研究区各立地类型的物种建群系数
Table 3摇 Species establishment coefficients for each land type in the study area
立地类型代码
Land type code
建群系数 establishment coefficients
侧柏
Platycladus orientalis
油松
Pinus tabuliformis
山杨
Populus davidiana
白桦
Betula platyphylla
辽东栎
Quercus liaotungensis
1 0.150 0.200 0.350 0.250 0.300
2 0.100 0.300 0.300 0.150 0.350
3 0.350 0.150 0.200 0.300 0.200
4 0.200 0.280 0.150 0.200 0.300
5 0.200 0.070 0.030 0.050 0.200
6 0.050 0.100 0.020 0.020 0.250
7 0.300 0.050 0.010 0.100 0.170
8 0.100 0.080 0.003 0.030 0.200
侧柏是喜光、幼时耐阴、生长速度较慢但寿命很长的树种[9],在研究区内主要分布于石质山地的阳坡陡
壁,侵蚀沟头和基岩裸露的山坡等其它树种很难生长立足的恶劣生态环境。 因此,在整个演替过程中,侧柏林
始终保持着相对稳定的面积比例。
3.2摇 树种的相对聚集度指数变化
R = 1.0 - C
Cmax
(2)
C =- 移
T
i = 1
移
T
j = 1
t i,( )j ln t i,( )( )j (3)
852 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
Cmax = 2lnT (4)
式中, R为相对聚集度, R取值范围为 0—1,数值越大,代表特定覆盖类型聚集程度越高[31], C为树种所占的
像元数。 式(3)中 T为整个景观中出现的类型总数, t i,( )j 为类型 i与 j相邻的概率。
图 5摇 不同模拟年限代表树种相对聚集度变化
摇 Fig.5摇 Aggregation index changes of representative tree species at
different simulation years
从图 5中可以看出,油松和辽东栎的相对聚集度变
化幅度较大,这与油松和辽东栎在研究区内所占据的主
要优势地位有很大的关系。 油松和辽东栎在黄龙山林
区的分布面积较大,且分布广泛,但随着演替的进行,油
松和辽东栎群落中老龄树逐渐增多,种群内部的竞争逐
渐加剧,再加上其他树种的侵入,油松和辽东栎的分布
逐渐扩散,所以在整个演替过程中油松和辽东栎的相对
聚集度呈总体下降趋势。 山杨和白桦都属于先锋树种,
具有很强的天然更新能力,种子传播能力强且传播距离
较大,一旦占据有利地势便迅速开始传播扩散,能够在
短期内形成一定的分布范围。 因此,山杨和白桦在整个
演替时期内的聚集度都是处于较高的水平,并且变化幅
度较油松和辽东栎相对稳定。 侧柏以种子实生更新为
主,具有种子传播距离较小、萌芽力低、生长速度慢、寿
命长的特点,其特有的生境和生态习性形成了其他树种
难以替代的种群特征,因此在整个演替时间尺度上都保持相对稳定的聚集程度[9]。
3.3摇 树种年龄结构变化
本研究应用空间直观景观模型 LANDIS鄄II v6.0 模拟了从 2004 年开始的 300a 内黄龙山林区森林的演替
动态,模型的输出结果包括各树种以 10a为间隔的空间直观分布图和所有树种在不同模拟年限代表树种的年
龄结构变化图,由于篇幅限制仅取其中间隔 50a的树种结构图(图 6)。
图 6摇 不同模拟年限代表树种年龄结构的变化 / a
Fig.6摇 Age strueture of representative tree species at different simulation years
952摇 2期 摇 摇 摇 高小莉摇 等:基于 LANDIS鄄II的陕西黄龙山森林景观演变动态模拟 摇
http: / / www.ecologica.cn
根据国家森林龄级划分和陕西省森林龄级划分,将研究区内主要优势树种进行了龄级划分(表 4)。
表 4摇 研究区主要树种林龄级划分
Table 4摇 Age cohorts classification of chief species in the study area
树种
Species
幼龄林
Young
forest / a
中龄林
Middle鄄aged
forest / a
近熟林
Near鄄mature
forest / a
成熟林
Mature
forest / a
过熟林
Overgrowth
forest / a
侧柏 Platycladus orientalis 臆40 41—60 61—80 81—120 逸121
油松 Pinus tabuliformis 臆20 21—40 41—50 51—70 逸71
山杨 Populus davidiana 臆10 11—20 21—30 31—40 逸41
白桦 Betula platyphylla 臆20 21—40 41—50 51—60 逸61
辽东栎 Quercus liaotungensis 臆20 21—40 41—50 51—60 逸61
如图 7所示,侧柏林在前 20a是以中龄林为主,近熟林其次。 20a 以后中龄林所占面积比例开始下降,进
而近熟林和成熟林开始上升。 30a以后,部分近熟林成长为成熟林,近熟林比重上升趋势转为下降,而成熟林
则保持着总体的上升趋势。 此时的幼龄林也开始成长为中龄林,面积比例由稳定变为开始下降。 50a 以后,
由于大部分成熟林开始转变为过熟林,成熟林面积比例开始下降,之前变化一直不大的过熟林面积比例开始
大幅上升。 100a以后,整个侧柏林几乎全部为过熟林,并且自此各龄级的比重保持相对稳定。 这与侧柏具有
生长缓慢、寿命较长且本身属于相对稳定的林分有关。
图 7摇 不同模拟年限代表树种龄级组成变化
Fig.7摇 Age鄄class composition changes of representative tree species at different simulation years
062 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
如图 7所示,油松和辽东栎作为黄龙山林区的主要优势树种,具体相似的生长环境和成熟年龄,反映在龄
级组成曲线图上即具有相似的波动特征。 油松林和辽东栎林在模拟初期主要包括中龄林、近熟林和成熟林。
随着演替的开始,近熟林面积比例开始下降而同时成熟林面积比例开始上升。 10a 以后,大量的成熟林开始
成长为过熟林,因此成熟林比重开始大幅下降而过熟林开始大幅上升,在此期间中龄林所占的面积比例也呈
下降趋势。 演替进行到 100a以后,大部分油松过熟林达到寿命极限而开始死亡,其比例开始逐年下降,而新
一轮的幼龄林、中龄林开始生长,近熟林和成熟林的面积比例也开始逐年增加。 到 200a 的时候,面积比例下
降至 2.35%的油松过熟林再次开始呈上升趋势。 同样,辽东栎过熟林也因为达到了寿命极限,其面积比例在
180a的时候开始呈下降趋势。 同年新的幼龄林和中龄林开始生长,面积比重开始增加。 260a 的时候,由于不
断成长起来的近熟林和成熟林转变为过熟林,辽东栎过熟林比重在达到低谷 2.82%后再次出现上升趋势。
如图 7所示,山杨和白桦具有相似的成熟年龄和寿命,所以在演替过程中其龄级组成比例也具有相似的
波动特征。 在演替初期,山杨林和白桦林都是以近熟林为主,随着演替的开始近熟林和中龄林的面积比例开
始下降,过熟林的面积比例开始上升。 成熟林一开始呈上升趋势,在 10a 的时候形成一个峰值,然后开始下
降。 山杨林和白桦林的过熟林面积比例都是在演替进行到 50a 的时候达到最大值,50a 以白桦成熟林比重开
始下降,山杨成熟林比重到 70a也开始逐年下降。 山杨林和白桦林的异龄林分布格局只出现在前 50a 内,这
与山杨和白桦较短的成熟年龄及较快的生长速度有关。
3.4摇 模型适用性验证
LANDIS模型在开发后已进行过模型程序评价,其有效性在众多应用中得以体现[1],且已有 LANDIS 模型
在黄土高原地区应用的先例[11]。 本研究通过改变模型随机数,重复模拟 5次,模拟结果显示了研究区森林演
替的基本规律,油松和辽东栎在整个 300a的模拟期内一直保持着其优势地位,分布面积大且分布较为广泛,
油松的更新演替峰值紧随辽东栎后;生长较为快速的先锋树种山杨和白桦,随着演替的进行其分布面积逐渐
降低,相对聚集度在演替中前期出现小幅下降之后最终也逐渐上升;侧柏在整个演替进行的过程中始终保持
着相对稳定的状态,这与前人研究的该地区森林演替规律以及相关树种的生物学特性[8鄄9]相一致,如油松幼
苗需要在阔叶树种荫蔽下才能正常生长,而栎林在生境遭破坏后会被已经生长起来的油松林侵入并占据空
间,随后在植被恢复后阔叶林又会取代油松林,如此周而复始,所以出现峰值交替的现象;山杨和白桦由于萌
生能力强,很容易成林,但成熟较早,寿命很短,所以后期分布逐渐减少;侧柏因其生境较为贫瘠,不易被侵入,
且生长缓慢,寿命很长,所以在整个模拟过程中始终保持稳定分布。 由此可验证 LANDIS鄄II 模型在研究区的
适用性。
4摇 结论与讨论
(1)本研究运用 LANDIS鄄II 空间直观景观模型成功地模拟了黄龙山林区主要优势树种自 2004 年开始
300a内的自然演替,这为 LANDIS模型在西北黄土高原地区的应用提供了很好的验证;(2)LANDIS鄄II 模拟结
果表明,虽然在设定的立地条件上油松的初始占地面积小于辽东栎,但 220a 以后,油松的面积比重将超过辽
东栎,并保持优势地位,而作为针叶优势种的油松和作为阔叶优势种的辽东栎在相互作用下交替出现生长高
峰期,最终形成该地区以松栎林为顶级群落的景观格局,这为研究区森林资源的管理决策提供了科学依据,也
为后面关于黄龙山森林生态系统演替规律的研究提供了指导依据。
本研究是在假设没有其他干扰的前提下进行的演替模拟,在实际的森林景观演替过程中会有很多的干扰
因素,比如气候的变化会影响树种的生长状况及立地条件的改变,人类的长期经营活动也会改变森林的自然
状况,从而影响到景观的变化,还有森林内部的病虫害或外来物种入侵等种种因素都有可能对演替造成影响。
所以今后还需要综合考虑其他因素进一步深入研究。
致谢:感谢美国威斯康辛大学麦迪逊分校(University of Wisconsin鄄Madison)奚为民教授在模型应用方面给予
162摇 2期 摇 摇 摇 高小莉摇 等:基于 LANDIS鄄II的陕西黄龙山森林景观演变动态模拟 摇
http: / / www.ecologica.cn
的帮助。
参考文献(References):
[ 1 ]摇 金龙如, 贺红士, 周宇飞, 布仁仓, 孙克萍. 不同森林管理预案下友好林业局森林景观的动态变化. 林业科学, 2009, 45(5): 157鄄163.
[ 2 ] 摇 李敏, 赵鹏祥, 郝红科, 杨延征, 袁飞. 陕北黄龙山林区景观格局动态. 林业科学, 2012, 48(12): 109鄄115.
[ 3 ] 摇 李敏. 基于 GIS的黄龙山林区景观格局动态变化研究 [D]. 陕西杨凌: 西北农林科技大学, 2012.
[ 4 ] 摇 周宇飞, 贺红士, 布仁仓, 金龙如, 李秀珍. 不同针阔树种造林比例下小兴安岭森林景观的动态模拟. 应用生态学报, 2008, 19(8):
1775鄄1781.
[ 5 ] 摇 Xi W M, Coulson R N, Birt A G, Shang Z B, Waldron J D, Charles W L, Cairns D M, Tchakerian M D, Klepzig K D. Review of forest landscape
models: Types, methods, development and applications. Acta Ecologica Sinica, 2009, 29(1): 69鄄78.
[ 6 ] 摇 方向京, 张志, 孙大庆, 李笑吟. 流域景观异质性及森林动态模拟研究进展. 世界林业研究, 2006, 19(1): 20鄄26.
[ 7 ] 摇 陈振雄. 基于森林资源二类调查数据的森林景观格局动态变化分析———以湖南靖州苗族侗族自治县坳上镇为例. 中南林业调查规划,
2009, 28(3): 48鄄52.
[ 8 ] 摇 陕西森林编辑委员会. 陕西森林 [M]. 北京: 中国林业出版社, 1989.
[ 9 ] 摇 牛春山. 陕西树木志 [M]. 北京: 中国林业出版社, 1990.
[10] 摇 Xu C G, Gertner G Z, Scheller R M. Uncertainties in the response of a forest landscape to global climatic change. Global Change Biology, 2009, 15
(1): 116鄄131.
[11] 摇 方若柃, 张志, 朱清科. 黄土区小流域植被演替空间的直观模拟.中国水土保持科学, 2010, 8(6): 80鄄85.
[12] 摇 Mladenoff D J. LANDIS and forest landscape models. Ecological Modelling, 2004, 180(1): 7鄄19.
[13] 摇 Shifley S R, Thompson F R, Larsen D R, Dijak W D. Modeling forest landscape change in the Missouri Ozarks under alternative management
practices. Computers and Electronics in Agriculture, 2000, 27(1 / 3): 7鄄24.
[14] 摇 Cairns D M, Lafon C W, Waldron J D, Tchakerian M, Coulson R N, Klepzig K D, Birt A G, Xi W M.Simulating the reciprocal interaction of
forest landscape structure and southern pine beetle herbivory using LANDIS. Landscape Ecology, 2008, 23(4): 403鄄415.
[15] 摇 Sturtevant B R, Zollner P A, Gustafson E J, Cleland D T. Human influence on the abundance and connectivity of high鄄risk fuels in mixed forests of
northern Wisconsin, USA. Landscape Ecology, 2004, 19(3): 235鄄253.
[16] 摇 Gustafson E J, Zollner P A, Sturtevant B R, He H S, Mladenoff D J. Influence of forest management alternatives and land type on susceptibility to
fire in northern Wisconsin, USA. Landscape Ecology, 2004, 19(3): 327鄄341.
[17] 摇 徐崇刚, 胡远满, 常禹, 李秀珍, 布仁仓, 贺红士, 冷文芳. 空间直观景观模型在呼中林区土壤侵蚀预测研究中的初步应用. 应用生态学
报, 2004, 15(10): 1821鄄1827.
[18] 摇 徐崇刚, 胡远满, 常禹, 李秀珍, 布仁仓, 贺红士. 空间直观森林景观模型空间不确定性的地统计学模拟. 中国科学院研究生院学报,
2005, 22(4): 436鄄446.
[19] 摇 He H S, Hao Z Q, Larsen D R, Dai L M, Hu Y M, Chang Y. A simulation study of landscape scale forest succession in northeastern China.
Ecological Modelling, 2002, 156(2 / 3): 153鄄166.
[20] 摇 He H S, Mladenoff D J. The effects of seed dispersal on the simulation of long鄄term forest landscape change. Ecosystems, 1999, 2(4): 308鄄319.
[21] 摇 Liang Y, He H S, Yang J, Wu Z W. Coupling ecosystem and landscape models to study the effects of plot number and location on prediction of
forest landscape change. Landscape Ecology, 2012, 27(7):1031鄄1044.
[22] 摇 Scheller R M, Domingo J B, Sturtevant B R, Williams J S, Rudy A, Gustafson E J, Mladenoff D J. Design, development, and application of
LANDIS鄄II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecological Modelling, 2007, 201(3 / 4): 409鄄419.
[23] 摇 徐崇刚, 胡远满, 常禹, 李秀珍, 布仁仓, 贺红士. 空间直观景观模型 LANDIS运行机制.应用生态学报, 2004,15(5): 837鄄844.
[24] 摇 徐崇刚, 胡远满, 姜艳, 常禹, 李秀珍, 布仁仓, 贺红士. 空间直观景观模型的验证方法. 生态学杂志, 2003, 22(6): 127鄄131.
[25] 摇 陆元昌, 洪玲霞, 雷相东. 基于森林资源二类调查数据的森林景观分类研究. 林业科学, 2005, 14(2): 21鄄29.
[26] 摇 徐崇刚, 胡远满, 常禹, 李秀珍, 布仁仓, 贺红士. 兴安落叶松老头林对大兴安岭森林景观变化的影响研究.生态学杂志, 2004, 23(5):
77鄄83.
[27] 摇 余其芬, 唐德瑞, 董有福. 基于遥感与地理信息系统的森林立地分类研究. 西北林学院学报, 2003, 18(2): 87鄄90.
[28] 摇 杨珍珍, 白淼源. 基于 GIS的大兴安岭呼中森林景观格局分析. 东北林业大学学报, 2010, 38(9): 40鄄43.
[29] 摇 陈宏伟, 胡远满, 常禹, 布仁仓, 贺红士, 刘淼, 刘志华, 韩文权. 落叶松毛虫对大兴安岭呼中林区森林的景观长期影响模拟. 应用生态
学报, 2010, 21(5): 1090鄄1096.
[30] 摇 胡远满,徐崇刚,常禹,李秀珍,布仁仓, 贺红士,冷文芳. 空间直观景观模型 LANDIS在大兴安岭呼中林区的应用. 生态学报, 2004, 24
(9): 1846鄄1856.
[31] 摇 邬建国. 景观生态学———格局、过程、尺度与等级 [M]. 北京: 高等教育出版社, 2007: 106鄄110.
262 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇