全 文 :植物生理学报 Plant Physiology Journal 2012, 48 (1): 11~18 11
收稿 2011-09-29 修定 2011-10-31
资助 国家自然科学基金(90817106)。
* 通讯作者(E-mail: lbzt01@henu.edu.cn; Tel: 0378-3881387)。
植物激素ABA在水分胁迫下的功能及信号途径
李保珠*, 安国勇, 韩栓
河南大学生命科学学院, 棉花生物学国家重点实验室, 河南省植物逆境生物学重点实验室, 河南开封475004
摘要: 植物根系感知外界水分胁迫刺激, 诱导ABA生物合成。ABA既可诱导气孔关闭或抑制气孔开放, 以降低植物的蒸腾
失水, 又可影响植物根系发育, 以抵御水分胁迫。本文就植物激素ABA及其下游信号H2O2、NO以及Ca
2+等在植物生长调
节方面的研究进展进行概述, 以构建水分胁迫下植物生长自我调控的可能模式。
关键词: 水分胁迫; 脱落酸; 过氧化氢; 一氧化氮
Function and Signaling of Plant Hormone ABA under Water Stress
LI Bao-Zhu*, AN Guo-Yong, HAN Shuan
State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan Univer-
sity, Kaifeng, Henan 475004, China
Abstract: Plant roots perceive water stress and induce the synthesis of abscisic acid (ABA). ABA not only
could induce stomatal closure or inhibit stomatal opening to reduce transpiration, but also regulate the develop-
ment of roots and increase drought tolerance. This paper focused on the functions of plant hormone ABA and
its downstream signal intermediates (H2O2, NO and Ca
2+) for establishing the basic model of its regulation of
plant growth under water stress.
Key words: water stress; abscisic acid; hydrogen peroxide; nitric oxide
非充分灌溉条件下, 作物通过生长调节以保
持较高产量(康绍忠等1997, 1999)。因此, 研究水
分胁迫下植物的生长调节对于丰富非充分灌溉理
论, 提高作物水分利用效率具有重要理论价值和
现实意义。早期的研究认为, 植物根系在受到水
分胁迫时, 根尖细胞彭压及体积发生变化, 脱落酸
(abscisic acid, ABA)快速合成(Walton等1976; Com-
ish和Zeevaart 1985; Zhang 1994), 伴随着木质部汁
液ABA水平上升导致植物叶片气孔关闭(Davies和
Zhang 1991; Sauter等2001), 即ABA可能作为长距
离信号介导干旱条件下地下部与地上部的信息传
递(Wilkinson和Davies 2002)。近年来这种观点受
到质疑。Ikegami等(2009)通过分析离体叶片和根
在干旱处理前后ABA水平的变化, 发现离体叶片
中ABA含量增加的方式与完整植物的叶片类似;
而离体的根在干旱处理4 h后ABA含量却没有明显
的变化, 同时当离体根遭受缺水处理时, 根中并未
发现ABA的积累, 该研究表明ABA主要在植物叶
片中合成。进一步的[13C] ABA的同位素示踪实验
证明叶片合成的ABA在干旱胁迫条件下向根部运
输(Ikegami等2009)。即缺水条件可以激活植物叶
片合成ABA, 诱导气孔关闭, 减少蒸腾失水, 同时
ABA向根部运输, 影响根系的发育, 提高植物对干
旱条件的抗性。此外, Christmann等(2007)报道根
部干旱产生的液压信号(hydraulic signal)可能作为
长距离信号介导干旱条件下地下部分与地上部分
的信息传递。本文基于前人的研究工作, 对逆境
信号ABA调节水分胁迫下植物生长的作用机制进
行综述。
1 水分胁迫下逆境信号ABA对植物适应性生长的
调节
ABA作为一种植物激素, 几乎存在于所有高
等植物中, 它不仅在诸如种子的成熟和休眠与萌
发、气孔的运动、开花时间和果实成熟等植物生
长发育的诸多生理过程中起重要的调节作用(Fin-
kelstein等2002, 2006; Schroeder和Kuhn 1985), 而且
还可调节植物对逆境胁迫如干旱、盐碱和病原侵袭
等的反应(Verslus和Zhu 2005; Schroeder等2001)。已
经证明, 水分胁迫下植物体内源ABA水平增加, ABA
植物生理学报12
参与调节植物应对水分亏缺反应, 维持一定适应
性生长速度, 增加植物逆境中存活的机会。干旱
条件下, ABA能导致植物叶片伸展率(leaf expan-
sion rate, LER)的明显下降, 使得叶面积减小进而
降低水分丧失(Salah和Tardieu 1997) 。Granier等
(1999)的研究也表明水分胁迫或外施ABA均影响
到植物叶片发育的空间模式(Granier和Tardieu
1997)。适当干旱时叶片伸展率受到植物细胞汁液
pH的调控 , 而这种调控依赖于ABA (Bacon等
1997)。ABA与气孔导度也存在密切关系, 如外施
ABA会引起柳树气孔导度下降, 除去ABA又可以
逆转这种现象(王少先等2003)。同时, 气孔导度受
到植物叶片中ABA浓度的调节(Heckenberger等
1996; Fort等1998)。许多研究也都表明, 水分胁迫
或ABA处理下会诱导植物产生许多与生理生化过
程相关的特异保守性蛋白, 诸如具有运输水分功
能的水孔蛋白(aquaporin, AQP)、对植物细胞进行
渗透调节的渗透蛋白(osmotin)等(Han和Xue 2003;
Christmann等2005; Raghothama等1997; Shao等
2005)。Lea蛋白(late embryogenesis abundant pro-
tein)是胚胎发生后期种子中大量积累的一系列蛋
白质, 随着种子的脱水成熟其含量也不断增加, 它
们对提高植物脱水耐受力有很大作用。研究表明,
在植物个体发育的其它阶段, Lea蛋白也能因干旱
胁迫或ABA诱导等在植物的营养器官中表达, 同
时, Lea蛋白表达时序也和植物体中ABA变化相一
致(Ingrtam和Bartels 2003; Christmann等2005; Mar-
tìnez等2004; Xiao等2007)。另外, 水分充足的条件
下, 植物细胞内ABA呈均匀分布, 水分亏缺时, 抗
旱品系皮层和叶的细胞质中ABA含量较高, 而不
抗旱品系液泡中的ABA含量较高, 这表明水分胁
迫下, 植物细胞也通过调整ABA的分布影响其对
干旱条件的适应性(Yamazaki等2003; Christ-mann等
2005)。水分胁迫条件下, ABA除了上述生理上对
植物适应性生长进行调节外, 其调节气孔运动及
根的生长发育也为人们所熟知。在研究ABA参与
植物对胁迫条件的反应及调节植物生长发育的过
程中, 包括H2O2、NO、蛋白激酶、磷酸酶、Ca
2+
和质膜相关离子通道等许多重要的ABA信号转导
元件也被陆续鉴定出来(Zhang等2001a, b, c; Bright
等2006; Grabov等1997; Pei等2000)。
2 水分胁迫下ABA对植物气孔运动的调节
ABA通过与受体相结合, 进而引起植物体一
系列生理反应。ABA受体的发现及鉴定, 对于研
究植物激素ABA水分胁迫和植物生长发育的信号
转导具有重要意义。近年来, 对于ABA受体的研
究已有了突破性的进展。FCA、Mg离子螯合酶
(Mg-chelatase) H亚基的CHLH以及G蛋白偶联受体
分别被报道作为ABA受体(Fawzi等2006; Shen等
2006; Liu等2007), 然而这些已被鉴定的ABA受体
均因实验结果无法重复等原因存在争议(Johnston
等2007; Jang等2007)。最近, 属于一个含有14名成
员蛋白质家族的成员PYR/PYL/RCAR被鉴定为
ABA受体, 它可以在体内外结合ABA, 之后会结合
下游的蛋白磷酸酶PP2C并抑制其磷酸酶活性, 同
时发现其中一个被命名为CL2的蛋白柔性区在介导
ABA信号及抑制PP2C活性中起了至关重要的作用
(Santiago等2009; Nishimura等2009; Hao等2010)。
ABA与受体结合后, 将胁迫信号通过第二信
使进行传递并放大。Zhang等(2001c)首次证明了
ABA可以诱导蚕豆气孔保卫细胞H2O2产生, NADPH
氧化酶是调节H2O2产生的关键酶(苗雨晨等2000)。
Kwak等(2003)分析拟南芥NADPH氧化酶的两个亚
单位基因AtrbohD和AtrbohF发现, 破坏AtrbohD和
AtrbohF可削弱ABA信号(Kwak等2003; Zhang等
2009)。早期认为, ABA激活G蛋白, 活化磷脂酶C,
释放IP3, IP3通过激活液泡膜的Ca2+通道, 增加胞质
Ca2+浓度([Ca2+]cyt) (Armstrong等1995; Kühler等
2003)。McAinsh等(1995)发现胞外Ca2+诱导胞内
Ca2+升高不需要磷脂酶C, 涉及到胞外Ca2+内流
(Mcainsh等1995), ABA和H2O2均可增加保卫细胞
中游离Ca2+的浓度(Mcainsh等1996)。Pei等(2000)
证实保卫细胞质膜上Ca2+通道可被H2O2激活, H2O2
激活的Ca2+通道引起Ca2+内流及完整的保卫细胞中
胞质[Ca2+]cyt升高(Pei等2000)。[Ca
2+]cyt升高可有效
模拟H2O2的行为, 激活质膜K
+外流通道, 钝化K+内
流通道, 阻挡了K+内流, 诱导气孔关闭(Armstrong等
1995; Kühler等2003; Schroeder和Hagiwara 1989;
Suh等2007)。在AtrbohD和AtrbohF的缺陷株中,
ABA诱导胞质Ca2+增加和ABA激活保卫细胞质膜
Ca2+通道等反应受到抑制(Kwak等2003; Zhang等
2009)。但是外源H2O2可以弥补由于AtrbohD和
李保珠等: 植物激素ABA在水分胁迫下的功能及信号途径 13
AtrbohF突变所造成的Ca2+通道活性和气孔关闭的
抑制, 暗示在ABA信号转导中, H2O2通过激活保卫
细胞质膜Ca2+通道, 参与调节ABA诱导的气孔运
动。此外, ABA引起气孔关闭, 也存在不依赖Ca2+
的信号转导途径(Gilroy等1990)。在不依赖Ca2+的
途径中, ABA引起保卫细胞H2O2积累, 胞质碱化,
有效抑制质膜内向K+通道, 活化了K+外向通道, 导
致保卫细胞K+浓度下降, 细胞膨压下降, 气孔关闭
(Zhang等2001b; Blatt等1999)。此外, ABA信号调
节气孔运动的过程可以被蛋白磷酸酶2C (PP2C)、
蛋白激酶OST1、离子通道等调节(Lee等2009)。
PP2C (如ABI1和ABI2等)负调节ABA诱导的气孔
关闭反应(Merlot等2001) , 而蛋白激酶OST1/SRK2E/
SnRK2-6则正调控这一过程(Yoshida等2006; Fujii
等2007; Chae等2007; Belin等2007)。ABA与受体
结合后, 阻止了type 2C蛋白磷酸酶调节的OST1去
磷酸化, 以激活OST1, 进而实现OST1调节离子通
道活性的功能(Lee等2009; Park等2009)。Lee等
(2009)研究发现, PP2C家族成员PP2CA可以通过阻
碍OST1激酶活性或直接使质膜阴离子通道SLAC1
去磷酸化来调节SLAC1的活性 , 进而参与调节
ABA引起保卫细胞气孔关闭过程(Lee等2009; Gei-
ger等2009)。
最近报道 , NO清除剂cPTIO可以明显抑制
ABA诱导的气孔关闭(Neill等2002; Garcia等2003;
Desikan等2004)。比较分析不同的NO供体对蚕
豆、拟南芥气孔运动的影响, 发现这些NO供体均
可诱导气孔关闭(Neill等2002; Lozano和Leon 2010),
暗示NO参与ABA诱导的气孔关闭。研究表明 ,
ABA诱导的NO产生依赖于H2O2的积累, 在ABA诱
导气孔关闭过程中, H2O2可能在NO的上游起作用
并受NO的负反馈调节(吕东等2005; Wei等2009)。
植物体内ABA诱导的NO合成主要来源于硝酸还
原酶途径(Bright等2006; Lu等2009)。另外, NO和
活性氧也包含在ABA抑制的气孔开放反应中(Gar-
cia和Lamattina 2002; Neill等2008)。在检测和分析
NO对保卫细胞质膜K+
通道活性时发现, NO对蚕
豆保卫细胞质膜内向及外向K+通道的调节, 存在
不同机制(Neill等2002; Sokolovski和Blatt 2004)。
如NO对气孔开放抑制, 主要通过激活质膜Ca2+通
道, 提高胞内Ca2+浓度, 激活质膜外向K+通道促进
K+外流, 同时, 可选择性抑制内向K+通道阻止K+
内流(Zhang等2009)。此外, 在绿豆(Phaseolus au-
reus)保卫细胞中, Ca2+介导ABA诱导的NO产生(Pei
等2000)。这一过程可被Ca2+通道阻断剂异博定
(verapamil)抑制(Hamil ton等2000; Shi和Wu
2010)。Desikan等(2002)的研究表明, NO以cADPR
依赖的方式促使胞内钙库释放Ca2+, 进而诱导气孔
关闭。PLD、S1P等参与的G蛋白介导产生的IP3
也是促使胞内钙库释放Ca2+的重要途径(Coursol等
2003; Zhang等2005)。这些结果说明H2O2、NO、蛋
白激酶、磷酸酶、Ca2+和质膜相关离子通道等参与
ABA信号转导途径, 同时ABA信号转导途径各组分
可能会相互牵制, 以调节气孔的合理开度, 应对复
杂的胁迫环境。保卫细胞中ABA信号转导如图1所
示(王忠和顾蕴洁主编《植物生理学》第2版基础
上并参考宋纯鹏等译《植物生理学》第4版)。
3 水分胁迫下ABA对植物根生长发育的调节
植物根系的生长发育具有很强的可塑性, 容
易受到环境条件的影响, 植物激素ABA即使在不
受水分胁迫的条件下也能够影响到植物根系的形
态建成(Deak和Malamy 2005)。水分胁迫下, 植物
根系是最先感受干旱胁迫的敏感部位, 并使整个
图1 保卫细胞中ABA信号转导
Fig.1 Signal transdution of ABA in guard cell
植物生理学报14
植株对其作出进一步的反应。所以, 根生长发育
状况和活力强弱对于植物的耐旱能力至关重要。
已知, 适度的干旱可诱导植物合成ABA, 同时ABA
又影响着植物根系的生长发育, 而且由叶片合成
并运输到根部的ABA对维持土壤干旱条件下根系
的生长是必需的。水分胁迫下ABA可以调节根的
生长发育, 适度的干旱后复水可通过影响作物主
根和侧根的生长发育, 提高植物的抗旱性能(康绍
忠等1997; Zhang等1995; Shanrp和Lenoble 2002)。
干旱条件下ABA可通过限制乙烯的合成来维持玉
米主根的延伸(Spollen等2000), ABA也可以调节水
稻根的系统生长发育(Chen等2006)。Bai等(2009)
在研究ABA抑制拟南芥根生长中发现, 一个富含
脯氨酸的伸展素类似的受体蛋白激酶AtPERK4参
与了ABA的信号转导, 通过调控相应基因的转录
抑制了根细胞的生长(Bai等2009)。尽管如此 ,
ABA对植物根系生长发育的调控机制还不甚清
楚。
研究发现, H2O2有效介导了赤霉素(GA)诱导
的胡萝卜种子的萌发过程(Schopfer等2001)和根的
向地性反应(Joo等2001)等。同时, H2O2影响根毛
的生长和发育, 在拟南芥根毛的形成过程中, 根中
H2O2的积累是必需的(Foreman等2003)。在研究
H2O2影响植物根发育的过程中发现, H2O2调控植
物根的生长是通过影响K+ 吸收相关基因的表达而
实现的(Shin和Schachtman 2004)。然而, 对NADPH
氧化酶缺失的拟南芥双突变体atrbohD/F幼苗根的
生长却不受ABA的抑制(Kwak等2003), 从而推测
H2O2可能是ABA调控拟南芥根发育过程中的一个
重要成分(Gapper和Doaln 2006)。水分胁迫下,
ABA的合成受到促进, 通过长距离运输至根部,
ABA通过诱导根细胞内H2O2 的产生, 调控OXI1的
表达促进根毛的形成和发育(Bai等2007), 进而促
进根对环境水分的吸收。
另外, 在根器官发育方面, NO可替代生长素
的作用, 通过激活下游MAPK信号, 介导了生长素
诱导的侧根及不定根生长发育(Pagnussat等2002,
2004; Correa等2004; Fujii和Zhu 2009)。Pagnussat
等(2002)报道, 生长素能够诱导黄瓜根合成NO, 进
而调节黄瓜主根的生长和侧根形成。在对番茄、
玉米和小麦的研究中发现, NO不仅能促进植物侧
根数目增加, 还能促进主根生长(Pagnussat等2002;
Correa等2004; Gouvea等1997; Zhao等2008)。比如
Gouvea等(1997)的研究表明, NO能诱导玉米根尖
延伸, Zhao等(2008)研究发现, NO的供体SNP 可以
影响小麦根系的生长, 主要表现在增加小麦主根
长度及主根上的侧根数目, 进而增进小麦根系对
周围水分的吸收。而进一步的研究发现, NO通过
对根细胞质膜K+通道的调节及增强K+ 在植物胞质
中的积累来提高小麦复水后补偿生长的原动力(闻
玉等2008)。Desikan等(2004)报道, ABA可有效诱
导NO在植物体内合成。因此我们推测, NO可能通
过激活根细胞质膜相关离子通道, 增强K+在植物
体内的积累, 从而介导ABA对植物根系细胞水势的
调节, 以改善植物渗透胁迫下的适应性生长。
Ca2+参与植物根系发育的调节, 植物根细胞质
膜Ca2+通道的激活和胞质Ca2+浓度的上升参与了植
物对其主根伸长和根毛形成的调节(Schiefelbein等
1992; Chen等2006)。植物根对Ca2+的吸收主要通
过根的伸长区完成, 同时又受到质膜超极化激活
阳离子通道的调节(Kiegle等2000; Very等2000)。
Tang等(2007)针对拟南芥保卫细胞的研究结果表
明, 胞外Ca2+作为一种信号, 与质膜Ca2+受体CAS
结合, 激活磷脂酶C (PLC), 产生IP3, 诱导胞内钙库
释放Ca2+, 以提升胞内Ca2+浓度(Tang等2007)。
ABA也可以激活磷脂酶C (PLC)信号通路, 诱导胞
内钙库释放Ca2+。最近, 在拟南芥和水稻的根细胞
发现受ABA调节的质膜Ca2+透性通道参与根生长
的调节(Kurusu等2004; White等2002), 进一步证实
了Ca2+介导ABA调节的根生长发育。
4 展望
经过几十年的研究, 人们对植物激素ABA有
了比较深入的了解。作为重要的植物激素, 它在
调节植物的生长发育的同时, 广泛参与植物应对
多种逆境胁迫的反应, 其在植物针对干旱缺水胁
迫中所扮演的角色尤其受到人们的青睐。适度的
水分胁迫诱导植物叶片中合成ABA, ABA与相应
受体结合通过H2O2、NO、蛋白激酶、磷酸酶、
Ca2+和质膜相关离子通道等传递逆境信号, 诸如调
节蛋白磷酸酶(ABI1和ABI2)、蛋白激酶OST1、
相关转录因子等的表达以及保卫细胞质膜Ca2+和
K+ 通道活性, 最终导致气孔关闭, 以降低植株地上
李保珠等: 植物激素ABA在水分胁迫下的功能及信号途径 15
部分水分过多散失。同时, 叶片中合成的ABA还
可以被运输到植物的地下部分, 在H2O2、NO、Ca
2+
等介导下调节植物主根延伸、侧根生长、根系活
性等, 以使植物可在适度干旱条件下吸收尽可能
多的水分以供地上部分的需要, 增强作物的抗旱
性。在ABA调节植物生长发育参与植物对逆境胁
迫反应的过程中, ABA信号转到途径、具体作用
机制等尚不十分明确。其参与调节气孔运动等信
号转导过程中, 对接受ABA信号的ABA受体及其
作用方式等的研究仍是目前人们关注的重点。
参考文献
康绍忠, 张建华, 梁建生(1999). 土壤水分与温度共同作用对植物根
系水分传导的效应. 植物生态学报, 23 (3): 211~219
康绍忠, 张建华, 梁宗锁, 胡笑涛, 蔡焕杰(1997). 控制性交替灌溉—
一种新的农田节水调控思路. 干旱地区农业研究, 15 (1): 1~6
吕东, 张骁, 江静, 安国勇, 张玲瑞, 宋纯鹏(2005). NO可能作为H2O2
的下游信号介导ABA诱导的蚕豆气孔关闭. 植物生理与分子
生物学学报, 31 (1): 62 ~70
苗雨晨, 宋纯鹏, 董发才, 王学臣(2000). ABA诱导蚕豆气孔保卫细
胞H2O2的产生. 植物生理学报, 26: 53~58
王少先, 彭克勤, 萧浪涛, 夏石头(2003). 逆境下ABA的积累及其触
发机制. 植物生理学通讯, 10 (39): 413~419
王忠, 顾蕴洁主编(2009). 植物生理学. 第2版. 北京: 中国农业出版社
闻玉, 赵翔, 张骁(2008). 水分胁迫下一氧化氮对小麦幼苗根系生长
和吸收的影响. 作物学报, 34: 344~348
Taiz L, Zeiger E (2009). 宋纯鹏等译. 植物生理学. 第4版. 北京: 科
学出版社
Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt MR
(1995). Sensitivity to abscisic acid of guard cell K+ channels
is suppressed by ABIl-1, a mutant Arabidopsis gene encod-
ing a putative protein phosphate. Proc Natl Acad Sci USA, 92:
9520~9524
Bacon MA, Wilkinson S, Davies WJ (1998). pH-regulated leaf cell
expansion in droughted plants is abscisic acid dependent. Plant
Physiol, 118: 1507~1515
Bai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y, Wu Z, Song CP
(2009). Plasma membrane-associated proline-rich extensin-like
receptor kinase 4, a novel regulator of Ca signalling, is required
for abscisic acid responses in Arabidopsis thaliana. Plant J, 60
(2): 314~327
Bai L, Zhou Y, Zhang XR, Song CP, Cao MQ (2007). Hydrogen
peroxide modulates abscisic acid signaling in root growth and
development in Arabidopsis. Chin Sci Bull, 52 (8): 1142~1145
Belin C, Franco PO, Bourbousse C, Chaignepain S, Schmitter JM,
Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006).
Identification of features regulating OST1 kinase activity and
OST1 function in guard cells. Plant Physiol, 141: 1316~1327
Blatt MR (1999). Reassessing roles for Ca2+ in guard cell singalling. J
Exp Bot, 50: 989~999
Bright J, Desikan R, Hancock JT, Weir IS, Neill S (2006). ABA-
induced NO generation and stomatal closure in Arabidopsis are
dependent on H2O2 synthesis. Plant J, 45: 113~122
Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon
IS (2007). A rice dehydration-inducible SNF1-related protein
kinase 2 phosphorylates an abscisic acid responsive element-
binding factor and associates with ABA signaling. Plant Mol
Biol, 63: 151~169
Chen CW, Yang YW, Lur HS, Tski YG, Chang MC (2006). A novel
function of abscisic acid in the regulation of rice (Oryza sativa L.)
root growth and development. Plant Cell Physiol, 47: 1~13
Christmann A, Hoffmann T, Teplova I, Grill E, Müller A (2005).
Generation of active pools of abscisic acid revealed by in vivo
imaging of water-stressed Arabidopsis. Plant Physiol, 137 (1):
209~219
Christmann A, Weiler EW, Steudle E, Grill E (2007). A hydraulic
signal in root-to-shoot signalling of water shortage. Plant J, 52:
167~174
Comish K, Zeevaart JAD(1985). Abscisic acid accumulation by roots
of Xanthium strumarium L, and Lycopersicon esculentum Mill,
in relation to water stress. Plant Physiol, 79: 653~658
Correa AN, Graziano M, Lacattina L (2004). Nitric oxide plays a
central role in determining lateral root development in tomato.
Planta, 218: 900~905
Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM
(2003). Sphingolipid signalling in Arabidopsis guard cells in-
volves heterotrimeric G proteins. Nature, 423 (6940): 651~654
Davies WJ, Zhang J (1991). Root signals and the regulation of growth
and development of plants in drying soil. Annu Rev Plant Biol,
42: 55~76
Deak KI, Malamy J (2005). Osmotic regulation of root system archi-
tecture. Plant J, 43 (1): 17~28
Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ
(2004). ABA, hydrogen peroxide and nitric oxide signalling in
stomatal guard cells. J Exp Bot, 55: 205~212
Desikan R, Griffiths R, Hancock J, Neill S (2002). A new role for an
old enzyme: nitrate reductase-mediated nitric oxide generation is
required for abscisic acid-induced stomatal closure in Arabidop-
sis thaliana. Proc Natl Acad Sci USA, 99 (25): 16314~16318
Fawzi AR, Ashraf EK, Suzanne RA, Robert DH (2006). The RNA-
binding protein FCA is an abscisic acid receptor. Nature, 439:
290~294
Finkelstein RR (2006). Studies of abscisic acid perception finally
flower. Plant Cell, 18 (4): 786~791
Finkelstein RR, Gampalas SL, Rock CD (2002). Abscisic acid signal-
ing in seeds and seedlings. Plant Cell, 14: S15~S45
Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H,
Torres MA, Linstead P, Costa S, Brownless C, Jones JDG et al
(2003). Reactive oxygen species produced by NADPH oxidase
regulated plant cell growth. Nature, 422: 442~446
Fort C, Muller F, Label P, Granier A, Dreyer E (1998). Stomatal con-
ductance, growth and root signaling in Betula pendula seedlings
subjected to partial soil drying. Tree Physiol, 18: 769~776
Fujii H, Verslues PE, Zhu JK (2007). Identification of two protein
kinases required for abscisic acid regulation of seed germination,
植物生理学报16
root growth, and gene expression in Arabidopsis. Plant Cell, 19:
485~494
Fujii H, Zhu JK (2009). Arabidopsis mutant deficient in 3 abscisic
acid-activated protein kinases reveals critical roles in growth,
reproduction, and stress. Proc Natl Acad Sci USA, 106 (20):
8380~8385
Gapper C, Doaln L (2006). Control of plant development by reactive
oxygen species. Plant Physiol, 141: 341~345.
Garcia MC, Gay R, Sokolvski S, Hills A, Lamattina L, Blatt MR
(2003). Nitric oxide regulate K+ and Cl- channels in guard cells
through a subset of abscisic scid-evoked signaling pathways.
Proc Natl Acad Sci USA, 100: 1116~1121
Garcia MC, Lamattina L (2002). Nitric oxide and abscisic acid cross
talk in guard cells. Plant Physiol, 128: 790~792
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache
P, Matschi S, Liese A, Al-Rasheid KA et al (2009). Activity of
guard cell anion channel SLAC1 is controlled by drought-stress
signaling kinase-phosphatase pair. Proc Natl Acad Sci USA, 106
(50): 21425~21430
Gilroy S, Read ND, Trewavad AJ (1990). Elevation of cytoplasmic
calcium by caged calcium or caged inositol trisphosphate initi-
ates stomatal closure. Nature, 343: 769~771
Gouvea CMCP, Souza JF, Magalhaes ACN, Martins IS (1997). NO-
releasing substances that induce growth elongation in maize root
segments. Plant Growth Regul, 21: 183~187
Grabov A, Leung J, Giraudat J (1997). Alteration of anion channel ki-
netics in wild-type and abi1-1 transgenic Nicotiana benthamiana
guard cells by abscisic acid. Plant J, 12: 203~213
Granier C, Tardieu F (1999). Water deficit and spatial pattern of leaf
development. Variability in responses can be simulated using
a simple model of leaf development. Plant Physiol, 119 (2):
609~620
Hamilton DW, Hills A, Kohler B, Blatt MR (2000). Ca2+ channels at
the plasma membrane of stomatal guard cells are activated by
hyperpolarization and abscisic acid. Proc Natl Acad Sci USA,
97: 4967~4972
Han B, Xue YB (2003). Genome-wide int raspecific DNA2 sequence
variations in rice. Curr Opin Plant Biol, 2: 134~138
Hao Q, Yin P, Yan C, Yuan X, Li W, Zhang Z, Liu L, Wang J, Yan N
(2010). Functional mechanism of the abscisic acid agist pyrabac-
tin. J Biol Chem, 285 (37): 28946~28952
Heckenberger U, Schurr U, Schulze ED (1996). Stomatal response to
abscisic acid fed into the xylem of intact Helianthus annuus (L.)
plants. J Exp Bot, (47): 1405~1412
Ikegami K, Okamoto M, Seo M, Koshiba T (2009). Activation of ab-
scisic acid biosynthesis in the leaves of Arabidopsis thaliana in
response to water deficit. J Plant Res, 122 (2): 235~243
Ingram J, Bartels D (1996). The molecular basis of dehydration tol-
erance in plants. Annu Rev Plant Physiol Plant Mol Biol, 347:
377~403
Jang YH, Lee JH, Kim JK (2008). Abscisic acid does not disrupt
either the Arabidopsis FCA-FY interaction or its counterpart in
vitro. Plant Cell Physiol, 49 (12): 1898~1901
Johnston CA, Temple BR, Chen JG, Gao Y, Moriyama EN, Jones AM,
Siderovski DP, Willard FS (2007). Comment on “A G protein-
coupled receptor is a plasma membrane receptor for the plant
hormone abscisic acid”. Science, 315 (5819): 1712~1716
Joo JH, Bae YS, Lee JS (2001). Role of auxin-induced reactive oxy-
gen species in root gravitropism. Plant Physiol, 126: 1055~1060
Kiegle E, Gillihan M, Haseloff J, Tester M (2000). Hyperpolarisation-
activated calcium currents found only in cells from the elonga-
tion zone of Arabidopsis thaliana roots. Plant J, 21: 225~229
Kurusu T, Sakurai Y, Miyao A, Hirochika H, Kuchitsu K (2004).
Identification of a putative voltage-gated Ca2+ permeable channel
(OsTPC1) involved in Ca2+ influx and regulation of growth and
development in rice. Plant Cell Physiol, 45: 693~702
Kühler B, Hills A, Blatt MR (2003). Control of guard cell ion chan-
nels by hydrogen peroxide and abscisic acid indicates their ac-
tion through alternate signaling pathways. Plant Physiol, 131:
385~388
Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL,
Bloom RE, Bodde S, Jones JD, Schroeder JI (2003). NADPH
oxidase AtrbohD and AtrbohF genes function in ROS-dependent
ABA signalling in Arabidopsis. EMBO J, 22: 2623~2633
Lee SC, Lan W, Buchanan BB, Luan S (2009). A protein kinase-
phosphatase pair interacts with an ion channel to regulate ABA
signaling in plant guard cells. Proc Natl Acad Sci USA, 106 (50):
21419~21424
Liu XG, Yue YL, Li B, Nie YL, Li W, Wu WH, Ma LG (2007). A G
protein-coupled receptor is a plasma membrane receptor for the
plant hormone abscisic acid. Science, 315: 1712~1716
Lozano-Juste J, Leon J (2010). Enhanced abscisic acid-mediated re-
sponses in nia1nia2noa1-2 triple mutant impaired in NIA/NR-
and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis.
Plant Physiol, 152 (2): 891~903
Lu S, Su W, Li H, Guo Z (2009). Abscisic acid improves drought
tolerance of triploid bermudagrass and involves H2O2- and NO-
induced antioxidant enzyme activities. Plant Physiol Biochem,
47 (2): 132~138
Martìnez JP, Lutts S, Schanck A, Bajji M, Kinet JM (2004). Is osmotic
adjustment required for water stress resistance in the Mediterra-
nean shrub Atriplex halimus L? J Plant Physiol, 161: 1041~1051
McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996).
Changes in stomatal behavior and grand cell cytosolic free calci-
um in response to oxidative stress. Plant Physiol, 111: 1031~1042
Mcainsh MR, Webb AAR, Taylor JE, Hetherington AM (1995). Stim-
ulus-induced oscillations in guard cell cytoplasmic free calcium.
Plant Cell, 7: 1207~1219
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The
ABI1 and ABI2 protein phosphatases 2C act in a negative feed-
back regulatory loop of the abscisic acid signalling pathway.
Plant J, 25: 295~303
Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris
P, Ribeiro D, Wilson I (2008). Nitric oxide, stomatal closure, and
abiotic stress. J Exp Bot, 59 (2): 165~176
Neill SJ, Desikan R, Clarke A, Hancock JT (2002). Nitric oxide is a
novel component of abscisic acid signaling in stomatal guard
cells. Plant Physiol, 128: 13~16
李保珠等: 植物激素ABA在水分胁迫下的功能及信号途径 17
Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR,
Schroeder JI, Getzoff ED (2009). Structural mechanism of ab-
scisic acid binding and signaling by dimeric PYR1. Science, 326
(5958): 1373~1379
Pagnussat GC, Lanieri ML, Lombardo ML, Lamattina L (2004). Ni-
tric oxide mediates the indole acetic acid induction activation of
a mitogen-activated protein kinase cascade involved in adventi-
tious root development. Plant Physiol, 135: 279~286
Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002). Ni-
tric oxide is required for root organogenesis. Plant Physiol, 129:
954~956
Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba
S, Santiago J, Rodrigues A, Chow TF (2009). Abscisic acid in-
hibits type 2C protein phosphatases via the PYR/PYL family of
START proteins. Science, 324 (5930): 1068~1071
Pei ZM, Murata Y, Benning G, Thomine S, Kluesener B, Allen GJ,
Gril E, Schroeder JI (2000). Calcium channels activated by hy-
drogen peroxide mediate abscisic acid signaling in guard cells.
Nature, 406: 731~734
Raghothama KG, Maggio A, Narasimhan ML (1997). Tissue-specific
act ivation of the osmotin gene by ABA, C2H4 and NaCl involves
the same promoter region. Plant Mol Biol, 34: 393~402
Salah H, Tardieu F (1997). Control of leaf expansion rate of drough-
ted maize plants under fluctuating evaporative demand. Plant
Physiol, 114: 893~900
Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler
SR, Rodriguez PL, Márquez JA (2009). The abscisic acid recep-
tor PYR1 in complex with abscisic acid. Nature, 462 (7273):
665~658
Sauter A, Davies WJ, Hartung W (2001). The long-distance abscisic
acid signal in the droughted plant: the fate of the hormone on its
way from root to shoot. J Exp Bot, 52:1991~1997
Schiefelbein JW, Shipley A, Rowse P (1992). Calcium influx at the tip
of growing root-hair cells of Arabidopsis thaliana. Planta, 187:
455~459
Schopfer P, Plachy C, Frahry G (2001). Release of reactive oxygen
intermediates (superoxide radicals, hydrogen peroxide, and
hydroxyl radicals) and peroxidase in germinating radish seeds
controlled by light, gibberellin and abscisic acid. Plant Physiol,
125: 1591~1602
Schroeder JI, Hagiwara S (1989). Cytosolic calcium regulates ion
channels in the plasma membrane of Vicia faba guard cells. Na-
ture, 338: 427~430
Schroeder JI, Kwak JM, Alln GJ (2001). Guard cell abscisic acid sig-
naling and engineering drought hardiness in plants. Nature, 410:
327~330
Shanrp E, Lenoble ME (2002). ABA, ethylene and the control of
shoot and root growth under water stress. J Exp Bot, 53: 33~37
Shao HB, Shao MA, Liang ZS (2006). Osmotic adjustment compari-
son of 10 wheat (Triticum aestivum L.) genotypes at soil water
deficits. Biointerfaces, 47 (2): 132~139
Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng
CC, Yu XC, Zhu SY et al (2006). The Mg-chelatase H subunit is
an abscisic acid receptor. Nature, 443: 823~826
Shi C, Wu F, Xu J (2010). H2O2 and PAF mediate Ab1-42-induced
Ca2+ dyshomeostasis that is blocked by EGb761. Neurochem Int,
56 (8): 893~905
Shin R, Schachtman DP (2004). Hydrogen peroxide mediates plant
root cell response to nutrient deprivation. Proc Natl Acad Sci
USA, 101: 8827~8832
Sokolovski S, Blatt MR (2004). Nitric oxide block of outward-rectify-
ing K+ channels indicates direct control by protein nitrosylation
in guard cells. Plant Physiol, 136: 4275~4284
Spollen WG, Lenoble ME, Samuels TD, Bemstein N, Sharp RE (2000).
Abscisic acid accumulation maintains maize primary root elon-
gation at low water potentials by restricting ethylene production.
Plant Physiol, 122: 967~976
Suh SJ, Wang YF, Frelet A, Leonhardt N, Klein M, Forestier C,
Mueller-Roeber B, Cho MH, Martinoia E, Schroeder JI (2007).
The ATP binding cassette transporter AtMRP5 modulates anion
and calcium channel activities in Arabidopsis guard cells. J Biol
Chem, 282 (3): 1916~1924
Tang RH, Han SC, Zheng HL, Cook CW, Choi CS, Woerner TE,
Jackson RB, Pei ZM (2007). Coupling diurnal cytosolic Ca2+ os-
cillations to the CAS-IP3 pathway in Arabidopsis. Science, 315:
1423~1426
Verslus PE, Zhu JK (2005). Before and beyond ABA: upstream
sensing and internal signals that determine ABA accumulation
and response under abiotics tress. Biochem Soc Trans, 33 (2):
375~379
Very AA, Davies JM (2000). Hyperpolarization-activated calcium
channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci
USA, 97: 9801~9806
Walton DC, Harrison MA, Cote P (1976). The effects of water stress
on abscisic acid levels and metabolism in roots ot Phaseolus
vulgaris L. and other paints. Planta, 131: 141~144
Wei K, Jin X, Chen X, Wu F, Zhou W, Qiu B, Qiu L, Wang X, Li C,
Zhang G (2009). The effect of H2O2 and abscisic acid (ABA)
interaction on beta-amylase activity under osmotic stress dur-
ing grain development in barley. Plant Physiol Biochem, 47 (9):
778~784
White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002).
Genes for calcium-permeable channels in the plasma membrane
of plant root cells. Biochim Biophys Acta, 1564: 299~309
Wilkinson S, Davies WJ (2002). ABA-based chemical signalling: the
co-ordination of responses to stress in plants. Plant Cell Environ,
25: 195~210
Xiao B, Huang Y, Tang N, Xiong L (2007). Over-expression of a LEA
gene in rice improves drought resistance under the field condi-
tions. Theor Appl Genet, 115 (1): 35~46
Yamazaki D, Yoshida S, Asami T, Kuchitsu K (2003). Visualization
of abscisic acid-perception sites on the plasma membrane of sto-
matal guard cells. Plant J, 35: 129~139
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F,
Shinozaki K (2006). The regulatory domain of SRK2E/OST1/
SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA)
and osmotic stress signals controlling stomatal closure in Arabi-
dopsis. J Biol Chem, 281: 5310~5318
植物生理学报18
Zhang J (1994). Accumulation of ABA in maize root in response to
rool severing. New Phytol, 127: 309~314
Zhang JH, Zhang XP, Liang JS (1995). Exudation rate and hydraulic
conductivity of maize roots are enhanced by soil drying and ab-
scisic acid treatment. New Phytol, 131: 329~336
Zhang W, Yu L, Zhang Y, Wang X (2005). Phospholipase D in the sig-
naling networks of plant response to abscisic acid and reactive
oxygen species. Biochim Biophys Acta, 1736 (1): 1~9
Zhang X, Dong FC, Gao JF, Song CP (2001a). Hydrogen peroxide-
induced changes in intracellular pH of guard cells precede sto-
matal closure. Cell Res, 1: 37~43
Zhang X, Miao YC, An GY, Zhou Y, Shangguan ZP, Gao JF, Song CP
(2001b). K+ channels inhibited by hydrogen peroxide mediate
abscisic acid signaling in guard cells. Cell Res, 11: 195~202
Zhang X, Zhang L, Dong FC, Gao JF, Galbraith W, Song CP (2001c).
Hydrogen peroxide is involved in abscisic acid-induced stomatal
closure in Vicia faba. Plant Physiol, 126: 1438~1448
Zhang YY, Zhu HY, Zhang Q, Li MY, Yan M, Wang R, Wang LL,
Welti R, Zhang WH, Wang XM (2009). Phospholipase Dα1 and
phosphatidic acid regulate NADPH oxidase activity and produc-
tion of reactive oxygen species in ABA-mediated stomatal clo-
sure in Arabidopsis. Plant Cell, 21: 2357~2377
Zhao X, Wang PT, Wen Y, Zhang X (2008). Mechanism of exogenous
nitric oxide enhancing drought-resistance of wheat seedlings
in response to water stress. Acta Bot Boreal-Occident, 28 (10):
2028~2034