全 文 :第 35 卷第 22 期
2015年 11月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.22
Nov., 2015
http: / / www.ecologica.cn
基金项目:国家自然科学基金项目(41371037, 41071016)
收稿日期:2014鄄04鄄04; 摇 摇 网络出版日期:2015鄄04鄄20
*通讯作者 Corresponding author.E鄄mail: xujx@ igsnrr.ac.cn
DOI: 10.5846 / stxb201404040646
许炯心.黄河中游绿水系数变化及其生态环境意义.生态学报,2015,35(22):7298鄄7307.
Xu J X.Increasing trend of green water coefficient in the middle Yellow River basin and the eco鄄environmental implications.Acta Ecologica Sinica,2015,35
(22):7298鄄7307.
黄河中游绿水系数变化及其生态环境意义
许炯心*
中国科学院地理科学与资源研究所, 中国科学院陆地水循环及地表过程重点实验室, 北京摇 100101
摘要:绿水和蓝水的概念和理论对于半干旱、半湿润区水资源的评价和管理有重要意义。 引入流域尺度上绿水系数指标,定义
为某一流域内由降水到绿水的转换系数。 研究发现,1950—2011年间,黄河中游河口镇至龙门区间(河龙区间)的绿水系数呈
现增大的趋势。 除了气温、降水的影响外,水土保持是一个重要因素。 水土保持措施减少了降雨到径流(蓝水)的转化率,增大
了降雨到绿水的转化率。 绿水系数的增大意味着坡面径流减弱和河流径流的减弱,从而减少了坡面侵蚀和流域产沙。 同时,绿
水系数的增大意味着植被蒸腾作用的增强,说明植被对地表的保护作用增强,这也会导致坡面侵蚀的减弱。 河龙区间产沙量与
流域绿水系数之间呈显著的负相关关系,产沙量变化的 53.7%可以用流域绿水系数的变化来解释。 水土保持实施后,梯田和坝
地使得生产性绿水系数增大,从而增加了粮食产量。 梯田、坝地面积与绿水系数和粮食产量之间都存在着显著的正相关关系,
粮食产量与绿水系数之间也存在显著的正相关关系。 绿水系数具有流域生态环境质量变化的指示意义,在年降水可比的情况
下,流域绿水系数的减小意味着集水区生态环境环境质量降低,流域绿水系数的增大意味着集水区生态环境质量提高。 依照绿
水系数的变化,可以将近 60余年来河龙区间生态环境的变化过程划分为 3个阶段。
关键词:绿水;绿水系数;气候变化;人类活动;黄河中游
Increasing trend of green water coefficient in the middle Yellow River basin and
the eco鄄environmental implications
XU Jiongxin*
Institute of Geographic Sciences and Natural Resources Research, Key Laboratory for Water Cycle and Related Land Surface Processes, Chinese Academy of
Sciences, Beijing 100101, China
Abstract: The concept and theory of green and blue waters are important for water resources assessment and management,
especially in semi鄄arid and sub鄄humid zones. Most previous studies have been at farm鄄field scales; to better manage green
water at drainage鄄basin scales, it is important to study how the transformation of precipitation to green water is influenced by
climate and human activity. An index of the green water coefficient (Cgw) at the drainage鄄basin scale is adopted in the
present study, defined as the ratio of the annual amount of green water to the annual precipitation within a drainage basin.
Based on hydrological and meteorological data from the Yellow River basin and using statistical methods, we analyzed the
temporal variation of Cgw in relation to climate change and human activity. During 1950—2011, the Cgw over the Hekouzhen鄄
Longmen drainage basin showed an increasing trend. Apart from changes in air temperature and precipitation, the
implementation of large鄄scale soil and water conservation measures is an important factor. Soil and water conservation
measures reduce the transformation rate from precipitation to runoff (blue water) and increase the transformation rate from
precipitation to green water. The increase in the green water coefficient implies a weakening of runoff on hill slopes and flows
in the river, thus reducing soil erosion and sediment yield. On the other hand, the increased green water also indicates
http: / / www.ecologica.cn
higher transpiration by the improved vegetation, and the latter may increase the vegetation忆s protection of land surfaces
against erosion, also reducing sediment yield. The sediment yield (Qs) over the Hekouzhen鄄Longmen drainage area has
negatively correlated with Cgw(R
2 = 0.53), indicating that 53% of the decrease in Qs can be explained by the increase in
Cgw . After the implementation of soil and water conservation measures, the increased terracing land and the land created by
check鄄dams increased the productive green water, increasing grain yield. We found that grain yield was positively correlated
with Cgw and with the areas of terrace land and the land created by check鄄dams. The increased proportion of productive green
water was an important factor for the increased grain yields. The green water coefficient may be used as an indicator of the
environmental quality of a drainage basin. At the same precipitation, an increased Cgw means that the environmental quality
has improved, and vice versa. According to the variation in Cgw, the changes in the environmental quality of the Hekouzhen鄄
Longmen drainage area has been be divided into three stages. In Stage 1 (1950—1969), Cgw showed a decreasing trend,
meaning that the environmental quality was lowered due to serious soil and water losses. In Stage 2, Cgw showed an
increasing trend, meaning that the environmental quality improved due to the large鄄scale practice of soil and water
conservation measures. In Stage 3, Cgw increased more rapidly, indicating that the environmental quality was further
improved due to the large鄄scale ecological restoration focused on “returning farmland to forests (and grasses)冶 . Therefore,
the application of the green water coefficient is useful for the assessment of generalized water resources at the drainage鄄basin
scale and for a better understanding of the water鄄resource effect induced by soil and water conservation measures.
Key Words: green water; green鄄water coefficient; climate change; human activity; the middle Yellow River
为了更好地进行半干旱、半湿润区农业水资源的评价,Falkenmark 等于 1995 年提出绿水和蓝水的概念。
蓝水是指储存在河流、湖泊以及含水层中的水,而绿水是指直接来源于降水并用于蒸散的水[1]。 此后,绿水
的研究在世界上受到重视。 绿水可以被定义为蒸散流,是流向大气圈的水汽流,包括灌溉农田、湿地、水面和
自然植被等不同地表的蒸散发产生的水汽流[2鄄3],也可以被定义为具体的资源,即绿水是源于降水、存储于土
壤并被植被蒸散发消耗的水资源,某一地区在一段时间内能够获得的总的绿水资源量等于该时期内蒸散发累
计量[4鄄5]。 上述理论的提出,丰富了水资源的内涵,为更加科学地进行水资源管理提供了理论依据。 基于这
一理论,水资源的管理应分为蓝水管理和绿水管理。 研究表明,从水循环的角度分析,全球尺度上总降水的
65%通过森林、草地、湿地和雨养农田的蒸散返回到大气中,成为绿水,仅有 35%的降水储存于河流、湖泊以及
含水层中,成为蓝水[5]。 绿水可分为两个分量:一部分为植物蒸腾量,与陆地生态系统中的生物量生产密切
相关,可称为生产性绿水;另一部分为陆面蒸发量,可称为非生产性蓝水[6]。 国际上对于绿水的研究,已取得
很多成果[5鄄10]。 近年来,刘昌明、程国栋等在我国倡导展开绿水的研究[11鄄12]。 从某种意义上说,传统的水资源
管理属于蓝水管理,目前亟待加强对于绿水的管理。 这对于提高我国水资源管理水平具有重要意义。 绿水、
蓝水的概念引入我国之后,已产生了一些研究成果[13鄄15],但尚待展开深入的研究。
已有研究大部分集中于农田尺度。 为了进行流域绿水管理,必须在流域尺度上深入研究绿水形成的机
理,研究降水-绿水的转化率的变化如何受到自然与人为因素的影响。 流域系统既是一个水文地貌系统,又
是一个生态系统。 目前国内外研究者对于绿水在水文学和水资源管理上的意义进行了比较充分的研究,但对
于其在流域尺度上生态意义的揭示还较少。 近 60余年黄河中游河口镇至龙门区间流域绿水系数有明显的减
小趋势,并从气候变化和人类活动的影响揭示了减小的原因[16]。 本文是已有工作[16]的延伸,将在前文研究
的基础上,进一步探讨绿水系数增大的生态环境意义及其在流域水资源管理和水土流失治理效益评价中的应
用意义。 其目的是深化对于绿水系数科学内涵的认识,为更科学、更确切地评价水土保持效益和更好地开展
流域水资源管理和水土保持规划提供新的知识。
1摇 研究区概况
黄河中游河口镇至龙门区间(以下简称河龙区间)(图 1)是黄土高原的主体。 属中温带和暖温带半干旱
9927摇 22期 摇 摇 摇 许炯心摇 黄河中游绿水系数变化及其生态环境意义 摇
http: / / www.ecologica.cn
区,自然植被类型区为温带干草原和暖温带森林草原。 年降水量为 350—450mm,多以暴雨形式集中下落,降
雨侵蚀力较强。 地表物质主要为黄土,黄土层深厚,渗透性强,雨季入渗的雨水只有一小部分补给到地下水
中,其余部分在旱季中就地蒸发,因而径流系数较低,径流深度较小。 黄河在河口镇流入该区,在龙门流出该
区,河龙区间的流域面积为 112000km2。 按照 1950—1999年间的统计,河口镇水文站和龙门水文站的多年平
均实测径流量分别 229.1伊108m3和 283.3伊108 m3,河龙区间产生的径流量为 54.2伊108 m3。 该区产流量占花园
口以上流域产流量的 13.9%。 河龙区间是黄河中游多沙粗沙区的主体,位于黄土高原丘陵沟壑区,黄土层厚
度大,沟谷密度大、切割深,侵蚀强烈,是黄河泥沙特别是粗泥沙的主要来源区。 由于黄土层深厚,渗透性强,
故径流深度较小,对黄河径流量的贡献相对较小。 该区的面积只占花园口站以上流域面积的 18.4%,年产流
量占花园口以上流域产流量的 14.9%,年产沙量却占花园口以上年产沙量的 55.8%[17]。 本区是黄河流域水
土流失重点治理区,从 20世纪 60年代以来梯田、林草和淤地坝措施的大规模实施以及 1998年以后退耕还林
(草)的开展,使流域下垫面特性发生了很大的变化。 与此同时,气温升高,降水量减少,蒸发特性改变,使得
流域产流特性发生了很大的变化,进而导致了绿水、蓝水关系的变化。 由于特殊的自然地理条件,该地区的产
流过程对于环境因素的变化十分敏感,是研究水文过程对气候变化和人类活动响应的理想地区。
图 1摇 黄河流域示意图
Fig.1摇 A map of the Yellow River basin
2摇 研究方法
如前所述,绿水包括生产性绿水(指被蒸腾量)和非生产性绿水(陆面蒸发量)。 其中,生产性绿水对于水
资源管理有更为重要的意义。 然而,目前在广大流域面积上对于植被蒸腾量的观测资料很少,不足以进行深
入研究。 因此,本文研究包括蒸腾量和蒸发量在内的广义绿水。 按水量平衡方程:
降水量=蒸腾蒸发量+径流量+蓄水变量 (1)
在较长的时间尺度上,流域中的蓄水变量可以忽略。 降水量转化为径流量和蒸散发量,前者为蓝水,后者
为绿水。 由此可写出:
降水量=蒸腾蒸发量+径流量=蓝水量+绿水量 (2)
引入流域尺度上绿水系数(Cgw)的指标,定义为从降水到绿水的转化率,即绿水量与降水量之比。 因此,
绿水系数=绿水量 /降水量=(降水量-蓝水量) /降水量=(降水量-径流量) /降水量 (3)
必须指出,在用上式研究绿水系数时,应该采用天然径流量而不是实测径流量,因为人类所引用的水量属
于蓝水,引水导致实测径流量及蓝水减小,对于这一部分必须进行还原计算。 因此:
0037 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
绿水系数=绿水量 /降水量 =(降水量-天然径流量) /降水量 (4)
本文在年尺度上研究绿水系数。 应该指出,在年尺度上水库对径流的调蓄是一种重要的蓄水变量,不宜
忽略。 在进行年天然径流还原计算时,已扣除了水库蓄水变量。 流域土壤的调蓄量对于水量平衡也有一定影
响,但目前尚难以得到长系列、大尺度的历年土壤蓄水变量的资料。 作为近似,本文暂时忽略了这一因素。
本文采用统计方法与时间序列分析方法,研究绿水系数的变化及其与影响因素的关系,揭示绿水系数变
化所包含的生态环境意义。 同时还采用 Mann鄄Kendall 方法研究了绿水系数的变化趋势。 Mann鄄Kendall U 值
随时间的变化反映变量变化趋势的改变,可以用来探测由增到减(或由减到增)的转折点与突变点[18]。
3摇 资料来源
河口镇至龙门区间的年径流量由龙门站的年径流量减去河口镇站的年径流量而得到,时间系列为 1950
年至 20011年。 所依据的径流资料来自河口镇水文站和龙门水文站。 水文站实测的径流量(Qwm),并不代表
流域实际产生的径流量即天然径流量。 黄河水利委员会有关部门统计出了不同年份某一站点以上流域中的
灌溉引水量、工业及城镇用水量、水库调蓄量,并对人类引水后回归到河道中的水量进行了估算,求出了历年
全流域的人类净引水量 Qw,div,计算出了天然径流量(Qwn):Qwn =Qwm-Qw,div+驻Sr。 由此,可得到:
Qwn , H-L =Qwm,H -L+ Qw,div,H -L = Qwm,L- Qwm,H +Qw,div,H -L (5)
式中,Qwn , H-L为河龙区间天然径流量, Qwm,H -L为河龙区间实测径流量,Qwm,L为龙门站实测径流量, Qwm,H为河
口镇站实测径流量,驻Sr为水库调蓄量,Qw,div,H -L为河龙区间人类净引水量。 以上均按年系列计算。 河龙区间
的绿水系数 Cgw由下式计算:
Cgw =Qwn,H -L / (AH-L伊PH-L) (6)
式中,Qwn,H -L为河龙区间天然年径流量(108m3 / a),AH-L为河龙区间的流域面积(km2),PH-L为河龙区间的
面平均年降水量(mm)。 河龙区间年降水量、天然径流量、净引水量的资料来自历年《黄河水资源公报》;各项
水土保持面积的资料来自黄河水利科学研究院;气温资料来自中国气象局。 由于河龙区间的干流河道位于陕
西、山西间的峡谷中,河段冲淤量很少,可以忽略,河龙区间的年产沙量按龙门站的年输沙量减去河口镇(头
道拐)站的年输沙量来计算,两站年输沙量的资料来自历年《黄河泥沙公报》。 实测径流量、输沙量和气象资
料在观测时严格遵照国家技术标准,并进行了精度检验;水土保持面积在统计数据的基础上进行了抽样核实,
具有一定的准确性。 文中还利用了陕西、山西两省历年粮食产量的数据,该数据来自中国统计年鉴[19];利用
了山西、陕西两省 2000—2006年间退耕及封禁治理面积的资料,数据来自中国统计年鉴[19]和黄河年鉴[20]。
4摇 结果与分析
4.1摇 绿水系数和影响因素的时间变化趋势
流域绿水系数与气候因素(如降水量和气温)和人类活动因素(如各种水土保持措施)有密切的关系。 图
2点绘了河龙区间绿水系数随时间的变化。 图中显示,绿水系数呈现增大的趋势,与时间(年份)的决定系数
R2 = 0.5276,显著性概率 P<0.001。 图 2还点绘了河龙区间流域因素如年降水量和年平均气温以及梯田面积、
造林面积、种草面积和坝地面积等随时间的变化。 梯田、造林、种草和坝地面积均表现出显著的增大趋势,R2
分别为 0.9801、0.9114、0.7598 和 0.8515,显著性概率 P<0.001。 年降水量略有减小的趋势,R2为 0.061 (P =
0.064, P<0.10);年平均气温呈现显著的增大趋势,R2为 0.4522(P<0.001)。 在先前的研究中对于河龙区间绿
水系数增大的原因进行了较深入的研究[16],表明绿水系数的增大与夏季风强度减弱、降水量减小、年均气温
升高和水土保持面积增大有密切的相关关系。 建立了绿水系数(Cgw)与水土保持措施总面积(Asw)、5a 滑动
平均年降水量(Pm, 5m)和年平均气温(Tm, 5m)之间的多元线性回归方程,在此基础上估算出 Asw、Pm, 5m、Tm, 5m对
Cgw的贡献率分别为 51%, 37% 和 12%。 本文进一步揭示绿水系数增大的生态环境意义。
4.2摇 绿水系数与流域侵蚀产沙的关系
从实质上说,水土保持措施的作用是对于地表径流进行调节。 这种调节包括两个方面。 一是对于降雨鄄
1037摇 22期 摇 摇 摇 许炯心摇 黄河中游绿水系数变化及其生态环境意义 摇
http: / / www.ecologica.cn
图 2摇 河龙区间绿水系数(1950—2011年)和影响因素(1950—2006 年)及随时间的变化
Fig.2摇 Temporal variations in green water coefficient from 1950 to 2011 and in the influencing factors ( 1950—2006) including annual
precipitation, temperature and the areas of 4 types of soil and water conservation measures
径流转换率即地表径流系数的调节。 梯田、造林种草等水土保持措施会增加降雨入渗,增加土壤水,减少地表
径流。 由于黄土高原黄土层厚度很大,地下水埋藏很深,入渗的雨水量经由土壤水和地下水最终转化为河流
基流的比例不大,最后大部分都消耗于蒸发与蒸腾作用,重新回到大气,即转化为绿水。 因此,水土保持会显
著地增大绿水系数。 二是对于径流的影响。 坡地改为水平梯田或缓坡梯田之后,地表坡度大大减小;林草植
被则增大了坡面地表的糙率系数,这两方面的作用都会减慢坡面流的流速、延长其历时,从而增加径流运动过
程中的下渗量。 淤地坝以及前期淤成的坝地大量拦蓄来自沟道流域的洪水径流,这些径流大部分都渗入土壤
之中,转化为土壤水,最后消耗于蒸散发而成为绿水。 因此,水土保持措施对于径流的调节,最后会表现为增
大绿水系数[16]。 图 3中点绘的绿水系数与各项水土保持措施面积的关系,证明了这一点。 图中的 R2表明,梯
田面积、造林面积、种草面积和淤地坝造地面积等变量可以解释绿水系数变化的 39.5%—49.1%。
图 3摇 河龙区间水土保持措施面积与绿水系数之间的关系
Fig.3摇 Relationship between green water coefficient and the area of soil and water conservation measures
2037 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
从本质上说,水土保持措施减少了降雨到径流(蓝水)的转化率,增大了降雨到绿水的转化率。 绿水系数
的减小意味着坡面径流减弱,河流径流也减弱,前者可以减少坡面侵蚀,后者则可以减少河道侵蚀。 同时,绿
水系数的增大意味着植被蒸腾作用的增强,说明植被对地表的保护作用增强,这也会导致坡面侵蚀的减弱。
因此,河流的产沙量与绿水系数之间存在密切的关系。 图 4 显示,河龙区间产沙量与绿水系数之间呈显著的
负相关关系(R2 = 0.5372,P<0.001),意味着河龙区间产沙量变化的 53.7%可以用绿水系数的变化来解释。 图
4中对于二者的时间变化进行了比较。 图中显示,前者具有减小趋势,后者则有增大趋势。 由于河龙区间降
水存在 3—5a的波动,年产沙量与绿水系数也有 3—5a 的波动。 为了更好的体现出变化的趋势,计算出年产
沙量与绿水系数的 5a滑动平均值,其变化曲线也绘在图中。 可以看到,两条曲线具有很好的镜像关系。 产沙
量的 5a滑动平均值与绿水系数的 5a滑动平均值具有很强的负相关,R2 = 0.8266,比图 4的 R2 = 0.5372要高得
多。 这一现象表明,植被通过对增大绿水系数来影响侵蚀产沙,具有一定的时间尺度效应。 在较长的时间
(例如 5a)尺度上,如果绿水系数有增大趋势,则意味着植被状况持续改善,植被的抗蚀力也会持续增加,从而
使侵蚀产沙量稳定地减少。 因此,在较长的时间尺度上(例如 5a)绿水系数的变化对于产沙量变化的解释能
力要比年尺度关系的解释能力强得多。
图 4摇 河龙区间年产沙量与绿水系数之间的关系
Fig.4摇 Relationships between the annual green water coefficient and sediment yield in the Hekouzhen鄄Longmen drainage area
4.3摇 绿水系数增大在农业生产上的意义
黄河流域绿水系数的增大意味着生产性绿水系数的增大。 因此,在绿水系数增大的同时,植被覆盖度和
粮食产量均增大。 由于梯田与坡耕地相比,降雨入渗量大大增加;坝地拦蓄的洪水,大部分最后都渗入地下,
因此梯田和坝地土壤的含水率要大大高于坡耕地。 据黄河水利委员会绥德水土保持试验站实测资料,坡地、
梯田、坝地土壤含水率分别为 9.47%、10.72%和 17.61%,梯田和坝地分别是是坡地的 1.13 倍和 1.86 倍[21]。
在其他条件可比时,这是梯田和坝地的粮食产量要大大高于坡耕地的原因。 据黄土高原典型调查资料,坝地
粮食产量为 3700—4500 kg / hm2,高的可达 7500 kg以上,是坡耕地的 4—6倍、梯田的 2—3倍,梯田每公顷产
量则为坡耕地的 2倍以上。 据绥德水土保持试验站对王茂沟 1960—1996年 37年间的观测,坝地、水平梯田、
3037摇 22期 摇 摇 摇 许炯心摇 黄河中游绿水系数变化及其生态环境意义 摇
http: / / www.ecologica.cn
坡耕地年均粮食产量分别为每公顷 4750、1606 和 566 kg,即坝地、水平梯田分别为坡耕地的 8.39 倍和 2.83
倍[21]。 农作物耗水量体现为蒸腾作用,是流域绿水量的重要组成部分。 在其他条件可比时,单位面积粮食产
量越高,农作物的耗水量越大,梯田和坝地粮食的增产意味着绿水系数的增大。 河龙区间流域绝大部分位于
山西和陕西两省,以这两省的粮食产量的相对变化来近似反映河龙区间粮食产量的相对变化。 以实施水土保
持以前的 20世纪 50年代平均粮食产量作为基准,计算出历年的产量与基准产量之比值,称为粮食产量指数。
以历年数据为基础,图 5中分别点绘了粮食产量指数与梯田面积与坝地面积的关系,表现出很强的正相关。
图 5还显示,粮食产量指数与河龙区间绿水系数也呈较显著的正相关,说明水土保持实施后,生产性绿水占降
水的比率增大,这是粮食产量显著提高的原因之一。
图 5摇 河龙区间粮食产量指数与梯田面积、坝地面积和绿水系数的关系(粮食产量数据来自文献[20] )
Fig.5摇 Index of grain yield plotted against the area of terrace land, the area of the land created by check鄄dams and Cwg [20]
4.4摇 绿水系数对生态环境的指示意义
在蒸散发量中,蒸发量为非生产性绿水流,散发量(植物蒸腾量)为生产性绿水流[6]。 其中,农作物散发
量是生产粮食所消耗的绿水,非农作物植被的散发量则是维持生态系统的所消耗的绿水量,这两部分绿水量
都对生态环境有利。 为了对这两部分进行区分,可以称前一部分为农业生产性绿水流,后一部分为生态性绿
水流。 因土壤蒸发而消耗的绿水量可以增加空气的湿度,就广义而言对于生态环境的维持也是有利的。 因
此,绿水流对于生态环境是有利的。 从这一意义出发,可以将绿水系数作为衡量生态环境变化的指标。 在年
降水可比的情况下,如果绿水系数减小,说明生态系统中以径流的方式流失的水量即蓝水的比率增大,用于其
自身维持的水量(即绿水)的比率减小,在这一过程中与径流流失相伴随的物质流失(土壤颗粒、土壤有机质
和营养元素)也增加。 可以认为,这会导致生态环境质量的下降。 反之,绿水系数增大,则说明生态系统中以
径流的方式流失的水量即蓝水的比率减小(由此导致物质流失减少)、绿水的比率增大(这意味着生态系统的
生产力提高),可以认为生态环境趋于好转。 从这一思路出发,可以评价黄河中游河口镇至龙门区间的绿水
系数的变化及其生态环境意义。
采用 Mann鄄Kendall方法研究了绿水系数的变化趋势,探测了变化过程中的转折点。 图 6点绘了河龙区间
4037 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
绿水系数的 Mann鄄Kendall U值随时间的变化。 从图中可以看到,U值变化曲线有两个明显的转折点,发生于
1970年和 1999年;1990年还有一个次一级的转折点。 可以将 1950—2011 年间河龙区间绿水系数的变化分
为 4个阶段:(1)阶段玉(1950—1969年):绿水系数呈减小趋势。 这一阶段中,水土保持措施尚未生效,人类
对环境的破坏大于治理,流域水分流失相对严重,因而绿水系数减小。 与水分流失相伴随的土壤流失与土壤
养分流失均较严重,这意味着生态环境的质量下降;(2)阶段域(1970—1998 年):绿水系数在波动中呈增大
趋势。 水土保持措施生效,流域水分流失大大减少,与水分流失相伴随的土壤流失与土壤养分流失也大大减
少,这意味着生态环境质量的提高。 这一阶段又可细分为两个时段。 1970—1989 年(域a),水土保持的生效
使得绿水系数增大。 然而,1990—1998年(域b),淤地坝的拦沙效应明显衰减。 河龙区间的淤地坝,绝大部分
是 20世纪 70年代修建的,80年代以后淤地坝修建量大为减少,而淤地坝的拦沙寿命为 10—20a,70年代修建
的淤地坝与拦沙库到这一时期已大部失效[22],因此流域水分流失增加,绿水系数减小;(3)阶段芋(1999—
2011年):绿水系数迅速增大。 这一阶段中,除了原有的梯田、林草和淤地坝措施得到加强外,大面积退耕还
林还草和以自然封禁为主的生态恢复也在这一地区广泛开展,据中国统计年鉴资料[19],山西、陕西两省
2000—2006年间累积退耕耕地面积达 300.4万 hm2;据黄河年鉴资料[20],河龙区间 1996—2005年间累积封禁
治理 133.2万 hm2,这使得植被进一步改善,生态环境质量进一步提高。
图 6摇 河龙区间绿水系数的Mann鄄Kendall U值、绿水系数距平及累积距平随时间的变化
Fig.6摇 Temporal variations in Mann鄄Kendall U of Cgw, the departure of Cgw to the average and the cumulative departure of Cgw to
the average
为了对于图 6中的变化阶段作进一步论证,在图 6中分别点绘了绿水系数的距平百分数及其累积值的变
化。 可以看到,1950—1970年间,绿水系数距平百分数以负值为主,21a 中正值只出现了 1 次;1971—1999 年
间,绿水系数有所增大,28a中距平百分数正值出现了 16次,负值出现了 12 次;2000—2011 年间,绿水系数距
平百分数进一步增大,11a中正值出现了 10次,负值只出现了 1 次。 绿水系数累积距平百分比曲线则显示出
完全相似的阶段性,在 1970 年和 1999 年分别出现两个转折点,将整个变化过程分为 3 个阶段。 1950—
1970年,绿水系数累积距平百分数减小;1971—1999年在总体上缓慢增大,但可以以 1990 年为界划分为两个
次一级的阶段,1970—1989年增大,1990—1999 年减小;2000—2011 年,绿水系数累积距平百分数呈现加速
增大的趋势。
5037摇 22期 摇 摇 摇 许炯心摇 黄河中游绿水系数变化及其生态环境意义 摇
http: / / www.ecologica.cn
5摇 关于绿水系数应用意义的讨论
本文所揭示的黄河中游绿水系数变化的生态环境意义,有助于更全面地评价水土保持的水资源效应,从
而为流域水资源的管理提供新的认识。 这体现在 4个方面:第一,绿水系数的增大意味着绿水(蒸发蒸腾量)
在降水中所占比例的增大。 蒸腾量比率的增大表明植物消耗水量的增加,即林草植被和农作物耗水的增加。
前者属于生态耗水量,对于生态环境的改善有利;后者是粮食等农作物生产的耗水量,有益于社会经济发展。
第二,绿水系数和天然径流系数之和是一个常数,二者互为消长。 水土保持措施的生效是这些措施对于径流
进行调节的结果,梯田、林草、淤地坝的减沙效益来自减水效应。 与这种减水效应相伴随的是土壤水资源的增
加和生态性、生产性绿水资源的增加。 因此,水土保持在减少了下游的河川径流资源的同时,增加了流域中的
土壤水和生态性、生产性绿水资源。 第三,水土保持的水资源效应的含义应包括蓝水和绿水在内。 水土保持
对蓝水资源的影响体现为对径流的影响,是一种异地(off鄄site)或下游效应,一般表现为减少年径流。 水土保
持对绿水资源的影响则体现为对土壤水资源的影响,是一种当地( in鄄site)效应。 绿水系数的增大意味着当地
生态耗水量和农作物耗水量的增大,这两部分耗水量是绿水资源的消耗量,是由土壤水资源转化而来的。 下
游河川径流的减少不一定意味着水资源的净减少;径流资源的减少是以土壤水资源(或生态性、生产性绿水
资源)的增加为补偿的,虽不利于下游河道,但有利于实施水土保持的小尺度、中尺度流域。 水土保持的水资
源效应包括两部分,即减少蓝水和增加生产性、生态性绿水,不能只看到前一方面而忽略了后一方面。 第四,
水土保持的水资源效应该是蓝水减少量与生产性、生态性绿水增加量的代数和。 对于水保措施的水资源效应
的评价必须从包含土壤水和生态生产性绿水资源在内的广义水资源的概念出发,才能得到全面、正确的认识。
在广义水资源的管理规划中如何科学地确定河川径流资源和生态生产性绿水资源之间的合理比例,在理论和
实践上都有重要意义。
6摇 结论
(1)本文以大量实测资料为基础,研究了黄河中游河龙区间绿水系数的变化及其影响因素,发现该地区
绿水系数呈现增大的趋势。
(2)系统地研究了水土保持措施与绿水系数的关系,发现水土保持措施的大规模实施是导致绿水系数增
大的重要因素,梯田面积、造林面积、种草面积和淤地坝造地面积等变量可以解释绿水系数变化的 39.5%—
49.1%。
(3)首次发现河龙区间产沙量与绿水系数之间呈显著的负相关关系,绿水系数的变化可以解释产沙量变
化的 53.7%;梯田、坝地面积与绿水系数和粮食产量之间都存在着显著的正相关关系,粮食产量与绿水系数之
间也存在显著的正相关关系;水土保持的实施通过增大梯田和坝地生产性绿水系数,增加了粮食产量。
(4)绿水系数具有生态环境指示意义,可以作为评价流域生态环境变化的指标之一。 在年降水可比的情
况下绿水系数的减小意味着生态环境环境质量降低,绿水系数的增大意味着生态环境质量提高。 绿水系数对
于广义的流域水资源评价和水土保持措施水资源效应的确切评价,都有重要的应用意义。
参考文献(References):
[ 1 ]摇 Falkenmark M. Coping with water scarcity under rapid population growth. Conference of SADC Minister, Pretoria, 1995: 23鄄24.
[ 2 ] 摇 Falkenmark M. Land鄄water linkages: A synopsis. Land and Water Bulletin No.1. Rome: FAO, 1995: 15鄄17.
[ 3 ] 摇 Falkenmark M, Lannerstad M. Consumptive water use to feed humanity-curing a blind spot. Hydrology and Earth System Sciences Discussions,
2004, (1): 7鄄40.
[ 4 ] 摇 Savenije H H G. Water scarcity indicators: The deception of the numbers. Physics and Chemistry of the Earth (B), 2000, 25(3): 199鄄204.
[ 5 ] 摇 Ringersma J, Batjes N, Dent D. Green Water: Definitions and Data for Assessment (ISRIC Report) . Wageningen, 2003.
[ 6 ] 摇 Falkenmark M, Rockstrom J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. Water
6037 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
Resource Planning and Management, American Society of Civil Engineers, 2006, 132(3): 129鄄132.
[ 7 ] 摇 Postel S L, Daily G C, Ehrlich P R. Human appropriation of renewable fresh water. Science, 1996, 271(5250): 785鄄788.
[ 8 ] 摇 Rockstrom J, Gordon L. Assessment of green water flows to sustain major biomes of the world: Implications for future ecohydrological landscape
management. Physics and Chemistry of the Earth (B), 2001, 26(11鄄12): 843鄄851.
[ 9 ] 摇 Gerten D, Hoff H, Bondeau A, Lucht W, Smith P, Zaehle S. Contemporary " green" water flows: Simulations with a dynamic global vegetation and
water balance model. Physics and Chemistry of the Earth, 2005, 30(6-7): 334鄄338.
[10] 摇 Jewitt G. Integrating blue and green water flows for water resources management and planning. Physics and Chemistry of the Earth, 2006, 31(15-
16): 753鄄762.
[11] 摇 程国栋, 赵文智. 绿水及其研究进展. 地球科学进展, 2006, 21(3): 221鄄227.
[12] 摇 刘昌明, 李云成. “绿水冶与节水: 中国水资源内涵问题讨论. 科学对社会的影响, 2006, (1): 16鄄20.
[13] 摇 吴洪涛, 武春友, 郝芳华, 金英学. “绿水冶的多角度评估及其管理研究. 中国人口·资源与环境, 2008, 18(6): 61鄄67.
[14] 摇 王玉娟, 杨胜天, 刘昌明, 戴东, 郑东海, 曾红娟. 植被生态用水结构及绿水资源消耗效用—以黄河三门峡地区为例. 地理研究, 2009,
28(1): 74鄄84.
[15] 摇 吴洪涛, 武春友, 郝芳华, 金英学. 绿水的多角度评估及其在碧流河上游地区的应用. 资源科学, 2009, 31(3): 420鄄428.
[16] 摇 Xu J X. Effects of climate and land-use change on green鄄water variations in the middle Yellow River, China. Hydrological Sciences Journal, 2013,
58(1): 1鄄12.
[17] 摇 赵文林. 黄河泥沙. 郑州: 黄河水利出版社, 1996: 798鄄799.
[18] 摇 Demaree G R, Nicolis C. Onset of Sahelian drought viewed as a fluctuation鄄induced transition. Quarterly Journal of the Royal Meteorological
Society, 1990, 116(491): 221鄄238.
[19] 摇 中国国家统计局. 中国统计年鉴(2007). 北京: 中国统计出版社, 2008.
[20] 摇 黄河水利委员会. 黄河年鉴(2006) . 郑州: 黄河水利出版社, 2006.
[21] 摇 常茂德, 郑新民, 柏跃勤. 黄土丘陵沟壑区小流域坝系相对稳定及水土资源开发利用研究. 郑州: 黄河水利出版社, 2007: 219鄄 230,
292鄄293.
[22] 摇 许炯心. 黄河中游多沙粗沙区水土保持减沙的近期趋势及其成因. 泥沙研究, 2004, (2): 5鄄10.
7037摇 22期 摇 摇 摇 许炯心摇 黄河中游绿水系数变化及其生态环境意义 摇