全 文 :第 26卷第 4期
2006年4月
生 态 学 报
ACTA ECOLOGICA SINICA
VoI.26,No.4
Apr.。2006
丛枝菌根对喜树幼苗喜树碱含量的影响
赵 昕,王博文,阎秀峰
(东北林业大学生命科学学院。哈尔滨 150040)
摘要:喜树(Camptotheca acuminata)是我国特有的多年生亚热带落叶阔叶树种,因其次生代谢产物喜树碱具有良好的抗肿瘤活性
而受到人们的广泛关注。通过温室盆栽接种试验,观察了2属 6种丛枝菌根真菌对喜树幼苗喜树碱含量的影响。结果表明,接
种的 6种丛枝菌根真菌与喜树幼苗均形成 了共生体系并且发育 良好。透光球囊霉 (Glomus diaplmn“m)、幼套球囊霉 (G.
etunicatum)、蜜色无梗囊霉(Aeaulospora mellea)和光壁无梗囊霉(A./aev/s)侵染形成丛枝菌根有利于提高喜树幼苗的喜树碱含
量,地表球囊霉(G.vers/forme)~l影响不大,而木薯球囊霉(G.manihot)却降低了喜树幼苗的喜树碱含量。丛枝菌根形成对喜树
幼苗喜树碱代谢的影响还表现在喜树碱的器官分配上,菌根幼苗根中的喜树碱比例均高于无菌根幼苗。
关键词:喜树幼苗;丛枝菌根;喜树碱;次生代谢
文章编号:1000-0933(2OO6)O4.1057.06 中圈分类号:Q143 文献标识码:A
Effect of arbuscular mycorrhiza on camptothecin content in Camptotheca acuminata
seedlings
ZHAO Xin,WANG Bo—Wen,YAN Xiu—Feng (College of Sciences,Northeast m竹 。HarbiR 150040。China)
. Aaa
Ecologica SinJca,2OO6,26(4):1057—1062.
Abstract:Mycorrhizal fungi form the most important mutualistic symbioses on earth with plants.Much research has shown that the
development of arbuscular mycorrhize(AM)is correlated with plant secondary metabolism.AM fungi can directly or indirectly
affect plant secondary metabolic processes.Camptothecin(CPT),a secondary metabolite in a special Chinese tree Camptotheca
acuminata,has gained great atention for its remarkable inhibitory activity against tumor cells.The efect of AM infected with six
fungi belonging to two genera on CPT content in C.acuminata seedlings was carried out in the present study.
The selected sterile seeds of C.acuminata were sown in sterilized sands in the greenhouse.After 70 days of cultivation,
seedlings with similar hei【ght and crown were selected and divided into seven groups(10 pots per group).Each group of C.
acuminata seedlings was inoculated with one of AM fungus Glomus manihot,G.versifo删 ,G.etunicatum,G.diaphanum,
Acaulospora mellea,A.1aevis,OF non—mycorrhizal inoculation,namely Gm,Gv,Ge,Gd,Am,A1,or control(CK),
respectively.After 3-month cultivation,the symbiotic association was observed and CPT content in the seedlings of C.acumirmta
was determ ined.
All C.acuminata seedlings inoculated with six fungi formed AM.Colonization rates of AM was over 70% in seedlings
infected with 4 Glomus fungi(Gm,Gv,Ge,Gd),and一50% with 2 Acaulospora fungi.Mycorrhizal colonization intensity of
roots(M)and infected root fragments(m)were showed in Table 1.Good symbiosis systems were formed between C.acuminata
seedlings and selected mycorrhizal fungi.
In roots,CPT contents in mycorrhizal seedlings were significantly higher than non-mycorrhizal seedlings,except Gm.CPT
基金项目:黑龙江省杰出青年基金资助项目(JC.02—11)
收稿日期:2005.10.15;修订Et期:2006.02 20
作者简介:赵 昕(1977一)。女。黑龙江省牡丹江市人。博士生。主要从事植物次生代谢生态学研究.E-mail:zhaoxinmdj@yahoo.con1.cn
*通讯作者Coresponding author.E—mail:x an@mail.h1.cn
Foundation item:The pmject wag supported by Heilongjian$Provincial Foundation for Distinguished Young Scholars(No.Jc-02—11)
Received date:2005-10-15;Accepted date:2006-02-20
Biography:ZHAO Xin。Ph.D.candidate,mainly engaged in ecology of plant secondary metabolism.E-mail:zhaoxinmdj@yaho.COIl1.cn
维普资讯 http://www.cqvip.com
1058 生 态 学 报 26卷
contems in Gd,Am,AI,Ge and Gv were 2.5,2.1,1.7,1.6,and 1.3 times higher as CK,respectively.In the stem,CPT
content was signifcantly higher in A1 than CK,no significant diference among CK,Ge,Gd,and Am,while signifcantly lower in
Gm and Gv than CK.In leaves,CPT contents in A1,Gd and Am were 60% ,40% and 40% higher than CK,respectively,
however.CPT contents in Gm,Gv and Ge was affected litle by the AM infection.CPT contents in the whole plant in Gd,A1,Am
and Ge were 150% ,150% ,140% and 120% of CK,respectively,no remarkable diference between Gv and CK,whereas 23%
l0wer in Gm than CK. As a whole,AM infection was beneficial to CPT accumulation in C. acuminata seedlings with G.
diaphanum,G.etunicatum,A.1aevis,and A.melea,no influence with G.versiforl?le,and reduced with G.manihot.
AM a1so changed CPT alocation in different organs of C.acuminata seedlings.CPT ratios in all mycorrhizal roots were
higher than non.mycorrhizal seedlings.In mycorrhizal root of Gv CPT ratio was the highest,32% out of the whole plant,
comparing with 15% in CK.Due to the increase of CPT allocation in roots,CPT was less distributed in stems and leaves in
mycorrhizal seedlings.
Key words:Camptotheca acuminata seedlings;arbuscular mycorhiza(AM);camptothecin(CPT);secondary metabolism
菌根是自然界中一种极为普遍和重要的共生现象,其中丛枝菌根是分布最为广泛的菌根类型⋯,80%~
90%的被子植物都能形成丛枝菌根 ]。丛枝菌根有利于植物对养分的吸收 ,从而改善植物的生长状
况[ 。近年来,许多研究表明丛枝菌根也影响植物的次生代谢过程,导致植物的次生代谢产物发生变
化 , ,而这些次生代谢产物在植物和菌根真菌之间形成的共生关系中起着特别重要的作用 。因此,研究
菌根真菌和植物次生代谢的关系具有非常重要的生态学意义。
喜树(Campt0thec0 acuminata Decne)是珙桐科(Nyssaceae)喜树属(Camptotheca)多年生亚热带落叶阔叶树,
为我国特有树种,因其次生代谢产物喜树碱(camptothecin,CPT)具有良好的抗肿瘤活性而受到广泛关注 ¨。
人们已对喜树的生物学特性 ¨’”]、生长规律 ¨“ 、喜树碱的开发利用 ¨、喜树碱在喜树幼苗中的分布规
律 加。,以及光强、遮荫、水渍等因子对喜树中喜树碱含量的影响 进行了一些研究工作。黄永芳等_2。 以
苏格兰球囊霉和地表球囊霉接种喜树幼苗,初步观察了丛枝菌根的形成及其对喜树幼苗生长的影响。有关丛
枝菌根对喜树幼苗生长、养分吸收及生理代谢的影响尚缺乏深入研究。为此 ,通过温室盆栽接种实验 ,研究 2
属6种丛枝菌根真菌对喜树幼苗的接种效应以及幼苗次生代谢的响应,阐明丛枝菌根对喜树幼苗喜树碱含量
的影响。
1 材料和方法
1.1 丛枝菌根真菌
无梗囊霉属:蜜色无梗囊霉(Acaulospora melea Spain&Schenck),光壁无梗囊霉(A.1aevis Gerdemann&
Trappe);球囊霉属:木薯球囊霉(Glomus manihot Howeler,Sieverding&Schenck),地表球囊霉 (G.versifo
(Karsten)Berch),幼 套球囊霉(G.etunicatum Becker&Gerdemann),透光球囊霉 (G.diaphanum Morton&
Walker)。蜜色无梗囊霉、光壁无梗囊霉和木薯球囊霉由中国科学院南京土壤研究所林先贵研究员惠赠,地表
球囊霉和幼套球囊霉由中国农业大学李晓林教授惠赠,透光球囊霉由北京市农林科学院提供。
1.2 喜树幼苗培养及接种处理
2004年3月,精选成熟饱满的喜树种子,以0.5%的KMnO 浸泡消毒 l h,然后以无菌水洗去KMnO ,播入
121 oC灭菌 2 h的河沙中。幼苗开始长出侧根时移入口径20 em、深 20 on的花盆中,盆中基质为土壤与河沙的
混合物(体积比3:1,过 2 mm筛,混合后 121 qC灭菌 2 h),有机质含量 1.91%,全氮含量 1.04 g/kg,速效磷含量
11.72 mg/kg,速效钾含量0.22 g/kg,pH 6.23。
5月末,选择长势一致的喜树幼苗分为 7组(每组 l0盆)进行接种处理。1组作为对照(CK),不接种任何
AM真菌(在花盆中加入等量灭菌处理的接种剂和 10 mL各菌种混合滤液,以保证微生物区系一致);另外 6组
分别接种含有木薯球囊霉(Gm)、地表球囊霉(Gv)、幼套球囊霉(Ge)、透光球囊霉(Gd)、蜜色无梗囊霉(Am)和
光壁无梗囊霉(A1)孢子的菌土。每盆接种剂量为 30 g,菌土均匀层播于土表下8 em的幼苗根部。
维普资讯 http://www.cqvip.com
4期 赵昕 等:丛枝菌根对喜树幼苗喜树碱含量的影响 1059
接种后的喜树幼苗置于温室中自然培养,温室为 自然采光,昼夜温度 自然过渡(18 28℃),湿度 60%
70%。3个月后测定喜树幼苗的各项指标。
1.3 菌根侵染率统计
随机选取喜树鲜根 30条,剪成长约 1.0 am的根段,采用 Philips和 Hayman(1970)的染色方法染色、制片、
镜检,参照盖京苹 的方法统计菌根侵染率、根系的菌根侵染强度和侵染根段的菌根侵染强度:
菌根侵染率(F,%)=(菌根侵染的根段数/检测的根段总数)×100%
根系的菌根侵染强度(M,%)=(侵染根长/总根长)×100%
侵染根段的菌根侵染强度(m,%)=(根系的菌根侵染强度/菌根侵染率)x 100%
1.4 幼苗喜树碱含量的测定
将喜树幼苗按根、茎、叶分开,于80o(:烘箱中烘干至恒重,粉碎。按照阎秀峰 的方法,采用 Waters高效
液相色谱系统测定喜树幼苗根、茎和叶中喜树碱的含量,10株重复。
以上数据用 SPSS软件进行统计分析。
2 结果与分析
2.I 喜树幼苗的菌根形成情况
接种木薯球囊霉、地表球囊霉、幼套球囊霉、透光球囊霉、蜜色无梗囊霉和光壁无梗囊霉孢子菌土的喜树
幼苗,均不同程度地被侵染并形成了丛枝菌根,而对照的喜树幼苗无菌根真菌侵染,未形成丛枝菌根。实验所
用球囊霉属的4种真菌(Gm、Gv、Ge、Gd)的菌根侵染率较高,均在 70%以上;无梗囊霉属的2种真菌(Am、A1)
的菌根侵染率稍低,但最低的A1也接近50%。
从根系的菌根侵染强度(M)和侵染根段的菌根侵染强度(m)看(表 1),菌根真菌结构不仅在菌根化根系
中占有较大比例,而且在幼苗整个根系中所占的比例也较大,这表明接种的6种丛枝菌根真菌与喜树幼苗形
成的共生体系发育状况良好。
2.2 丛枝菌根形成对喜树幼苗喜树碱含量的影响
由图1可以看出,6种菌根真菌侵染所导致的丛枝菌根形成,均影响了喜树幼苗的喜树碱代谢。与无菌
根幼苗(对照)比,多数菌根幼苗的喜树碱含量明显提高,也有差异不明显或降低的。而且,丛枝菌根形成对喜
树幼苗喜树碱含量的影响有器官差异。
从根的情况看,只有 Gm菌根幼苗的喜树碱含量
显著低于无菌根幼苗,其他菌根幼苗均显著高于无菌
根幼苗。Gd、Am、A1、Ge和Gv菌根幼苗的喜树碱含量
分别达到无菌根幼苗(对照)的 2.5、2.1、1.7、1.6和
1.3倍。而且,菌根幼苗之间的差异也十分明显。
丛枝菌根形成对喜树幼苗茎的喜树碱含量的影
响比根要弱一些,只有 Al菌根幼苗的喜树碱含量显
著高于无菌根幼苗,Ge、Gd、Am菌根幼苗的喜树碱含
量与无菌根幼苗无显著差异,而 Gm和 Gv菌根幼苗
的喜树碱含量则显著低于无菌根幼苗。
丛枝菌根形成对喜树幼苗叶片喜树碱含量的影
响又与根、茎有所不同,Al、Gd和 Am菌根幼苗的喜树
碱含量显著高于无菌根幼苗,分别达到无菌根幼苗的
1.6、1.4和 I.4倍,而Gm、Gv、Ge菌根幼苗的喜树碱含
量则与无菌根幼苗相近。
从全株的喜树碱含量看,Gd、A1、Am和 Ge菌根幼
Table 1 Colonization rate of Camptotheca acuminata seedlings
Inoculated with six arbuscular mycorrhizal fungi
⋯
菌根侵染率 鼍 菌根侵 侵 。勰rhiz al
M 处理 ycorrhizal 强度 Myco丌hizal “”
Treatment c 。nizati。n colonization intensity 。。 on iza tio“ “ “ y
e(%) ro (%’ : :
CK,未接种丛枝菌根真菌 Non.arbuscular mycorhizal inoculation;
Gm、Gv、Ge、Gd、Am、A1,分别接种木薯球囊霉、地表球囊霉、幼套球囊
霉、透光球囊霉、蜜色无梗囊霉、光壁无梗囊霉 Inoculation with G.
manlhot,G. iform~,G.etunicatum,G.diaphanum,A.Melea and
A.1aev/s,respectively
维普资讯 http://www.cqvip.com
1060 生 态 学 报 26卷
苗显著高于无菌根幼苗,分别达到无菌根幼苗的 1.5、1.5、1.4和 1.2倍,Gv菌根幼苗与无菌根幼苗差异不显
著,而Gm菌根幼苗则低于无菌根幼苗,为无菌根幼苗的77%。因此,总体上看透光球囊霉、幼套球囊霉、蜜色
无梗囊霉和光壁无梗囊霉侵染形成丛枝菌根有利于提高喜树幼苗的喜树碱含量,地表球囊霉则影响不大,而
木薯球囊霉却降低了喜树幼苗的喜树碱含量。
CK Om Gv Ge Gd Am Al
图 1 AM真菌对喜树幼苗喜树碱含量的影响
Fig.1 Efects of arbuseular mycorrhizal fungi on camptothecin contents of Camptotheca~uminata seedlings
每一小图中,具有不同字母的柱体间差异性显著(P
丛枝菌根形成对喜树碱代谢的影响不仅表现在喜树碱含量上,还表现在喜树碱在喜树幼苗各器官的分配
上(图2)。与无菌根幼苗相比,所有菌根幼苗根中的喜树碱比例均明显增加,其中cv菌根幼苗根的喜树碱分
配比例最高,占全株的32%,而无菌根幼苗仅为 l5%。由于喜树碱在根中比例增加,总体上菌根幼苗茎和叶
片的喜树碱比例小于无菌根幼苗,但 Al菌根幼苗的茎和 Gm菌根幼苗的叶片喜树碱比例略高于无菌根幼苗。
3 讨论
植物组织中生物碱积累与环境因子有着密切的关
系 。相关研究 表明 ,土壤水分、光照强度 、光质及土
质等环境因素均明显影响喜树幼苗叶片中的喜树碱含
量 。 ,而生物因子调控植物组织中生物碱积累的研
究相对较少。一些研究观察到丛枝菌根真菌能够直接
或间接地影响植物的次生代谢过程 。魏改堂和汪
洪钢 在不同土壤有效磷供给条件下用漏斗孢球囊霉
和地表球囊霉分别接种曼陀罗(Datura stramonium),发 ‰ ,
现丛枝菌根真菌显著提高了曼陀罗中莨菪碱和东莨菪
斌
皇
CK Can Gv Ge Gd Am A1
图2 喜树幼苗中喜树碱的器官分配比例
Allocation of CPT to organs of Camptotheca acuminata seedlings
碱的含量。从本试验的结果看(图 1),丛枝菌根的形成影响了喜树幼苗的喜树碱代谢,一些菌根幼苗的喜树
碱含量高于无菌根幼苗。
丛枝菌根形成对喜树幼苗根中喜树碱含量的影响比茎和叶片更为明显。Rojas.Andrade等 在以玫瑰红
巨孢囊霉(Gigaspora rosea)接种牧豆树(Prosopis laevigata)时也发现,菌根真菌侵染的牧豆树根中葫芦巴碱
8 6 4 2 0
0 0 0 0
0葛 口 羞昙旨 0捌舡罐聋仲
∞ 舳 ∞ 加 加 O
维普资讯 http://www.cqvip.com
4期 赵昕 等:丛枝菌根对喜树幼苗喜树碱含量的影响
(trigoneline,一种吡啶生物碱)的含量比对照增加了 1.8倍。不过在他们的结果中,无论有否菌根真菌侵染,
牧豆树地上部分的葫芦巴碱含量总是恒定不变的,而喜树幼苗在菌根真菌侵染并形成菌根后,叶片的喜树碱
含量也高于无菌根幼苗。
已有的一些研究结果表明,菌根真菌通过侵染形成菌根对植物次生代谢 的影响,有明显的种属差异。
Vierheiling等 用根内球囊霉(G.intraradices)、摩西球囊霉(G.Ftlo5eo~)、玫瑰红巨孢囊霉分别接种到玉米
(Zea mays)和大麦 (Hordeum “ ),发现不同种类的丛枝菌根真菌形成的菌根植物 中其次生代谢产物
Bhmenin的含量有显著差异。与根内球囊霉形成菌根的大麦和玉米,Blumenin含量最高,而与玫瑰红巨孢囊
霉形成菌根的含量最低。Abu—Zeyad等 分别用根内球囊霉和珠状巨孢囊霉(Gigaspora margarita)接种澳大利
亚粟籽豆(Castanospermum australe),发现与根内球囊霉形成菌根的粟籽豆表现出更好的生长反应、更高的菌根
真菌侵染率和粟籽豆碱(castanospermine,一种吲哚生物碱)含量。同时也观察到,试验的2属 6种丛枝菌根真
菌对喜树幼苗中喜树碱含量的影响也表现出差异。幼套球囊霉、透光球囊霉、蜜色无梗囊霉和光壁无梗囊霉
提高喜树幼苗中喜树碱的含量,地表球囊霉影响不明显,而木薯球囊霉却降低了喜树碱的含量。
显然,目前观察到的只是丛枝菌根形成对植物次生代谢影响的一些表观现象,而丛枝菌根真菌在侵染植
物以及与植物建立共生关系的过程中与植物次生代谢的关系是错综复杂的,需要更为深入的实验观察来洞察
其关系实质,而这对于更深刻地理解植物与环境的互作本质是非常必要的。
References:
[1] Straek D,Fester T,Hause B,et a1.Arbuscular myeorhiza:biological,chemical,and molecular aspects.Journal ofChemical Ecology,2003,29:1955
— 1979.
[2] Koide R T,Schreiner R P.Regulation of the vesicular-arbuseular myeorrhizal symbiosis.Annual Review of Plant Physiology and Plant Molecular Biology,
l992,43:557—581.
[3] Smith S E,Read D J.Mycorhizal Symbiosis,2nd ed.San Diego:Academic Press Ine.,1997.605.
[4] Jones M D。Durall D M,Tinker P B.A comparison of arbuseular and ectomyeorrhizal Eucalyptm cocciferc~:growth response,phosphorus uptake eficiency
and external hyphal production.New Phytologist。1998,140:125—134.
[5] Varma A Myeorhizae,The friendly fungi:what we know,what should we know and how do we know?In;Varma A.ed.Modern laboratory manual
myeorrhizae.Heidelberg,Berlin,New York:Springer,1998.1—24.
[6] Mahendra R,Deepak A,Singh A.Positive growth responses of the medicinal plants Spilanthes calva and Withania,omnife,a to inoculation by
Piriformosporaindica in afieldtria1.Myeorhiza,2001,11:123—128.
[7] Morandi D.Occurence of phytoalexins and phenolic compounds in endomyeorhizal interactions and their potential role in biological contro1.Plant and Soil,
1996,185:24l一251.
[8 Vierheilig H,Bago B,Albrecht C,et a1.Flavonolds and arbuseular myeorhizal fungi.In:Manthey J.,Buslig B,eds.Flavonoids in the Living System.
New York:Plenum Press,1998,9—33,
[9] Harborne J B.Introduction to ecological biochemistry.3rd ed.London:Academic Pres,1988.
[10] Akiyama K,Matsuoka H。Hayashi H.Isolation and identification of a phosphate deficiency—induced C-glycosyl flavonoid that stimulates arbuscular
mycorhiza formation in melon roots.Molecular Plant—Microbe Interactions,2002,15(4):334—340.
[11] Li S.Kent T A.Camptotheca aeuminata Decaisne XISHU(Chinese Happy Tree)apromising Anti—tumor and Anti viral tree for the 21 st century·Texas,
USA:The Tucker Center College of Forestry Stephen F.Austin state University Naeogdoches,1994.
[12] Xi M L,Bao S K.Study on the transition from procambium to cambium in Camptotheca acurninata.Aeta Botanica Boreali—Occidentalia Sinica,1997,17
(5):83—87.
[13] Li F L,Cao H Y,Li J Q.Comparison on the anatomical structure of secondary xylem in stem between Davidiain volucrata and Camptotheca aeuminata·
Journal of Beijing Forestry University。1998.20:75—78.
[14] Yao J x,plan Y C,Shen X L。et a1.Superiority of Camplotheca ocuminata seedlings Journal ofZhejiang Forestry Colege,1997·14:134~l4l·
[15] Shi B L,Zhou G M,Ying Y Q。et a1.Height growth of Camptotheca acumirtata yearlings from various provenanves.Journal of Zhejiang Forestry Colege·
l999.16:353—357.
[16] Zhou G M,Li X Q,Chu J M,et a1.Camptotheca aeuminata:the law of growth and character correlation of young trees and sprouting branches·Journal
of Zhejiang Forestry Colege。2000,17:355—359.
维普资讯 http://www.cqvip.com
1062 生 态 学 报 26卷
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[32]
[33]
Zhan8 Q J,15 s L,Feng J C,et a1.The Camptotheca acuminata seedlings growth and changes ofits physiolagieaindexes under diferent pH sUess.Journal
of Henan Agicultural University,2OOO,34:193—195.
Feng J C.Zhang Y J,Tan Y D。et a1.The development in research on Camptotheca acuminata and utilization of camptothecin.Scientia Silvae Sinicae,
2000,36:100—108.
Liu Z j,Adams J C.Camptothecin yield and distribution within Camptotheca acuminata trees cultivated in Louisiana.Canadian Journal of Botany,1996,
74:36O一365.
15u Z J,Carpenter S B,Bourgeois W J.Variations in the secondary metabolite eamptothecin in relation to tisue age and 8~a$on in Camptotheca acuminata+
Tree Physiology,1998,18:265—270.
Wang Y,Dai S J,Yan X F.Efects oflight intensity on secondary metabolite camptothecin production in leaves of Camptotheca acaminata seedlings.Acta
Eeolagica Sinica,2004,24(6):1118—1122.
15u Z J,Carpenter S B,Constantin R J.Camptothecin production in Camptotheca acuminata seedlings in response to shading and flooding.Canadian
Journal of Botany,1997,75:368—373.
Huang Y F.U H H,Chen H Y,et ,Preliminary study on the myeorrhiza inoculation on the seedling of Camptotheca acuminata.Guangdong Forestry
Science and Technology,2003.19(1):40—42.
Phillips J M,Hayman D S.Improved procedures for clearing and ataining parasitic and vesieular-arbuscular mycorhizal fungi for rapid assessment of
infection.Transactions of the British Mycological Society,1970,55:158—161.
Gai J P,Feng G,U X L.The efect of AM fungi on the growth of sweet potato.Chinese Journal of Eco—Agriculture,2004,12(1):111—113.
Yah X F,Wang Y,Yu T,et a1.Determination of camptothecin in leaves of Camptotheca acuminata Decne.by HPLC.Journal ofInstrumental Analysis,
2002,21:15一 l8,
Dai S J,Wang Y,Yah X F,et a1.Effects of color films on growth and camptotheein content in the leaves of Camptotheca acuminata seedlings.Acta
Eeolagiea Sinica,2004,24(5):869—875.
Walter M H,Fester T,Strack D.Arbuscular myeorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosythesis
correlated with accumulation of the’yellow pigment’and other apoearotenoids,Plant Journal,2000,21:571—578.
Fester T,Schmidt D,Lohse S,et .Stimulation of carotenoid metabolism in arbuscular mycorrhizal loots.Planta,2002,216:148—154.
Wei G T,Wang H G.Effects of VA mycorrhizal fungi on growth,nutrient uptake and efective compounds in Chinese medicinal herb Datura stramonium L_
Scientia Agncuhura Sinica,1989,22(5):56~61.
Rojas-Andrade R,Cerda-Garcia—Rojas C M,Frias-Hemandez J T,et al Changes in the concentration of trigoneline in a semi—arid leguminous plant
(Prosopis laevigata)induced by an arbuscular mycorhizal fungus during the presymbiotic phase.Mycorhiza,2003,1 3(1):49 52.
Vierheiling H,Gagnon H,Strack D,et a1.Accumulation of cyclohexenone derivatives in barley,wheat and maize roots in response to inoculation with
different arbuseular mycorrhizal fungi.Mycorrhiza,2000,9:291—293
Abu-Zeyad R,Abdul G,Khoo CK.Occurrence of arbuscular myeorrhiza in Castanospermum atLstrale A,Cunn.& C.Fraser and efects on growth and
production of castanospermine.Mycorrhiza,1999,9:I 1 1—1 l7.
参考文献
帘梦利,包少康.喜树原形成层到形成层转化的研究.西北植物学报,1997,17(5):83 87.
李凤兰,曹弘瑜,李俊清.珙桐与喜村茎次生木质部解剖构造的比较.北京林业大学学报,1998,20:75 78.
姚建祥,钱银才,沈湘林,等.喜树地理种源苗期优势分析.浙江林学院学报,1997,14:134—141.
石柏林,周国模,应叶青,等.喜树不同种源苗高生长规律的初步研究.浙江林学院学报,1999,I6:353—357.
周国模,李孝青,储家淼,等.喜树幼树和萌芽条生长规律及性状相关.浙江林学院学报,2000,17:355 359.
张秋娟,李淑玲,冯建灿,等.pH值胁迫对喜树苗期生长及生理指标的影响.河南农业大学学报,2000,34:193 195.
冯建灿,张玉洁,谭运德,等 .喜树与喜树碱开发利用进展.林业科学,2000,36:100~108.
王洋 ,戴绍军,阎秀峰.光强对喜树幼苗叶片次生代谢产物喜树碱的影响.生态学报,2004,24(6):II 一1122.
黄永芳,李海华,陈红跃,等.喜树育苗和接种菌根菌试验.广东林业科技,2003,19(1):40 42.
盖京苹,冯固,李晓林.接种丛枝菌根真菌对甘薯生长的影响研究.中国生态农业学报,2004,12(1):111 113
阎秀峰,王洋,于涛 ,等.喜树叶中喜树碱含量的高效液相色谱分析.分析测试学报 ,2002,21:15 18.
戴绍军,王洋,阎秀峰 ,等.滤光膜对喜树幼苗叶片生长和喜树碱含量的影响.生态学报,2004,24(5):869—875.
魏改堂,汪洪钢.VA菌根真菌对药用植物曼陀罗(Dat“m stra,一nium L)生长、营养吸收及有效成分的影响.中国农业科学,1989,22(5)
56 61.
圳 川 吲 圳 剐 剐 圳
维普资讯 http://www.cqvip.com