全 文 :第 35 卷第 22 期
2015年 11月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.22
Nov., 2015
http: / / www.ecologica.cn
基金项目:国家自然科学基金(51408584, 41401633); 中国科学院重庆绿色智能技术研究院三峡生态环境研究海外高层次人才基地项目
(Y33Z172N10); 重庆市应用开发计划项目重大(cstc2014yykfC20002) ; 2014年度中国科学院西部之光博士项目
收稿日期:2014鄄04鄄01; 摇 摇 网络出版日期:2015鄄04鄄20
*通讯作者 Corresponding author.E鄄mail: chenchundi@ cigit.ac.cn
DOI: 10.5846 / stxb201404010611
陈春娣,吴胜军,Meurk Colin Douglas,吕明权,温兆飞,姜毅,陈吉龙.阻力赋值对景观连接模拟的影响.生态学报,2015,35(22):7367鄄7376.
Chen C D, Wu S J, Meurk C D, L俟 M Q, Wen Z F, Jiang Y, Chen J L.Effects of changing cost values on landscape connectivity simulation.Acta Ecologica
Sinica,2015,35(22):7367鄄7376.
阻力赋值对景观连接模拟的影响
陈春娣1,*,吴胜军1,Meurk Colin Douglas2,吕明权1,温兆飞1,姜摇 毅1,陈吉龙1
1 中国科学院重庆绿色智能技术研究院, 重庆摇 400714
2 新西兰科学院土地保护研究所, 新西兰基督城摇 7608
摘要:景观连接度是研究景观结构和生态过程互馈关系的重要内容。 在最小成本路径模拟中整合图论理论可有效辨识、评价斑
块之间的潜在连接,近些年逐步应用于景观连接模拟、生态网络构建等研究中。 理论上,模型的重要参数之一,生物体通过不同
景观单元的阻力系数应根据观测与实验等实证研究获取,但大多数情况下简化为土地适宜性评价结合专家经验为土地利用 /覆
盖类型打分,存在一定主观性与不确定性。 因此,设计了 1 个三因素(阻力赋值方式、景观粒度和景观整体破碎度)的析因实
验,以 SIMMAP2.0景观中性模型产生的 8个模拟景观为对象,研究不同的景观格局下,阻力赋值方式对连接模拟的影响;探讨、
总结经验赋值带来的不确定性。 结果表明,这 3个因素均对景观连接模拟产生显著影响,并存在一定交互作用;阻力赋值绝对
大小不会对模拟产生影响;而赋值倾向性能够显著改变最小成本路径的空间位置,并且这种影响程度依赖于景观粒度大小,而
与景观整体破碎度交互关系不显著。 针对阻力赋值方式与景观结构特征交互作用下连接模拟的规律性变化,提出一些建议,以
提高连接模拟的准确性。
关键词:最小成本路径;图论;成本阻力面;景观连接; 生态网络
Effects of changing cost values on landscape connectivity simulation
CHEN Chundi1,*, WU Shengjun1, Meurk Colin Douglas2, L譈 Mingquan1, WEN Zhaofei1, JIANG Yi1, CHEN Jilong1
1 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
2 Landcare Research, Christchurch 7608, New Zealand
Abstract: Landscape connectivity is a critical concern for the study of interactive relationships between landscape structure
and ecological processes. A combination of Least鄄cost Path (LcP) analysis and graph鄄theoretic techniques can provide a
more efficient approach to identifying and assessing potential links in heterogeneous landscapes. This method has been
increasingly used in landscape connectivity and ecological network simulation. In the modeling process, the evaluation of
cost surfaces ideally should be based on field survey and / or experimental data; however, it is time鄄consuming and costly to
collect these data. To simplify the process, many connectivity modeling studies rely entirely or in large part on collective
expert knowledge together with land suitability assessment. Different experts may assign different values, affecting the
reliability of network simulation. Therefore, this study was set up to examine how a range of cost values ( representing
variation in expert opinion) influence landscape connectivity simulation and how this impact reacts to landscape spatial
configuration. We designed a factorial experiment with three factors: cost values, spatial grain size, and landscape
fragmentation. Firstly, artificial landscapes were generated in SIMMAP2. 0. They comprised five land cover types with
controlled area coverage: 20% habitat sources ( S), 40% unsuitable land (U), and 5%, 15%, and 20% moderately
suitable land types (A, B, and C respectively) . We then factorially set two levels of fragmentation, a clumped configuration
(P_simmap= 0.575) and fragmented landscape (P_simmap= 0.3), and four levels of spatial grain size (1 m, 5 m, 10 m,
http: / / www.ecologica.cn
and 20 m) in the factorial experiment. A total of 8 combinations were replicated 5 times for the simulation analysis. We
generated 4 groups of cost value scenarios, 玉: equidistant; 域: close to cost values of habitat sources (1 assigned as cost
value of habitat sources); 芋: close to cost values of the unsuitable landscape matrix; and 郁: close to middle values. Each
group scenario has 3 levels; for example, group 郁 has rankings of 1 to 10, 1 to 100, and 1 to 1000, respectively. Within
each group, the values were assigned to test whether and to what extent the absolute values would change the spatial location
of simulated LcPs. Between group scenarios, the cost values were set to investigate whether and to what extent the different
scenarios would change the spatial location of simulated LcPs. Our study found that these three factors all have a significant
impact on the pathways simulation, and, indeed, there are some interactions between factors. The spatial location of LcPs
was insensitive to the absolute values or the range of cost values as long as the relative ranking scenarios remained constant.
However, they were significantly affected by the four different group scenarios of cost values assigned to land use / cover
types, and the degree of influence is highly dependent on the spatial grain size of the landscapes, but less so with landscape
fragmentation. To deal with the uncertainty and subjectivity brought by cost values and their interactions with landscape
structure factors, this study provided some suggestions for an appropriate selection of cost values in order to increase network
modeling rigorousness.
Key Words: Least鄄cost Path; Graph Theory; cost surface; landscape connectivity; ecological networks
在城市化进程不断加快,自然栖息地破碎与部分生境消失不可避免的背景下,通过研究景观连接度,构建生
态网络(Ecological Networks),以有限的生态用地保障城市区域生态安全[1],是当前景观生态学及空间生态学应
用领域研究的热点和重点之一。 景观的连接度反映了景观促进或阻碍生物体或某种生态过程在斑块间运动的
程度[2],如动物迁移[3]、种子扩散[4],基因流动[5鄄7]等,由景观的结构特征和生物体行为特性共同决定[8鄄9]。
常用的连接辨识方法包括欧氏距离(Euclidean Distance) [10],即测量斑块边缘到边缘之间的空间直线距
离获得,也是斑块间的最小距离;适宜以鸟类飞行迁徙作为生态过程构建网络的研究[11]。 但是对于依赖土地
覆盖、下垫面属性的某些生态过程,欧氏距离则不能作为景观连接的有效度量[12鄄14]。 相比之下,基于最小累
计阻力模型(Minimum Cumulative Resistance model, MCR)的方法,即通过计算物种从源经过不同阻力的景观
基质所耗费的费用或克服阻力所作的功模拟最小成本路径(Least鄄cost Path, LcP),则较多考虑下垫面属性以
及生物体特征[10,15鄄18]。 该模型常与景观图论理论(Landscape Graph Theory)相结合,将景观镶嵌体中的斑块、
廊道等要素抽象为节点与连接[8]。 通过简单、直观的图形方式来直接反映生态系统中复杂的网络结构关系,
分析网络中最高效的连接路线,揭示能量、物质、基因流关系[19]。 近些年在景观生态学、生物多样性保护规划
中逐渐受到重视,被认为是研究景观连接,模拟网络最有效的方法[20鄄21]。 该方法在国外已成为以野生动物保
护为目标的农田 /森林栖息地质量评估或空间保护规划常用方法[22]。 很多研究表明,最小成本距离比欧氏距
离能够更好诠释物种在异质景观中的扩散、定居过程,以及评估景观的功能性连接度[4,23鄄24]。 在国内该方法
较多地应用于城市环境[25鄄26],如俞孔坚等构建了北京生态安全格局[27],Kong等构建了济南城市绿网[28],Teng
等运用于武汉城市绿道规划[29]。
该模型应用的关键步骤是确定阻力系数,即评估不同的土地利用 /覆盖类型对物种迁移的促进或阻碍能
力。 理论上,阻力赋值应基于调查、观测与实验等实证研究;但是由于资金、技术和时间等限制,很多情况下,
简化为土地适宜性评价结合专家经验为土地利用 /覆盖类型打分,包括:(1)以植被覆盖度或植物群落多样性
评价土地适宜性[28,30]。 (2)选择代理物种,如乌龟[31],刺猬[32],蝴蝶[33],通过调研文献资料获取其生活习性,
评估土地阻力值。
基于 MCR模型的最小成本路径辨识可在缺少观测资料的情况下,在 GIS 平台中较为快速地模拟斑块间
连接。 但在阻力面赋值时,主观性较强,如不同专家会对相同的研究区给出完全不同的阻力值[34鄄35]。 此外,
尺度效应一直是景观生态学研究的核心问题之一[36]。 众多研究表明,对景观结构特征与生态过程的度量,在
不同尺度,包括幅度大小,景观粒度大小,表现不同的敏感性,产生不同的变异程度[11,37]。 尺度的选择直接关
8637 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
系到对景观描述与模拟的可靠性。 认识模型对经验赋值及景观自身格局特征的依赖关系是有效模拟连接的
前提基础。 而目前较少有文献系统地研究这种效应[38],绝大部分是在具体景观中,研究某一物种运动或生态
过程的连接度时,附带探讨不同赋值情况对模拟的影响[31,39]。 因此本文借鉴析因实验方法,使用一系列代表
不同空间格局特征的人工模拟景观,在控制某些参数不变的前提下,比较分析不同的阻力赋值方式对景观连
接模拟的影响[38],探讨、总结经验赋值所带来的不确定性与规律性,为模型应用提出一些参考建议。
1摇 数据与实验方法
1.1摇 人工景观模拟
本研究的模拟景观由 SIMMAP2.0 景观中性模型 /软件来生成[40]。 主要考虑 5 种决定景观格局特征的基
本因子(表 1),即景观幅度、斑块类型数、各类斑块优势度、空间分布方式(即景观破碎度)和景观粒度。 本研
究设定模拟景观幅度为 300伊300 像元,粒度为 1伊1 像元。 因为是模拟景观,像元的面积单位可以是任意的,
为便于计算与说明,假定每个像元面积单位为 1m2。 斑块类型的多少也即斑块丰富度。 斑块优势度指某一类
型斑块的面积占景观总面积的比例。 本文以城市景观为依据,设定五类,即斑块类型 S,A,B,C,U。 S 代表栖
息地,即 MCR模型中的源生境斑块(Source);U(Unsuitable)代表城市建筑 /硬质化铺装,是最不适宜保育物种
的用地类型;A,B,C则是介于最适宜与最不适宜之间的中等适宜用地类型。 通常情况下,一个城市的绿地率
在 30%,建筑区面积在 40%。 排除某些高度人工化、种植单一外来物种,不适宜做源生境的绿地,本文设定 S
为 20%;U占 40%;A,B,C比例分别在 5%,15%,20%。
表 1摇 生成模拟景观时考虑的参数及不同水平组合
Table 1摇 Parameters used to generate spatial patterns of simulated landscapes and their factorial combinations
景观幅度 /像元
Landscape extent
斑块类型数 /个
Number of
landscape classes
斑块类优势度 / %
Dominance of classes
景观粒度 / m2
Landscape grain size
空间分布方式
Spatial distribution pattern
300伊300 5
S: 20 A: 5
B: 15 C: 20
U: 40
1伊1
5伊5
10伊10
20伊20
聚集 Clumped C
P_smap= 0.575
破碎 Fragmented F
P_smap= 0.3
摇
空间分布方式主要指所有斑块在整个景观上的分布情况:聚集或破碎化。 SIMMAP2.0 中 P 值控制模拟
景观的破碎度,取值范围在 0—0.5929。 值越大,景观越趋于聚集,破碎度越小。 本文取 2个水平,0.575与 0.3
分别代表聚集和破碎[41]。 SIMMAP2.0是随机模拟景观,即使在参数设定完全一致的情况下,每次软件运行所
生成的景观也完全是独一无二的,为了检验这种随机性是否会影响分析,本研究对变量因素及水平组合重复
5次模拟。
景观粒度的变化在 ArcGIS10中重采样完成。 按照多数原则,即在新生成的面积单元中,以占多数像元的
属性作为新像元属性,若不同属性像元数目相等时,程序随机决定新像元类型。 每次重采样生成新景观时,均
依据最原始的景观(即 1伊1分辨率的初始景观),分别产生 5,10,20粒度大小的景观。 各因素及水平组合后,
共产生 8个幅度、类型数目、斑块类优势度相同,但空间配置方式和粒度大小不同的景观,每个重复运行 5 次,
实际上用于分析的景观共有 40个(图 1)。
1.2摇 最小成本路径模拟
最小累计阻力模型 MCR和景观图论相结合在生成网络时有如下规定:淤两个源斑块之间的连接不穿过
其他源斑块;于连接之间没有交叉。 本研究利用 ArcGIS10 空间分析模块和 Linkage Mapper Toolist[42]插件构
建景观阻力面,提取最小成本路径,其基本公式如下[15]:
MCR = fmin移
i = m
j = n
(Dij 伊 R i)
9637摇 22期 摇 摇 摇 陈春娣摇 等:阻力赋值对景观连接模拟的影响 摇
http: / / www.ecologica.cn
式中,MCR为物种由源扩散到空间某一点的最小累计阻力;Dij为物种从源 j到景观类型 i的空间距离;R i 为景
观类型 i对物种迁移运动阻力值,由景观基质的基本特征和物种本身的扩散能力决定;n,m 为源与景观类型
的数目。
图 1摇 本研究中所用模拟景观举例
Fig.1摇 Examples of the simulated landscapes used in this study
1.3摇 阻力赋值方式
对 5种土地利用 /覆盖类型(S, A, B, C, U)分别指定阻力值 R i。 该值反映的是某一物种穿过某土地类
型相比穿过栖息地 S的相对难易程度[17],因为是相对值,无量纲。 S为最适宜的类型,成本值最低,恒定为 1;
A, B, C阻力依次增加;U类型最不适宜,阻力值最大。 其他类型阻力值的选取依据现有文献,主要考虑 3 个
要素:淤数值的绝对大小,如 1—10,1—100,1—1000之间;于数值的相对大小,如 A类型阻力值是 S 类型的 2
倍,700倍等;盂类型的偏向性,包括等距赋值玉、倾向于栖息地域、倾向于最不适宜芋、倾向于中等适宜郁,解
释如表 2(因整数型数值方便在 GIS平台中计算,因此对于玉_a,本研究并未采用与玉_b,玉_c 并列的 1, 2.5,
5, 7.5, 10的赋值方式,而是采用 1, 2, 3, 4, 5单独作为一种等级类型)。 总共 4 组 12 个阻力赋值水平,因
此,共获得 480个景观阻力面(40个模拟景观伊12个阻力赋值类型)。
1.4摇 最小成本路径的空间偏差度量
不同的阻力赋值可能会在空间上产生不同的最小成本路径。 一般情况下,最小成本路径是曲线,其实际
长度大于欧氏距离。 本文构建如下公式度量最小成本路径所产生的空间偏差。
LcP_Devi(%) =
移
n
i = 1
Lcp_length - 移
n
j = 1
Euc_length
移
n
j = 1
Euc_length
伊 100
式中,Lcp_Devi表示最小成本路径空间偏差;Lcp_legth最小成本路径长度;Euc_legth 欧氏距离长度;n 为一个
景观中模拟的最小成本路径总数量。 Lcp_Devi值越大,表明某阻力赋值情景下,所产生的最小成本路径越偏
离直线距离,弯曲度越大,阻力赋值对景观连接模拟的影响就越大。
0737 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
表 2摇 用于析因实验的阻力赋值方式
Table 2摇 Sets of cost values used in the factorial experiment
赋值方式 /解释
Values assignment /
explanation
编号
ID. S A B C U
赋值方式 /解释
Values assignment /
explanation
编号
ID. S A B C U
I:按照一定等级
According to regulardivision
I_a 1 2 3 4 5
I_b 1 25 50 75 100
I_c 1 250 500 750 1000
III:中等适宜地阻力赋值趋
向于最不适宜
Values of moderately suitable
land approach to values of
unsuitable land摇
III_a 1 7 8 9 10
III_b 1 70 80 90 100
III_c 1 700 800 900 1000
II:中等适宜地阻力赋值趋
向于栖息地,分别是 1 的 2
倍,10倍,100倍,然后按照
各自最大阻力值的十分之
一递增
Values of moderately suitable
land approach to values of
habitat sources
II_a 1 2 3 4 10
II_b 1 10 20 30 100
II_c 1 100 200 300 1000
IV:中等适宜地阻力赋值围
绕最大值与最小值的平
均值
Values of moderately suitable
land set around the mean of
maximum and minimum
IV_a 1 4 5 6 10
IV_b 1 40 50 60 100
IV_c 1 400 500 600 1000
摇
图 2摇 不同阻力赋值下景观连接模拟举例
Fig.2摇 Examples of the simulated LcPs under different cost values
2摇 结果
空间模拟结果显示,即使在同一景观格局下,不同
的阻力赋值方式会影响最小成本路径的位置(图 2)。
以景观粒度为 1,聚集景观(P_smap = 0.575)为例,赋值
方式域_a (趋向于栖息地)比芋_a(趋向于最不适宜
地)的空间弯曲大,最小成本路径越偏离欧氏距离反映
的景观连接方式。
每个因素及水平组合下的景观重复 5 次的计算结
果之间没有显著差异,因此,多因素方差分析时采用每
组重复的均值。 表 3显示了阻力赋值、空间粒度和景观
破碎度对最小成本路径空间偏差的影响。 3 个因素分
别对连接模拟产生了显著影响(P<0.001);其中,阻力
赋值与粒度之间存在显著的交互作用,即阻力赋值对模
拟的效应依赖于不同的空间粒度(图 3 和图 4)。 无论
何种方式的阻力赋值,所反映的增长趋势基本一致,即
随着粒度增大,空间偏差逐步增大,20m 粒度下的平均
偏差值是 1m 的 4.2 倍。 并且在同一粒度下,2 种破碎
度水平对模拟的影响:随着景观破碎度增加,空间偏差
值增大(附图)。 其中直线的倾斜度表示增长程度,20
m粒度的斜率最小,表示在这一空间分辨率下,景观空
间分布差异对网络模拟的影响最小。
本研究中阻力赋值分成 4 组类型,每组 3 个水平,
共 12个水平。 每组内部主要比较阻力赋值的绝对大小
的影响;而组间主要考察不同赋值倾向对连接模拟的影
响。 通常直观认为,绝对值大的阻力赋值会造成更大的空间偏差。 然而图 5与图 6表明,组内差异不显著,即
阻力赋值的绝对大小不会影响最小成本路径偏离欧氏距离的程度;甚至出现同一组内,不同的阻力赋值存在
1737摇 22期 摇 摇 摇 陈春娣摇 等:阻力赋值对景观连接模拟的影响 摇
http: / / www.ecologica.cn
相同的空间偏差,如玉_b与玉_c,域_b与域_c,即使空间粒度改变,偏差值始终保持相等。
表 3摇 阻力赋值、粒度和景观破碎度因素对空间偏差的多因素方差分析
Table 3摇 ANOVA test of effects of cost values, grain size and landscape fragmentation on the spatial deviation of LcPs
来源 Source 芋型平方和芋 Sum of Squares
自由度
Degree of freedom
均方
Mean square F Sig.
阻力赋值方式 Scenarios of cost values 2004.360 3 668.120 119.221 0.000
粒度 Grain size 35677.841 3 11892.614 2122.155 0.000
破碎度 Fragmentation 9526.740 1 9526.740 1699.981 0.000
粒度伊阻力赋值方式
Grain size伊Scenarios of cost values 240.974 9 26.775 4.778 0.000
阻力赋值方式伊破碎度
Scenarios of cost values伊Fragmentation 5.920 3 1.973 0.352 0.788
粒度伊破碎度
Grain size伊Fragmentation 1290.459 3 430.153 76.758 0.000
粒度伊阻力赋值方式伊破碎度
Grain size伊Scenarios of cost
values伊Fragmentation
91.167 9 10.130 1.808 0.084
摇 摇 R2 = 0.993 (修正后的 R2 = 0.989, P<0.001)
图 3摇 聚集景观(P_smap= 0.575), 最小成本路径空间偏差随景观粒度的变化
Fig.3摇 Spatial deviation of LcPschange with increasing spatial grain size in clumped configuration (P_smap= 0.575)
2737 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
图 4摇 破碎景观(P_smap= 0.3), 最小成本路径空间偏差随景观粒度的变化
Fig.4摇 Spatial deviation of LcPschange with increasing spatial grain size in fragmented configuration (P_smap= 0.3)
摇 图 5摇 聚集景观(P_smap= 0.575), 不同阻力赋值方式对最小成本
路径模拟的影响
摇 Fig.5摇 The impact of different scenarios of costvalueson LcPs
simulationwhen landscape fragmentation is low (P_smap= 0.575)
摇 图 6摇 破碎景观(P_smap= 0.3), 不同阻力赋值方式对最小成本路
径模拟的影响
摇 Fig.6摇 The impact of different scenarios of costvalueson
LcPssimulation when landscape fragmentation is high (P_smap= 0.3)
摇 摇 组间比较发现阻力赋值的 4组类型在不同景观破碎度、不同景观粒度下均呈现“姨冶形趋势。 在所有赋
值类型中,产生最大偏差的是域(中等适宜地阻力赋值趋向于栖息地)。 最小的是芋中等适宜地阻力赋值趋
3737摇 22期 摇 摇 摇 陈春娣摇 等:阻力赋值对景观连接模拟的影响 摇
http: / / www.ecologica.cn
向于最不适宜。 而玉(按照一定等级)与郁(中等适宜地阻力赋值)围绕最大值与最小值的平均值之间则没有
显著差异。 并且随着景观粒度增加,网络偏差的折线波动幅度也逐步增加:当景观聚集,20m 粒度时,折线波
动幅度为 21.95%,相比之下,1m时该值为 9.71%;同样,当景观破碎,20m 与 1m 粒度的折线波动幅度分别为
20.39%和 15.81%。
3摇 讨论与小结
本文重点研究不同的阻力赋值方式对基于最小累计阻力模型和图论方法的景观连接模拟的影响,这种影
响可能与景观格局特征存在一定相关性。 因此,本研究设计了一个三因素的析因实验,以检验连接模拟对阻
力赋值方式、景观粒度和景观破碎程度的响应关系。 研究发现阻力赋值方式对模拟产生显著影响,且影响程
度取决于空间粒度和景观破碎程度。
进一步研究阻力赋值方式的组内和组间差异,可以发现在同一类型的阻力赋值方式下,阻力值的绝对大
小不会影响网络连接模拟。 这一结论与 Schadt等[43]针对猞猁野生动物保护模拟的生态网络结论完全相同。
而组间差异则对模拟产生显著影响,尤其在倾向于栖息地(组域)比倾向于最不适宜地(组芋)表现更显著(图
2)。 这一结论与 Gonzales等[44]和 Rayfield等[38]的研究结论相一致,虽然这些研究的景观结构特征与阻力赋
值方式完全不一样。 Rayfield等的研究对 3 种土地类型(栖息地 H、适宜地 HM、不适宜地 IM),分别在 H 与
HM,以及 HM与 IM之间按照倍数关系进行赋值,结果发现,增大 H与 HM之间的赋值差距(类似于本研究的
倾向于不适宜地赋值方式)不会显著改变连接模拟;而相同倍数下,增大 HM 与 IM 之间的差距(类似于本研
究的倾向于栖息地赋值方式),则会造成最小成本路径空间偏差显著增大。
景观粒度对路径模拟有显著影响:整体上,随着空间粒度粗化,不同阻力赋值方式对应的最小成本路径空
间偏差增大;且波动幅度也增大,表明网络模拟对低分辨率的粗尺度越敏感。 可能原因在于粒度变换,景观重
采样的过程中,中等适宜斑块(即 A, B, C土地利用类型) 作为潜在栖息地,很多细小斑块被归并到最不适宜
的景观基质(即 U土地利用类型)中,阻力赋值方式的差异能够引起更大的空间变动。
本研究采用的破碎度是景观整体破碎度,并未细分哪种土地类型的破碎度。 Rayfield 等学者的研究把破
碎度分成栖息地破碎度和适宜地破碎度,其研究发现栖息地破碎度与阻力赋值有交互作用,会显著影响空间
偏差;而适宜地破碎度则与阻力赋值没有交互作用,不会影响路径模拟[38]。 这也许可以解释本研究中整体破
碎度与阻力赋值不存在显著交互作用。
结合图论理论的最小成本路径模拟基于 GIS平台,特点在于将空间规划与某些生态过程联系起来,且数
据需求量较少,最终以地图的直观形式表达,在分析、模拟景观连接方面具有很大优势,但普遍存在阻力赋值
主观性较强的问题。 很多基于实证、对比研究的文献表明,具有生物学意义的阻力赋值可以模拟出与实际观
测发现较为一致的结果[6,13,21,44]。 因此,阻力赋值,尤其是介于栖息地与最不适宜类型之间的中间适宜地的
赋值,是连接模拟的最关键一环;在规划等领域应用时,应更加注意这类用地的赋值情况。 理想状态下赋值是
根据网络构建的目标,选择合适的代理物种,基于观察 /实验研究获取。 如果不能进行实证研究,有学者建议
采用多套阻力赋值方案形成多条低阻力路径共同形成景观连接[38],以增加生态网络的空间拓扑健壮性,降低
经验赋值的不确定性。 此外,本研究也发现不同的景观有不同的格局特征,对阻力赋值方式的响应也不一样,
因此并不存在最佳的赋值方式,只有针对特定景观与特定研究目的相宜的赋值方式。 本文建议在进行相关研
究时,应针对研究区景观做阻力赋值对路径模拟的影响性分析;并结合研究目的,如为了更多地辨识跳脚石斑
块,让中等适宜类型的赋值倾向于栖息地;同时可以结合城市规划,社会经济发展不同需求来确定阻力赋值,
更有针对性地辨识、构建生态网络结构。
目前,仅有少量景观连接文献系统地研究最小成本路径模拟对阻力赋值的响应关系或敏感性变化。 本研
究以 SIMMAP2.0景观中性模型产生的 8个模拟景观为对象,主要考虑两个方面:阻力赋值方式(包括 4 组 12
个水平的阻力赋值方式)和格局特征(4 个水平的粒度大小和 2 个水平的破碎度)对最小成本路径模拟的影
4737 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
响,比较系统地分析了阻力赋值方式对景观连接模拟的影响,以及与某些景观格局特征因素的交互关系;探
讨、总结了可能存在的规律性特征,部分结果验证了国外一些实证研究发现,对于结论的普遍性还有待更多的
不同因素不同水平组合的实验研究进一步验证。 此外,本文在定义景观格局特征时,仅设置了景观粒度和空
间分布方式两个因素作为变量,未来的研究可以考虑斑块优势度等其他因素变化的情况下,进一步研究阻力
赋值方式对景观连接模拟的影响。
参考文献(References):
[ 1 ]摇 Brose U. Improving nature conservancy strategies by ecological network theory. Basic and Applied Ecology, 2010, 11(1): 1鄄5.
[ 2 ] 摇 Taylor P D, Fahrig L, Henein K, Merriam G. Connectivity is a vital element of landscape structure. Oikos, 1993, 68(3): 571鄄573.
[ 3 ] 摇 Uezu A, Metzger J P, Vielliard J M E. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird
species. Biological Conservation, 2005, 123(4): 507鄄519.
[ 4 ] 摇 Sork V L, Smouse P E. Genetic analysis of landscape connectivity in tree populations. Landscape Ecology, 2006, 21(6): 821鄄836.
[ 5 ] 摇 Neel M C. Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalusalbens
(Fabaceae) . Biological Conservation, 2008, 141(4): 938鄄955.
[ 6 ] 摇 Koen E L, Bowman J, Garroway C J, Mills S C, Wilson P J. Landscape resistance and American marten gene flow. Landscape Ecology, 2012, 27
(1): 29鄄43.
[ 7 ] 摇 Wang Y H, Yang K C, Bridgman C L, Lin L K. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landscape
Ecology, 2008, 23(8): 989鄄1000.
[ 8 ] 摇 Urban D, Keitt T. Landscape connectivity: a graph鄄theoretic perspective. Ecology, 2001, 82(5): 1205鄄1218.
[ 9 ] 摇 Moilanen A, Hanski I. On the use of connectivity measures in spatial ecology.Oikos, 2001, 95(1): 147鄄151.
[10] 摇 Calabrese J M, Fagan W F. A comparison鄄shopper忆s guide to connectivity metrics. Frontiers in Ecology and the Environment, 2004, 2( 10):
529鄄536.
[11] 摇 Minor E S, Urban D L. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecological Applications, 2007, 17
(6): 1771鄄1782.
[12] 摇 Watts K, Eycott A E, Handley P, Ray D, Humphrey J W, Quine C P. Targeting and evaluating biodiversity conservation action within fragmented
landscapes: an approach based on generic focal species and least鄄cost networks. Landscape Ecology, 2010, 25(9): 1305鄄1318.
[13] 摇 Verbeylen G, De Bruyn L, Adriaensen F, Matthysen E. Does matrix resistance influence red squirrel (Sciurus vulgaris L. 1758) distribution in an
urban landscape?. Landscape Ecology, 2003, 18(8): 791鄄805.
[14] 摇 Michels E, Cottenie K, Neys L, De Gelas K, Coppin P, De Meester L. Geographical and genetic distances among zooplankton populations in a set
of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology, 2001, 10(8): 1929鄄1938.
[15] 摇 Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning. Landscape and Urban Planning, 1992, 23(1): l鄄 16.
[16] 摇 Adriaensen F, Chardon J P, De Blust G, Swinnen E, Villalba S, Gulinck H,Matthysen E. The application of “ least鄄cost冶 modelling as a
functional landscape model.Landscape and Urban Planning, 2003, 64(4): 233鄄247.
[17] 摇 吴昌广, 周志翔, 王鹏程, 肖文发, 滕明君, 彭丽. 基于最小费用模型的景观连接度评价. 应用生态学报, 2009, 20(8): 2042鄄2048.
[18] 摇 Baguette M, Blanchet S, Legrand D, Stevens V M, Turlure C. Individual dispersal, landscape connectivity and ecological networks. Biological
Reviews, 2013, 88(2): 310鄄326.
[19] 摇 Cushman S A, McKelvey K S, Hayden J, Schwartz M K. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. The
American Naturalist, 2006, 168(4):486鄄499.
[20] 摇 Bunn A G, Urban D L, Keitt T H. Landscape connectivity: A conservation application of graph theory. Journal of Environmental Management,
2000, 59(4): 265鄄278.
[21] 摇 Pullinger M G, Johnson C J. Maintaining or restoring connectivity of modified landscapes: evaluating the least鄄cost path model with multiple sources
of ecological information. Landscape Ecology, 2010, 25(10): 1547鄄1560.
[22] 摇 Etherington T R, Holland E P. Least鄄cost path length versus accumulated鄄cost as connectivity measures. Landscape Ecology, 2013, 28( 7):
1223鄄1229.
[23] 摇 Belisle M. Measuring landscape connectivity: The challenge of behavioural landscape ecology. Ecology, 2005, 86: 1988鄄1995.
[24] 摇 Broquet T, Ray N, Petit E, FryxellJ M, Burel F. Genetic isolation by distance and landscape connectivity in the American marten
(Martesamericana). Landscape Ecology, 2006, 21(6): 877鄄889.
[25] 摇 周圆, 张青年. 道路网络对物种迁移及景观连通性的影响. 生态学杂志, 2014, 33(2): 440鄄446.
[26] 摇 郭宏斌, 黄义雄, 叶功富, 李翠萍, 陈利. 厦门城市生态功能网络评价及其优化研究. 自然资源学报, 2010, 25(1): 71鄄79.
[27] 摇 俞孔坚, 王思思, 李迪华, 李春波. 北京市生态安全格局及城市增长预景. 生态学报, 2009, 29(3): 1189鄄1204.
[28] 摇 Kong F H, Yin H W, Nakagoshi N, Zong Y G. Urban green space network development for biodiversity conservation: Identification based on graph
theory and gravity modelling. Landscape and Urban Planning, 2010, 95(1鄄2): 16鄄27.
[29] 摇 Teng M J, Wu C G, Zhou Z X, Lord E, Zheng Z M. Multipurpose greenway planning for changing cities: A framework integrating priorities and a
least鄄cost path model. Landscape and Urban Planning, 2011, 103(1): 1鄄14.
[30] 摇 陈春娣. 城市绿色空间综合评价与生态规划研究———以北京为例. 北京: 中国科学院生态环境研究中心,2008.
[31] 摇 Pereira M, Segurado P, Neves N. Using spatial network structure in landscape management and planning: a case study with pond turtles. Landscape
and Urban Planning, 2011, 100(1): 67鄄76.
5737摇 22期 摇 摇 摇 陈春娣摇 等:阻力赋值对景观连接模拟的影响 摇
http: / / www.ecologica.cn
[32]摇 Driezen K, Adriaensen F, Rondinini C, Doncaster P, Matthysen E. Evaluating least鄄cost model predictions with empirical dispersal data: a case鄄
study using radiotracking data of hedgehogs (Erinaceuseuropaeus) . Ecological Modelling, 2007, 209(2鄄4): 314鄄322.
[33] 摇 Chardon J P, Adriaensen F, Matthysen E. Incorporating landscape elements into a connectivity measure: a case study for the speckled wood
butterfly (Parargeaegeria L.) . Landscape Ecology, 2003, 18(6): 561鄄573.
[34] 摇 Clevenger A P, Wierzchowski J, Chruszcz B, Gunson K. GIS鄄generated, expert鄄based models for identifying wildlife habitat linkages and planning
mitigation passages. Conservation Biology, 2002, 16(2): 503鄄514.
[35] 摇 Johnson C J, Gillingham M P. Mapping uncertainty: sensitivity of wildlife habitat ratings to expert opinion. Journal of Applied Ecology, 2004, 41
(6): 1032鄄1041.
[36] 摇 邬建国. 景观生态学: 格局、过程、尺度与等级(第二版) . 北京: 高等教育出版社,2007.
[37] 摇 Pascual鄄Hortal L, Saura S. Impact of spatial scale on the identification of critical habitat patches for the maintenance of landscape connectivity.
Landscape and Urban Planning, 2007, 83(2): 176鄄186.
[38] 摇 Rayfield B, Fortin M J, Fall A. The sensitivity of least鄄cost habitat graphs to relative cost surface values. Landscape Ecology, 2010, 25(4):
519鄄532.
[39] 摇 O忆Brien D, Manseau M, Fall A, Fortin M J. Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of
graph theory. Biological Conservation, 2006, 130(1):70鄄83.
[40] 摇 Saura S, Mart侏nez鄄Mill佗n J. Landscape patterns simulation with a modified random clusters method. Landscape Ecology, 2000, 15(7): 661鄄678.
[41] 摇 Li X Z, He H S, Wang X G, Bu R C, Hu Y M, Chang Y. Evaluating the effectiveness of neutral landscape models to represent a real landscape.
Landscape and Urban Planning, 2004, 69(1): 137鄄148.
[42] 摇 McRae B H, Kavanagh D M. Linkage Mapper Connectivity Analysis Software. The Nature Conservancy, Seattle WA, 2011. http: / / www.
circuitscape.org / linkagemapper.
[43] 摇 Schadt S, Knauer F, Kaczensky P, Revilla E, Wiegand T, Trepl L. Rule鄄based assessment of suitable habitat and patch connectivity for the
Eurasian lynx. Ecological Applications, 2002, 12: 1469鄄1483.
[44] 摇 Gonzales E K, Gergel S E. Testing assumptions of cost surface analysis鄄a tool for invasive species management. Landscape Ecology, 2007, 22(8):
1155鄄1168.
附图摇 同一景观粒度下,网络空间偏差随景观破碎度(P_smap= 0.575, 0.3)的变化
Attached map摇 Spatial deviation of LcPs change with landscape fragmentation (P_smap= 0.575, 0.3)
6737 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇