免费文献传递   相关文献

Spatial Variations in Stem Heartwood and Sapwood for Larix gmelinii Trees with Various Differentiation Classes

不同分化等级兴安落叶松树干心材和边材的空间变异


将一块15 m × 20 m的48年生兴安落叶松人工林的林木全部收获,采用分层聚类分析法将林木分化等级划分为优势木、中等木和被压木,并采用解析木法量化分析不同分化等级林木心材和边材的周向和轴向变异及其与林木特征性状之间的关系.结果表明: 林木分化等级、方位和圆盘高度对树干心材半径(heartwood radius,HR)、边材宽度(sapwood width,SW)的变异影响显著(P < 0.001).胸高处HR和SW及其绝对变异量均随林木分化程度的加剧而增大.林木心材与边材比在周向变化不一,其最大值以北向频率最高(17.65%),最小值则以南向频率最高(17.68%),反映了微生境的差异.随相对高度的增加,HR绝对变异量递减,SW绝对变异量在枝下高以下保持相对稳定,随后递减; 而HR和SW的相对变异量则均不随轴向改变.这些绝对变异量的轴向变化在不同分化等级的林木之间多呈现优势木>中等木>被压木的趋势,而其相对变异量的轴向变化格局不一.胸高处HR和SW的绝对变异量与胸径均正相关; 心、边材面积与枝生物量、冠投影面积、根投影面积、叶生物量和根生物量均正相关,其中与枝、叶生物量相关性最紧密.这些结果表明,兴安落叶松心材和边材存在显著的周向和轴向变异,其绝对量受林木分化显著影响,但其相对量对林木分化不太敏感.

Variations in tree‘s heartwood and sapwood, mainly including circumferential and axial variations, affect physiological and mechanical functions of the trunk. We harvested all the trees within a 15 m × 20 m plot of a 48-year-old Larix gmelinii plantation with the aim of quantifying the spatial variation in stem heartwood and sapwood influenced by the differentiation of stand individuals, and exploring the relationship between the variation and other tree traits. We used a hierarchical clustering analysis to divide the differentiation into three classes, e.g. dominant, intermediate and suppressed trees. The results showed that differentiation class, direction, and disc height had a significant impact on the spatial variation in heartwood radius (HR) and sapwood width (SW; P < 0.001). The HR and SW and their absolute variations increased significantly from the suppressed to the intermediate and to the dominant. The maximum value of heartwood to sapwood ratio (HSR) occurred most frequently in the north direction (17.65%), while the minimum value occurred in south direction (17.68%), reflecting the difference in the microsite. The absolute variation in HR decreased with increasing relative height, while that in SW remained relatively constant up to the height of the first living branch after which it declined. The relative variations in HR and SW did not change axially. The absolute axial variations in HR or SW were the greatest for the dominant trees, followed by the intermediate, and the least for the suppressed, while the relative variations exhibited non-consistent patterns. The absolute variation in HR or SW was positively correlated with the diameter at breast height. The area of heartwood or sapwood was positively correlated with the projected area of crown or root, branch biomass, foliage biomass, or root biomass, among which is correlated most tightly with the branch or foliage biomass. We concluded that the heartwood and sapwood of the larch showed significant variations both circumferentially and axially, of which the absolute variation was significantly influenced by stand tree differentiation, but the relative variation was insensitive to the differentiation.


全 文 :第 50 卷 第 12 期
2 0 1 4 年 12 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 50,No. 12
Dec.,2 0 1 4
doi:10.11707 / j.1001-7488.20141216
收稿日期: 2014 - 06 - 10; 修回日期: 2014 - 09 - 24。
基金项目: 林业公益性行业科研专项(201104009 - 05) ; 国家“十二五”科技支撑项目(2011BAD37B01) ; 教育部长江学者和创新团队发
展计划资助( IRT1054)。
* 王传宽为通讯作者。黑龙江省帽儿山森林生态站提供了野外基础支持,在此致谢。
不同分化等级兴安落叶松树干心材和边材的空间变异*
刘家霖 王传宽 张全智
(东北林业大学生态研究中心 哈尔滨 150040)
摘 要: 将一块 15 m × 20 m 的 48 年生兴安落叶松人工林的林木全部收获,采用分层聚类分析法将林木分化等
级划分为优势木、中等木和被压木,并采用解析木法量化分析不同分化等级林木心材和边材的周向和轴向变异及
其与林木特征性状之间的关系。结果表明: 林木分化等级、方位和圆盘高度对树干心材半径 ( heartwood radius,
HR)、边材宽度( sapwood width,SW)的变异影响显著(P < 0. 001)。胸高处 HR 和 SW 及其绝对变异量均随林木分
化程度的加剧而增大。林木心材与边材比在周向变化不一,其最大值以北向频率最高(17. 65% ),最小值则以南向
频率最高(17. 68% ),反映了微生境的差异。随相对高度的增加,HR 绝对变异量递减,SW 绝对变异量在枝下高以
下保持相对稳定,随后递减; 而 HR 和 SW 的相对变异量则均不随轴向改变。这些绝对变异量的轴向变化在不同
分化等级的林木之间多呈现优势木 >中等木 >被压木的趋势,而其相对变异量的轴向变化格局不一。胸高处 HR
和 SW 的绝对变异量与胸径均正相关; 心、边材面积与枝生物量、冠投影面积、根投影面积、叶生物量和根生物量均
正相关,其中与枝、叶生物量相关性最紧密。这些结果表明,兴安落叶松心材和边材存在显著的周向和轴向变异,
其绝对量受林木分化显著影响,但其相对量对林木分化不太敏感。
关键词: 林木分化; 兴安落叶松; 心材; 边材; 周向变异; 轴向变异
中图分类号: S718. 54 文献标识码: A 文章编号: 1001 - 7488(2014)12 - 0114 - 08
Spatial Variations in Stem Heartwood and Sapwood for
Larix gmelinii Trees with Various Differentiation Classes
Liu Jialin Wang Chuankuan Zhang Quanzhi
(Ecological Research Center,Northeast Forestry University Harbin 150040)
Abstract: Variations in tree’s heartwood and sapwood,mainly including circumferential and axial variations,affect
physiological and mechanical functions of the trunk. We harvested all the trees within a 15 m × 20 m plot of a 48-year-
old Larix gmelinii plantation with the aim of quantifying the spatial variation in stem heartwood and sapwood influenced by
the differentiation of stand individuals,and exploring the relationship between the variation and other tree traits. We used
a hierarchical clustering analysis to divide the differentiation into three classes, e. g. dominant, intermediate and
suppressed trees. The results showed that differentiation class,direction,and disc height had a significant impact on the
spatial variation in heartwood radius (HR) and sapwood width (SW; P < 0. 001) . The HR and SW and their absolute
variations increased significantly from the suppressed to the intermediate and to the dominant. The maximum value of
heartwood to sapwood ratio (HSR) occurred most frequently in the north direction (17. 65% ),while the minimum value
occurred in south direction (17. 68% ),reflecting the difference in the microsite. The absolute variation in HR decreased
with increasing relative height,while that in SW remained relatively constant up to the height of the first living branch
after which it declined. The relative variations in HR and SW did not change axially. The absolute axial variations in HR
or SW were the greatest for the dominant trees,followed by the intermediate,and the least for the suppressed,while the
relative variations exhibited non-consistent patterns. The absolute variation in HR or SW was positively correlated with the
diameter at breast height. The area of heartwood or sapwood was positively correlated with the projected area of crown or
root,branch biomass,foliage biomass,or root biomass,among which is correlated most tightly with the branch or foliage
biomass. We concluded that the heartwood and sapwood of the larch showed significant variations both circumferentially
第 12 期 刘家霖等: 不同分化等级兴安落叶松树干心材和边材的空间变异
and axially,of which the absolute variation was significantly influenced by stand tree differentiation,but the relative
variation was insensitive to the differentiation.
Key words: differentiation of stand individuals; Larix gmelinii; heartwood; sapwood; circumferential variation;
axial variation
大多数成熟树木的树干木质部都有心材和边材
之分。其中,心材位于边材与髓心之间,是由失去生
理活性的死细胞组成的色泽较深的中央锥体,主要
起机 械 支 撑 作 用,决 定 木 材 的 质 量 和 价 值
(Bjrklund,1999); 边材靠近形成层,具有输导水
分、贮藏营养物质等生理功能(汪矛等,1998; 常建
国等,2009)。树木在生长过程中主要受起源、坡
向、方位、竞争和树木自身生长状况等因素的影响
(Mrling et al.,1999; 吴巩胜等,2000; Climent et
al.,2002; Pinto et al.,2004; Morais et al.,2007)而
使树干单侧形成层受到破坏并死亡,引起树木形态
不规则化,从而导致心、边材的周向和轴向变异
(Schweingruber,1996; Stokes et al.,2000; Taylor et
al.,2002; Morais et al.,2007; Nawrot et al.,2008)。
在林分中,林木分化会加剧这种心、边材的空间变
异。例如 Sellin 等 ( 1994 ) 发现,挪威云杉 ( Picea
abies)优势木的心、边材周向变异均大于被压木;
Martínez 等(2007)报道,林木分化会限制树木心、边
材的生长效率。
研究树木心、边材变异具有重要的理论和实践
意义。例如,单木耗水量与边材面积相关紧密
(Mcdowell et al.,2002); 边材面积与叶面积之比能
表征树木的水分利用效率(Mkel et al.,2001)。以
往研究 表 明,采 用 形 成 层 年 龄 ( Bamber et al.,
1985)、冠幅和叶面积(Gartner,2002)等林木特征性
状均能较好地预测林木的边材量。“管道模型”理
论(Shinozaki et al.,1964)认为,树干内一定数量的
管道支持相应叶量的树冠,使树木的叶质量或叶面
积与树干的边材面积呈正比(Knapic et al.,2006)。
然而,Long(1988)却发现小干松(Pinus contorta)胸
高处 边 材 面 积 与 林 冠 叶 面 积 的 相 关 性 较 差;
Bjrklund 等 ( 1999 ) 也 报 道,欧 洲 赤 松 ( Pinus
sylvestris)的胸径仅能解释林木心、边材变异的 24%
和 23%。可见,林木特征性状与心、边材量的关系
可能因树种而异。
兴安落叶松(Larix gmelinii)是我国东北森林的
优势树种和主要造林树种之一,其天然分布区纵跨
7 个纬度(鄂文峰等,2009),林分面积占大兴安岭
森林面积的 70% (王翠等,2008),具有重要的生态
意义和经济价值 (赵晓焱等,2008)。以往对林木
心、边材的研究,其样木多随机取自面积较大的人工
林或天然林中 ( Yang et al.,1985; Climent et al.,
2002; Pinto et al.,2004); 然而,林木心、边材的空间
变异受多种影响因子的制约,同一因子在不同研究
区域对心、边材的影响规律也不一致 (王兴昌等,
2008; 常建国等,2009)。因此,本研究选择人工林
起源、林龄一致、立地条件相同的兴安落叶松林为研
究对象,有效地分离了林木分化程度的作用效应,并
采用解析木法量化分析不同分化等级的林木心、边
材的周向和轴向变异及其与林木特征性状的关系,
以便理解树木的生理和机械功能。
1 材料与方法
1. 1 研究地概况
研究地设在黑龙江省帽儿山森林生态站 (45°
20N,127°30E),平均海拔 400 m,平均坡度 10° ~
15°,地带性土壤为暗棕色森林土。该地区气候属大
陆性季风气候,平均年降水量约 700 mm,平均年蒸发
量约 880 mm,年均温 2. 8 ℃ (Wang,2006)。试验林
为 48 年生兴安落叶松人工林,密度为 1 133 株·
hm - 2,平均树高为(21. 19 ± 6. 25)m(mean ± SD),
平均胸径为(19. 36 ± 4. 01) cm。在此试验林中设置
20 m × 15 m 的样地,实施全树皆伐,其中兴安落叶松
34 株,林分内还包含天然更新的胡桃楸 ( Juglans
mandshurica)8 株、春榆(Ulmus japonica)13 株。
1. 2 野外测定
样树伐倒前,在树干上标记东、北 2 个方位,测
量其单侧冠幅 ( single crown width,SCW; 分为东、
南、西、北、东南、东北、西南、西北 8 个方向)和胸径
(diameter at breast height,DBH)。样树伐倒后,测量
其树高( height,H)、枝下高 ( branch height,HB)、枝
下高处直径 ( diameter at branch height,DHB ) 以及
10%树高处直径 ( diameter at 10% height,D0. 1H )。
从树干 0 m 处(即地面)开始,每隔 1 m 截取 5 cm 厚
圆盘(胸高处单独截取圆盘)并编号,直至不足 1 m
为止。
将整个树冠分成冠上、冠中、冠下 3 个冠层,分
别测定枝、叶生物量。沿树干标记各枝的着生高度
和方位; 将树枝从树干分离后,按长枝、短枝、长枝
叶、短枝叶区分后分别测定鲜质量,其中长枝取样
511
林 业 科 学 50 卷
1 000 ~ 2 000 g,短枝、长枝叶、短枝叶分别取样
500 ~ 1 000 g。每个冠层每个枝叶组分取样重复
3 次。采用滑轮装置和手动挖掘相结合的方法将样
木的粗根 ( > 5 mm) 和细根 ( < 5 mm)全部挖出
(Wang,2006),记录粗根着生方位(包括垂直根)和
单侧根幅( single root width,SRW),测定粗、细根总
鲜质量,分别取样 500 ~ 1 000 g,每个组分取样重复
3 次。将枝、叶和根样品 4 h内放入 65 ℃ 烘干箱
(Peichl et al.,2007)烘干至恒重,测定样品含水率,
以计算其生物量。
1. 3 室内处理
将圆盘工作面擦净、磨平、刨光,标出 8 个方位
(东、南、西、北、东北、东南、西北、西南); 使用高精
度扫描仪(Epson Co.,Japan)扫描圆盘,获取圆盘图
像; 使 用 WinDENDRO 年 轮 分 析 软 件 ( Regent
Instruments Co.,Canada)对圆盘图像进行处理,根据
兴安落叶松心、边材颜色区分明显,分别测量圆盘 8
个方位的心材半径(HR)和边材宽度(SW)。
1. 4 数据分析
目前对于林木分化等级的划分还没有统一的方
法。传统林业常根据树高和冠层位置定性地划分林
木分化等级(如卡拉夫特分级法); 近期也有学者采
用基于胸径的相对直径法(玉宝等,2010)。在实际
应用中,前者存在一定的主观性,而后者又没有直接
考虑冠幅对光的截获作用。为此,笔者提出综合考
虑林木个体在林分中所占的资源空间(冠幅特征)
和林木的径级分化,基于林冠投影面积和胸高断面
积之积,采用分层聚类分析法将林木划分为优势木、
中等木和被压木。结果显示,优势木、中等木和被压
木的胸径(F2,31 = 33. 99,P < 0. 01)、树高(F2,31 =
4. 32,P < 0. 01 ) 和冠幅 ( F2,31 = 36. 91,P <
0. 01)均存在显著差异(表 1)。
表 1 样木基本特征
Tab. 1 Basic characteristics of the sample trees(mean ± SD)
林木分化等级
Tree differentiation class
样木数
Sample number
胸径
DBH /cm
树高
Height /m
冠幅
Crown width / cm
优势木 Dominant tree 7 29. 86 ± 3. 17 21. 189 ± 2. 22 218. 70 ± 44. 46
中等木 Intermediate tree 16 21. 34 ± 3. 68 20. 37 ± 2. 96 141. 05 ± 24. 57
被压木 Suppressed tree 11 15. 47 ± 4. 05 16. 74 ± 5. 06 101. 34 ± 21. 14
圆盘 8 个方向的 HR 和 SW 的标准差作为其绝
对变异量,以客观展示变异程度。圆盘 8 个方向心、
边材和树皮相对宽度(各方向 HR 和 SW 占该方向
圆盘半径的百分比)的标准差作为其相对变异量,
以消除不同圆盘高度对 HR 和 SW 测量尺度的干
扰。圆盘高度占树高的百分比作为圆盘的相对高度
(% )。统计每株样树胸高处最大和最小心、边比
(即心材半径和边材宽度的比值)出现的方向,并基
于样地水平计算林木最大和最小心、边比在不同方
向的分布频率。
心、边 材 面 积 ( heartwood area,HA; sapwood
area,SA)和冠、根幅投影面积( crown projecton area,
CPA;root projection area,RPA)的计算方法分别采用
如下公式:
HA = π × (HR) 2; (1)
SA = π × (HR + SW) 2 - HA; (2)
CPA = π × (SCW) 2; (3)
RPA = π × (SRW) 2。 (4)
用单因素方差分析和 LSD 差异性检验比较不同
林木分化等级间 DBH、树高和冠幅的差异以及 HR 和
SW 相关变量的差异。采用 lgW = a + blgDBH的形
式建立异速生长方程(Wang,2006),其中 W 为胸高
处心、边材面积。采用协方差分析,以 DBH 为协变
量,比较不同林木分化等级 DBH 与心、边材量之间的
异速生长方程斜率和截距的差异。用多因素方差分
析比较林木分化等级、方位、圆盘高度及其交互作用
对心、边材变异的影响。用曲线估计法拟合 DBH 与
胸高处 HR,SW 的绝对变异量以及林木特征性状与
胸高处 HA 和 SA 之间的线性关系。显著性水平均设
定为 P = 0. 05。统计分析与图形绘制分别用 SPSS
20. 0 和 Sigmaplot 12. 5 完成。
2 结果与分析
2. 1 不同分化等级林木心材和边材变异
林木分化等级、方位、圆盘高度以及分化等级与
圆盘高度的交互作用对心、边材变异均影响显著
(P < 0. 001; 表 2),但分化等级与方位、方位与圆盘
高度 的 交互 作用 对 心、边 材变 异均 无 显 著 影
响(P > 0. 05)。
各林木分化等级间,胸高处 HR(F2,31 = 22. 79,
P < 0. 01)和 SW(F2,31 = 2. 82,P = 0. 08)均差异
显著,波动范围依次为 58. 60 ~ 110. 22 mm 和9. 91 ~
15. 57 mm ( 图 1A ); 同 时,胸 高 处 HR ( F2,31 =
23. 15,P < 0. 01)和 SW(F2,31 = 6. 65,P < 0. 01)
611
第 12 期 刘家霖等: 不同分化等级兴安落叶松树干心材和边材的空间变异
的绝对变异量也均差异显著(图 1B),波动范围依次 为 56. 13 ~ 109. 14 mm 和 7. 01 ~ 17. 58 mm。
表 2 林木心、边材变异影响因子的方差分析
Tab. 2 ANOVA of factors influencing the variations in heartwood and sapwood
变异来源 Source of variations
心材半径 Heartwood radius 边材宽度 Sapwood width
自由度 df 均方 MS F P 自由度 df 均方 MS F P
分化等级 Differentiation class 2 / 4 973 220 310 854. 8 < 0. 001 2 / 4 968 15 722 451. 1 < 0. 001
方位 Position 7 / 4 973 4 972 19. 3 < 0. 001 7 / 4 968 420 12. 1 < 0. 001
圆盘高度 Disc height 22 / 4 973 123 054 477. 5 < 0. 001 22 / 4 968 1 136 32. 6 < 0. 001
分化等级 ×圆盘高度 Differentiation class ×disc height 41 / 4 973 4 154 16. 1 < 0. 001 41 / 4 968 174 5. 0 < 0. 001
图 1 不同分化等级林木胸高处心材半径(HR)
和边材宽度(SW)的相关变异
Fig. 1 Variations in the heartwood radius (HR) and
sapwood width ( SW) at breast height among different
differentiation classes of stand individuals
a,b,c 表示不同林木分化等级间各变量 LSD 检验的显著性差异分
组。The letters a,b,c represent significant difference groups of each
variable among different differentiation classes based on LSD tests. The
error bars represent standard error ( n = 7 ~ 16) .
2. 2 林木心材和边材的周向变异
样地水平上,林木胸高处最大心、边比在北向
(北、西 北、东 北 ) 出 现 频 率 最 高 ( 17. 65% ±
5. 09% )(mean ± SD),在南向(南、西南、东南)出
现频率最低(7. 84% ± 3. 40% );然而,最小心、边
比在北向出现频率最低(8. 82% ± 5. 09% ),在南
向出现频率最高(16. 68% ± 13. 26% )(图 2)。
2. 3 林木心材和边材的轴向变异
林木圆盘高度对心、边材变异影响显著 ( P <
0. 01; 表 2)。各分化等级林木 HR ( F2,62 = 5. 32,
P < 0. 01)和 SW(F2,62 = 20. 79,P < 0. 01)的轴向
绝对变异量均差异显著; 然而,HR ( F2,62 = 1. 52,
P = 0. 23)和 SW(F2,62 = 0. 97,P = 0. 38)的轴向相
对变异量均无显著差异。
所有林木随圆盘相对高度的增加,HR 的绝对
变异量均逐渐降低(图 3A),SW 的绝对变异量均先
保持稳定而后逐渐降低(图 3B); HR 和 SW 的相对
变异量均基本保持稳定(图 3C,D)。不同分化等级
的林木之间,HR 和 SW 的绝对变异量随轴向变化多
呈现出优势木 >中等木 > 被压木的趋势,而其相对
变异量的轴向变化格局不一。
图 2 林木胸高处最大和最小心、边比的频度方位分布
Fig. 2 Directional distribution of frequency of the maximum and
minimum ratio of heartwood to sapwood (HSR) at breast height
2. 4 林木特征性状与心、边材的相关性
协方差分析表明,林木分化等级对 DBH 与心、
边材面积的异速生长方程的斜率、截距均无显著影
响(图 4; P < 0. 05),说明兴安落叶松异速生长关系
对林木分化不敏感。因此,将不同林木分化等级的
数据进行整合分析。
DBH 与胸高处 HR,SW 的绝对变异量均存在显
著的正相关性(图 5; P < 0. 05),且其与前者的斜
率(0. 485)和决定系数(0. 203)均大于后者(分别为
0. 092 和 0. 136)。
林木特征性状与胸高处心、边材面积之间均存
在极显著的线性相关(图 6),各性状对心材面积变
异的解释能力由大到小的次序为: 枝生物量、根生
物量、叶生物量、根投影面积、冠投影面积; 对边材
面积变异的解释能力由大到小的次序为: 枝生物
量、叶生物量、根生物量、冠投影面积、根投影面积。
其中,枝生物量对心、边材面积的解释能力最强。
3 讨论
林木分化显著影响 HR 和 SW 及其绝对变异量
(表 2,图 1A,C),随着林木分化程度的加剧,这些变
711
林 业 科 学 50 卷
图 3 不同分化等级林木心材半径(HR)和边材宽度(SW)的轴向变异
Fig. 3 Vertical patterns of absolute or relative variations in heartwood radius (HR) and sapwood width ( SW),
among different differentiation classes of stand individuals
AV 和 RV 分别代表绝对变异量和相对变异量。AV,RV represent absolute variation and relative variation,respectively.
图 4 不同林木分化等级胸径与心、边材面积的异速生长关系
Fig. 4 Allometric relationships between DBH and HA or SA for different tree differentiation classes
DBH,HA 和 SA 分别表示胸径和心、边材面积。DBH,HA and SA represent diameter at breast height,
heartwood area and sapwood area,respectively. n = 34.
异值也相应增大,与 Sellin(1994)等的研究结果类
似。原因可能是优势木营养面积较大,树干生长量
较大; 在快速生长过程中,树木形态也更易受到内、
外界因素的干扰而产生较明显的不规则性,从而导
致较大的心、边材变异( Schweingruber,1996; Taylor
et al.,2002; Martínez et al.,2007; Wang et al.,
2008)。林木胸高处 HR 和 SW 的绝对变异量均随
DBH 增加而增大 (图 5),这可能因为心、边材的周
向变异程度与心、边材量的大小呈正比 (汪矛等,
1998; Bjrklund,1999; Martínez et al.,2007 ) 的
811
第 12 期 刘家霖等: 不同分化等级兴安落叶松树干心材和边材的空间变异
图 5 胸径与胸高处心、边材绝对变异量
(HRAV,SWAV)的关系
Fig. 5 Relationships between DBH and absolute variations in
heartwood radius or sapwood width at breast height
* :P < 0. 05,**:P < 0. 01. n = 34.
缘故。
协方差分析发现,林木分化等级对 DBH 与心、
图 6 林木特征性状与胸高处心、边材面积的关系
Fig. 6 Relationships between heartwood or sapwood area at breast height and stand traits
**表示 P < 0. 01。HA,SA,CPA,RPA,BB,FB 和 RB 分别代表心材面积、边材面积、冠投影面积、根投影面积、枝生物量、
叶生物量和根生物量。** represents P < 0. 01. HA,SA,CPA,RPA,BB,FB,RB represent heartwood area,sapwood area,
crown projection area,root projection area,branch biomass,foliage biomass and root biomass,respectively. n = 34.
边材面积的异速生长方程的斜率、截距均无显著影
响(图 4)。这说明不论林木的分化等级如何,其异
速生长关系均较为保守,即林冠大、叶量多的优势木
需要有更大的心、边材面积的支持( Shinozaki et al.,
1964; Knapic et al.,2006)。Sellin(1994)和 Wilson
等(2003)分别对欧洲云杉(Picea abies)和伯克苏木
(Burkea africana)的测定得出类似的结果。
方位显著影响兴安落叶松林木的心、边材变异
(表 2,图 2 ),与常建国等 ( 2009 ) 对油松 ( Pinus
tabulaeformis)的研究结果类似。林木心、边材的周
向变异与侧枝着生方位、样地坡位的水热条件有关
(Yang et al.,1985; Longuetaud et al.,2006)。这可
能因为,枝生物量与胸径关系紧密,而胸径大小影响
心、边材变异程度(Bjrklund,1999; Bond-Lamberty
et al.,2002; Wang,2006; Martínez et al.,2007)。本
研究中,北向 (北、西北、东北 ) 的枝总干质 量
(94 kg)低于南向 (南、西南、东南) (276 kg),与林
木心、边比的方位分布规律一致。同时,本样地坐北
朝南,位于缓坡下部,光照、土壤水热条件等较上坡
略好,这些微生境变异影响林木相关生理过程 (如
液流),从而反馈影响心、边材的周向变异 (Mrling
et al.,1999; Wullschleger et al.,2000; McDowell et
al.,2002)。
本研究中,随圆盘相对高度的增加,HR 的绝对
911
林 业 科 学 50 卷
变异量递减 (图 3A),其原因一方面与林木上部受
光差异减小、对光竞争减弱有关(Yang et al.,1985;
Schweingruber,1996; Stokes et al.,2000); 另一方面
原因是心材起始年龄一般晚于形成层年龄,而且心
材的形成速率与形成层年龄呈正比 (王兴昌等,
2008)。SW 的绝对变异量在没有枝叶的树干部分
保持相对稳定,枝下高以上则出现递减趋势 (图
3B),这与以往研究结果(Yang et al.,1985; Sellin,
1994; Bjrklund, 1999; Knapic et al., 2005;
Longuetaud et al.,2006; 王兴昌等,2008; 常建国
等,2009)一致。值得一提的是,以往对心、边材轴
向变异相关的研究多以优势木为样树(Barbaroux et
al.,2003; Bazot et al.,2013),但本文的研究结果表
明,林木 HR 和 SW 的绝对变异量随树高的变化均
以优势木最大、中等木次之、被压木最小(图 3),因
此,建议同类研究还应该考虑林木分化的影响(Ogle
et al.,2009)。
本研究结果表明,利用林木特征性状预测心、边
材效果较好,其中枝、叶生物量与边材面积相关性最
紧密(图 6)。可能原因是,枝以边材为主,一方面作
为树干空间上和生理功能上的延伸 (盛浩等,
2011),另一方面连接林冠叶片,在“管道模型”中扮
演重要的角色( Shinozaki et al.,1964; Knapic et al.,
2006)。这一结果与 Bamber 等 ( 1985 )、Gartner 等
(2002) 和 Longuetaud 等 (2006) 的研究结果一致。
然而,Long 等 (1988) 和 Bjrklund(1999)均发现利
用林木特征性状预测小干松和欧洲赤松的心、边材
量并不准确,这可能与立地条件(林分密度、年生长
季极短) 和演替类型(人工移栽和播种、自然更新
等)有关。因此,由于林木特征性状与林木心、边材
量的关系复杂,故需要全面考虑样地环境因素的影
响(Galván et al.,2012)。
4 结论
兴安落叶松树干心材和边材存在显著的周向和
轴向变异,其绝对变异量还受林木分化的显著影响。
然而,林木分化对 DBH 与心、边材面积的异速生长
方程的斜率、截距均无显著影响,表明林木的异速生
长关系对林木分化不太敏感。胸高处 HR 和 SW 的
绝对变异量与 DBH 正相关,而心、边材面积与枝生
物量、根生物量、叶生物量、根投影面积、冠投影面积
等林木特征性状之间均存在显著的正相关关系,其
中与枝、叶生物量的相关最紧密,与“管道模型”理
论相符。本研究量化了兴安落叶松树干 HR 和 SW
的空间变异模式,但对其心、边材的转化机制及驱动
机制还需要深入探究。
参 考 文 献
鄂文峰,王传宽,杨传平,等 . 2009. 兴安落叶松边材心材生长特征
的种源效应 . 林业科学,45(6) : 109 - 115.
常建国,李新平,刘世荣,等 . 2009. 油松心边材量及年轮数的变异
特征 . 林业科学,45(11) : 76 - 82.
盛 浩,周 萍 . 2011. 树干 /枝呼吸作用对环境变化的响应 . 生态
学杂志,30(8) : 1822 - 1829.
汪 矛,张志农 . 1998. 边材与心材 . 生物学通报,33(9) : 13 - 14.
王 翠,王传宽,孙慧珍,等 . 2008. 移栽自不同纬度的兴安落叶松
( Larix gmelinii Rupr. ) 的树干液流特征 . 生态学报,28 ( 1 ) :
136 - 144.
王兴昌,王传宽,张全智,等 . 2008. 东北主要树种心材与边材的生
长特征 . 林业科学,44(5) : 102 - 108.
吴巩胜,王政权 . 2000. 水曲柳落叶松人工混交林中树木个体生长
的竞争效应模型 . 应用生态学报,11(5) : 646 - 650.
玉 宝,王百田,王立明 . 2010. 兴安落叶松天然林树冠生长特性
分析 . 林业科学,46(5) : 41 - 48.
赵晓焱,王传宽,霍 宏 . 2008. 兴安落叶松 ( Larix gmelinii) 光合
能力及相关因子的种源差异 . 生态学报,28(8) : 3798 - 3807.
Bamber R K,Fukazawa K. 1985. Sapwood and heartwood: a review.
Forest Abstract,46(9) : 567 - 580.
Barbaroux C,Bréda N,Dufrêne E. 2003. Distribution of above-ground
and below-ground carbohydrate reserves in adult trees of two
contrasting broad-leaved species ( Quercus petraea and Fagus
sylvatica) . New Phytologist,157(3) : 605 - 615.
Bazot S,Barthes L,Blanot D,et al. 2013. Distribution of non-structural
nitrogen and carbohydrate compounds in mature oak trees in a
temperate forest at four key phenological stages. Trees,27 ( 4 ) :
1023 - 1034.
Bjrklund L. 1999. Identifying heartwood rich stands or stems of Pinus
sylvestris by using inventory data. Silva Fennica,33 ( 2 ) : 119 -
129.
Bond-Lamberty B, Wang C, Gower S. 2002. Aboveground and
belowground biomass and sapwood area allometric equations for six
boreal tree species of northern Manitoba. Canadian Journal of Forest
Research,32(8) : 1441 - 1450.
Climent J,Chambel M,Pérez E,et al. 2002. Relationship between
heartwood radius and early radial growth,tree age,and climate in
Pinus canariensis. Canadian Journal of Forest Research,32 ( 1 ) :
103 - 111.
Gartner B L. 2002. Sapwood and inner bark quantities in relation to leaf
area and wood density in Douglas-fir. IAWA Journal,23 ( 3 ) :
267 - 285.
Galván J,Camarero J J,Sangüesa-Barreda G,et al. 2012. Sapwood
area drives growth in mountain conifer forests. Journal of Ecology,
100(5) : 1233 - 1244.
Knapic S, Tavares F, Pereira H. 2006. Heartwood and sapwood
variation in Acacia melanoxylon R. Br. Trees in portugal. Forestry,
79(4) : 371 - 380.
Knapic S,Pereira H. 2005. Within-tree variation of heartwood and ring
width in maritime pine ( Pinus pinaster Ait. ) . Forest Ecology and
021
第 12 期 刘家霖等: 不同分化等级兴安落叶松树干心材和边材的空间变异
Management,210(1) : 81 - 89.
Long J N, Smith F W. 1988. Leaf area-sapwood area relations of
lodgepole pine as influenced by stand density and site index.
Canadian Journal of Forest Research,18(2) : 247 - 250.
Longuetaud F,Mothe F,Leban J M,et al. 2006. Picea abies sapwood
width: Variations within and between trees. Scandinavian Journal of
Forest Research,21(1) : 41 - 53.
Mkel A,Vanninen P. 2001. Vertical structure of scots pine crowns in
different age and size classes. Trees,15(7) : 385 - 392.
Martínez V J,Vanderklein D,Mencuccini M. 2007. Tree height and
age-related decline in growth in scots pine ( Pinus sylvestris L. ) .
Oecologia,150(4) : 529 - 544.
McDowell N,Barnard H,Bond B,et al. 2002. The relationship between
tree height and leaf area: Sapwood area ratio. Oecologia,132(1) :
12 - 20.
Morais M C,Pereira H. 2007. Heartwood and sapwood variation in
Eucalyptus globulus Labill. trees at the end of rotation for pulpwood
production. Annals of Forest Science,64(6) : 665 - 671.
Mrling T,Valinger E. 1999. Effects of fertilization and thinning on
heartwood area, sapwood area and growth in scots pine.
Scandinavian Journal of Forest Research,14(5) : 462 - 469.
Nawrot M,Pazdrowski W,Szymański M. 2008. Dynamics of heartwood
formation and axial and radial distribution of sapwood and heartwood
in stems of european larch ( Larix decidua Mill. ) . Journal of Forest
Science,54(9) : 409 - 417.
Peichl M,Arain M A. 2007. Allometry and partitioning of above- and
belowground tree biomass in an age-sequence of white pine forests.
Forest Ecology and Management,253(1) : 68 - 80.
Pinto I, Pereira H, Usenius A. 2004. Heartwood and sapwood
development within maritime pine ( Pinus pinaster Ait. ) stems.
Trees,18(3) : 284 - 294.
Schneider R, Berninger F,Ung C H, et al. 2011. Within crown
variation in the relationship between foliage biomass and sapwood
area in jack pine. Tree Physiology,31(1) : 22 - 29.
Schweingruber F H. 1996. Tree rings and environment: Dendroecology.
Berne: Paul Hupt Publishers.
Sellin A. 1994. Sapwood-heartwood proportion related to tree diameter,
age,and growth rate in Picea abies. Canadian Journal of Forest
Research,24(5) : 1022 - 1028.
Shinozaki K,Yoda K,Hozumi K,et al. 1964. A quantitative analysis of
plant form— the pipe model theory: I. Basic analyses. Japanese
Journal of Ecology,14(3) : 97 - 105.
Stokes A,Berthier S. 2000. Irregular heartwood formation in Pinus
pinaster Ait. is related to eccentric,radial,stem growth. Forest
Ecology and Management,135(1) : 115 - 121.
Taylor A M,Gartner B L,Morrell J J. 2002. Heartwood formation and
natural durability—a review. Wood and Fiber Science,34 ( 4 ) :
587 - 611.
Wang C K. 2006. Biomass allometric equations for 10 co-occurring tree
species in Chinese temperate forests. Forest Ecology and
Management,222(1) : 9 - 16.
Wang X Q,Jiang Z H,Ren H Q. 2008. Distribution of wet heartwood in
stems of Populus xiaohei from a spacing trial. Scandinavian Journal
of Forest Research,23(1) : 38 - 45.
Wilson B,Witkowski E. 2003. Seed banks,bark thickness and change
in age and size structure (1978 - 1999) of the african savanna tree,
Burkea africana. Plant Ecology,167(1) : 151 - 162.
Wullschleger S D,King A W. 2000. Radial variation in sap velocity as a
function of stem diameter and sapwood thickness in yellow-poplar
trees. Tree Physiology,20(8) : 511 - 518.
Yang K,Hazenberg G,Bradfield G,et al. 1985. Vertical variation of
sapwood thickness in Pinus banksiana Lamb. and Larix laricina
( duroi) k. Koch. Canadian Journal of Forest Research,15 ( 5 ) :
822 - 828.
(责任编辑 石红青)
更 正
本刊 2014 年第 11 期刊发的“基于响应曲面优化法的木材高强微波预处理工艺”(作者:徐康,吕建雄,
李贤军,吴义强,刘元)一文的通讯作者标注有误,现更正为“李贤军为通讯作者”。
121