免费文献传递   相关文献

Effects of Pb Stress on Reactive Oxygen Metabolism in Ginger Leaves

铅胁迫对姜叶片活性氧代谢的影响



全 文 :园艺学报,2015,42 (11):2215–2222.
Acta Horticulturae Sinica
doi:10.16420/j.issn.0513-353x.2015-0539;http://www. ahs. ac. cn 2215
收稿日期:2015–07–07;修回日期:2015–10–31
基金项目:山东省现代农业产业技术体系专项资金项目(SDAIT-02-022-05)
* 通信作者 Author for correspondence(E-mail:xukun@sdau.edu.cn)
铅胁迫对姜叶片活性氧代谢的影响
刘灿玉,王 允,张 逸,曹逼力,徐 坤*
(山东农业大学园艺科学与工程学院,作物生物学国家重点实验室,农业部黄淮地区园艺作物生物学与种质创制重
点实验室,山东果蔬优质高效生产协同创新中心,山东泰安 271018)
摘 要:以‘莱芜大姜’为试材,采用污灌方式研究不同水平铅(Pb)胁迫(土壤 Pb 含量分别为 0、
150、450 和 1 350 mg · kg-1)对姜叶片活性氧代谢的影响。结果表明,随 Pb 胁迫水平的升高及胁迫时间
的延长,姜叶片中生成速率和 H2O2含量显著升高,但过度 Pb 胁迫则使其降低,而丙二醛(MDA)含
量和电解质渗漏率则持续增加。Pb 胁迫 40 d 时,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化
氢酶(CAT)、谷胱甘肽还原酶(GR)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、
脱氢抗坏血酸还原酶(DHAR)等抗氧化酶活性随 Pb 胁迫水平的升高显著增强,还原型抗坏血酸(AsA)、
总抗坏血酸(AsA + DHA)及还原型谷胱甘肽(GSH)、总谷胱甘肽(GSH + GSSG)等抗氧化物质含量
显著升高,AsA/DHA、GSH/GSSG 比值显著增加;随胁迫时间的增加,抗氧化酶活性及抗氧化物质含量
则多以 150 mg · kg-1的轻度 Pb 胁迫的较高,过度的 Pb 胁迫则使其显著降低,表明 AsA-GSH 循环遭受严
重破坏。
关键词:姜;Pb 胁迫;活性氧代谢
中图分类号:S 632.5 文献标志码:A 文章编号:0513-353X(2015)11-2215-08

Effects of Pb Stress on Reactive Oxygen Metabolism in Ginger Leaves
LIU Can-yu,WANG Yun,ZHANG Yi,CAO Bi-li,and XU Kun*
(College of Horticulture Science and Engineering,Shangdong Agricultural University,State Key Laboratory of Crop
Biology,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region,Ministry of
Agriculture,Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production,Tai’an,
Shandong 271018,China)
Abstract:The effects of the different Pb content(0,150,450,1 350 mg · kg-1)stress on the active
oxygen metabolism in ginger leaves were studied with a ginger(Zingiber officinale Roscoe)cultivar
‘Laiwu Ginger’by using the method of sewage irrigation. The results showed that with the increase of Pb
stress level and exposure duration, productivity rate and H2O2 content increased significantly and then
decreased under excessive Pb stress,while MDA content and electrolyte leakage rate increased
continuously. After 40 days of Pb stress which was during the seedling stage,with the increase of Pb stress
level,the activities of superoxide dismutase(SOD),peroxidase(POD),catalase(CAT),glutathione
reductase(GR),ascorbate acid(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate
reductase(DHAR)were enhanced markedly,and the contents of reduced ascorbic acid(AsA),total

Liu Can-yu,Wang Yun,Zhang Yi,Cao Bi-li,Xu Kun.
Effects of Pb stress on reactive oxygen metabolism in ginger leaves.
2216 Acta Horticulturae Sinica,2015,42 (11):2215–2222.
ascorbic acid(AsA + DHA),reduced glutathione(GSH)and total glutathione(GSH + GSSG)were
increased remarkably,and the ratios of AsA/DHA,GSH/GSSG were also increased significantly.
Moreover,with ginger growth going on and the stress time increasing significantly,the antioxidant
enzymes activities and the antioxidant substance contents were higher mostly under 150 mg · kg-1 mild Pb
stress and inhibited under excessive Pb stress,which indicated that the AsA-GSH cycle suffered serious
damage.
Key words:ginger;Pb stress;reactive oxygen metabolism

铅(Pb)矿石的开采冶炼、汽车尾气的大量排放以及农业生产中肥料、农药的滥用等(Sharma &
Dubey,2005;Srivastava et al.,2015),使 Pb 成为最为普遍的土壤重金属污染物(Grover et al.,2010;
乔莎莎 等,2011)。由于 Pb 污染具有持久性,可严重影响植物的生长发育和生理代谢过程(El-Nekeety
et al.,2009)。Pourrut 等(2011)认为,Pb 使植物生长受抑,且毒害程度存在显著的时间和剂量效
应。乔莎莎等(2011)研究发现,随着 Pb 胁迫程度的加剧,小麦株高和生物量下降,根系活力降
低。Gupta 等(2010)研究发现,长期较高浓度的 Pb 胁迫显著影响东南景天的株高和根长,而酶促
和非酶促抗氧化系统在缓解 Pb 胁迫方面发挥了关键性作用;过量的 Pb 会导致植物一系列的毒性症
状,引起活性氧的大量产生(Malecka et al.,2001),诱导膜脂过氧化,改变细胞膜脂质成分(Singh
et al.,2010)。Wang 等(2012)研究发现,Pb 胁迫可诱导苦草叶片活性氧(ROS)积累,加重氧化
胁迫,导致还原型抗坏血酸(AsA)和还原型谷胱甘肽(GSH)因过量消耗而减少。姚广等(2009)
研究发现,Pb 胁迫可显著抑制玉米叶片的超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)
的活性;Shalini 和 Dubey(2003)发现,Pb 胁迫可引起水稻的氧化损伤,但 SOD、过氧化氢酶(CAT)
和谷胱甘肽还原酶(GR)作为抗氧化防御机制的重要组成部分,对缓解铅胁迫有重要作用。
姜(Zingiber officinale Roscoe)起源于热带雨林地区,以肥大的肉质根茎为食用器官,是典型
的根茎类蔬菜,属易积累重金属的蔬菜类型(徐明飞 等,2008),而 Reddy 等(2014)研究发现,
姜提取物可缓解雄性大鼠肾 Pb 中毒,因此,探讨 Pb 与姜生理代谢的关系十分必要。本试验中研究
了污灌 Pb 胁迫对姜叶片活性氧生成、细胞膜氧化损伤、抗氧化酶活性及 AsA–GSH 循环的影响,
以揭示 Pb 胁迫对姜生理代谢的影响。
1 材料与方法
1.1 试验材料与试验设计
试验于 2013—2014 年在山东农业大学园艺实验站进行。供试姜品种为‘莱芜大姜’。供试土
壤为壤土,pH 6.3,碱解氮(N)、速效磷(P2O5)、速效钾(K2O)含量分别为 100.5、63.4 和 127.8
mg · kg-1,土壤 Pb 含量背景值为 30.1 mg · kg-1。参照土壤环境质量标准 GB15618-1995,外施 Pb 设
4 个水平,分别为 0、150、450、1 350 mg · kg-1(以土壤中 Pb2+计)。
将供试土壤风干,过 10 目筛,装入直径 30 cm、高 28 cm 的陶盆中,每盆装风干土 7.0 kg。种
姜催芽至芽长 1 cm 左右时种植,每盆 1 株,每处理 60 盆,分 3 组作为 3 个重复。待姜出苗后以污
灌方式一次性施入不同浓度的 Pb(NO3)2 溶液,使土壤铅含量达到试验设定水平。其他管理按常规方
法进行。
刘灿玉,王 允,张 逸,曹逼力,徐 坤.
铅胁迫对姜叶片活性氧代谢的影响.
园艺学报,2015,42 (11):2215–2222. 2217

1.2 测定项目与方法
在姜幼苗期、发棵期、根茎膨大期,即分别对应污灌处理后 40、80、120 d 取植株上数第 3 片
展开功能叶进行测定。生成速率采用羟胺氧化法测定(Rauckman et al.,1979);H2O2 含量参照
Gay 和 Gebicki(2000)的方法测定;SOD 活性测定采用氮蓝四唑(NBT)还原法,以抑制 NBT 光
化学还原 50%所需酶量为酶活单位(U)(Prochazkova et al.,2001);过氧化物酶(POD)和 CAT
活性测定采用 Cakmak 和 Marschner(1992)的方法;MDA 含量测定采用硫代巴比妥酸(TBA)显
色法进行测定(Cavalcanti et al.,2004);膜透性采用赵世杰等(2002)的方法测定。
GR、APX 和单脱氢抗坏血酸还原酶(MDHAR)活性采用 Franck 等(1995)的方法测定;脱
氢抗坏血酸还原酶(DHAR)活性测定采用 Chen 和 Gallie(2006)的方法;AsA 含量测定采用 Law
等(1983)的方法,且通过被二硫苏糖醇还原后的 AsA 测定总抗坏血酸(AsA + DHA)含量,氧
化型抗坏血酸(DHA)含量 = 总抗坏血酸–还原型抗坏血酸;GSH 和总谷胱甘肽(GSH + GSSG)
含量测定采用 2–硝基苯甲酸(DTNB)法(Anderson et al.,1992),通过 GR 的特异性催化作用进
行测定。
分别采用 Microsoft Excel 2003 软件和 DPS7.5 软件进行试验数据处理和处理间差异性检验
(Duncan’s 新复极差法)。
2 结果与分析
2.1 Pb 胁迫对姜叶片活性氧水平的影响
由图 1 可见,姜叶片生成速率在 Pb 胁迫处理后 40 d(幼苗期)和处理后 80 d(发棵期)均
随 Pb 处理水平的增加显著增加;而在处理后 120 d(根茎膨大期)呈先增加后降低的趋势,1 350
mg · kg-1 Pb 处理虽较对照高 24.7%,但较 150、450 mg · kg-1Pb 处理分别低 30.9%和 46.6%。不同处
理姜叶片 H2O2 含量的变化趋势与生成速率基本一致,表明 Pb 胁迫可导致姜叶片活性氧水平的显
著增加。

图 1 Pb 胁迫对姜叶片活性氧水平的影响
Fig. 1 Effects of the Pb stress on reactive oxygen level in ginger leaves

2.2 Pb 胁迫对姜叶片 MDA 含量及膜透性的影响
从图 2 可知,随 Pb 胁迫水平的增加,姜叶片 MDA 含量升高,且处理间差异随生长的进行显著
Liu Can-yu,Wang Yun,Zhang Yi,Cao Bi-li,Xu Kun.
Effects of Pb stress on reactive oxygen metabolism in ginger leaves.
2218 Acta Horticulturae Sinica,2015,42 (11):2215–2222.
图 3 Pb 胁迫对姜叶片 SOD、POD 和 CAT 活性的影响
Fig. 3 Effects of Pb stress on activities of SOD,POD and CAT in
ginger leaves
增加,如处理后 80 d(发棵期)150、450 mg · kg-1 Pb 处理间差异不显著,而在处理后 120 d 时(根
茎膨大期),450 mg · kg-1 Pb 处理较 150 mg · kg-1 Pb 处理显著增加。各处理间姜叶片相对电导率除在
处理后 80 d 已呈显著增加外,其它变化趋势与 MDA 含量的变化基本一致,表明 Pb 胁迫可导致姜
叶片膜质过氧化损伤,膜透性增加,造成离子渗漏。


图 2 Pb 胁迫对姜叶片 MDA 含量及膜透性的影响
Fig. 2 Effects of Pb stress on MDA content and membrance permeability in ginger leaves
2.3 Pb 胁迫对姜叶片活性氧酶促清除系统的
影响
处理后 40 d(幼苗期)姜叶片 SOD、POD
活性仅 1 350 mg · kg-1 Pb 处理显著高于对照,
而 CAT 活性随 Pb 处理水平的升高显著增强;
处理后 80 d(发棵期)SOD、CAT 活性随 Pb
的增加均呈先增后降的趋势,而 POD 活性则持
续增强;至 120 d(根茎膨大期),SOD、POD、
CAT 活性均以 150 mg · kg-1 Pb 处理较高,而
1 350 mg · kg-1 Pb 处理姜叶片的 3 种酶活性均显
著低于对照,分别下降了 36.2%、24.9%、33.3%
(图 3)。表明轻度 Pb 胁迫可激活保护酶活性,
较长时间过度 Pb 胁迫显著抑制了保护酶活性。
图 4 表明,处理后 40 d(幼苗期)姜叶片
APX、GR、MDHAR、DHAR 活性均随 Pb 的
增加而显著增加,但处理后 80 d(发棵期)则
均以 150 mg · kg-1 Pb 处理较高,分别比对照增
加 27.9%、37.3%、106.1%和 61.0%,而 450、
1 350 mg · kg-1 Pb 处理则较 150 mg · kg-1Pb 处
理显著降低,尤其 1 350 mg · kg-1 Pb 处理除
MDHAR 外均显著低于对照;至 120 d(根茎膨
大期),施Pb 处理姜叶片的APX、GR、MDHAR、
刘灿玉,王 允,张 逸,曹逼力,徐 坤.
铅胁迫对姜叶片活性氧代谢的影响.
园艺学报,2015,42 (11):2215–2222. 2219

DHAR 活性均较处理后 80 d(发棵期)降低,且随 Pb 的增加降幅显著提高,如 APX 活性分别较处
理后 80 d(发棵期)降低了 17.8%、36.6%和 43.1%,而对照则仅降低了 8.6%,表明过度 Pb 胁迫已
严重损伤了细胞的功能。

图 4 Pb 胁迫对姜叶片 APX、GR、MDHAR 和 DHAR 活性的影响
Fig. 4 Effects of Pb stress on activities of APX,GR,MDHAR and DHAR in ginger leaves
2.4 Pb 污染对姜叶片抗坏血酸循环和谷胱甘肽循环的影响
表 1 表明,处理后 40 d(幼苗期)姜叶片抗坏血酸库(AsA + DHA)和 AsA 含量随 Pb 的增加
呈增加趋势,DHA 则刚好相反,因此 AsA/DHA 显著提高;处理后 80 d(发棵期)AsA + DHA 含
量较处理后 40 d(幼苗期)显著升高,但 AsA 含量则以 150 mg · kg-1 Pb 处理较高、450 mg · kg-1 Pb
处理次之,二者分别较对照高 45.8%和 20.1%,而 1 350 mg · kg-1 Pb 处理显著低于对照,下降了 28.7%,
DHA 含量除 1 350 mg · kg-1 Pb 处理较对照显著降低外,150、450 mg · kg-1 Pb 处理与对照无显著差
表 1 Pb 胁迫对姜叶片抗坏血酸循环和谷胱甘肽循环的影响
Table 1 Effects of Pb stress on ascorbic acid cycle and glutathione cycle in ginger leaves
处理天数
Treatment days
Pb/
(mg . kg-1)
AsA + DHA/
(μmol · g-1)
AsA/
(μmol · g-1)
DHA/
(μmol · g-1)AsA/DHA
GSH + GSSG/
(nmol · g-1)
GSH/
(nmol · g-1)
GSSG/
(nmol · g-1) GSH/GSSG
40 0 5.55 c 2.87 d 2.68 a 1.08 c 46.97 d 32.05 d 14.92 c 2.17 b
150 6.31 bc 3.77 c 2.54 ab 1.49 c 67.49 c 47.66 c 19.83 b 2.42 b
450 6.78 b 4.57 b 2.20 ab 2.08 b 77.30 b 57.15 b 20.15 b 2.84 a
1 350 7.90 a 5.76 a 2.14 b 2.72 a 92.86 a 69.57 a 23.28 a 2.99 a
0 11.30 c 6.26 c 5.04 a 1.24 bc 59.61 b 43.56 ab 16.05 c 2.72 a
150 14.59 a 9.13 a 5.47 a 1.67 a 68.29 a 46.99 a 21.30 b 2.21 b
450 12.77 b 7.52 b 5.25 a 1.45 b 70.34 a 40.06 bc 30.28 a 1.32 c
80
1 350 8.74 d 4.46 d 4.28 b 1.05 c 65.70 a 35.97 c 29.73 a 1.21 c
120 0 12.17 b 7.06 b 5.11 ab 1.38 b 63.59 b 45.77 b 17.81 b 2.59 a
150 13.97 a 8.70 a 5.27 a 1.66 a 73.25 a 49.06 a 24.18 a 2.04 b
450 10.20 c 5.82 c 4.39 bc 1.34 b 51.74 c 29.12 c 22.62 a 1.29 c
1 350 7.04 d 3.17 d 3.87 c 0.82 c 39.37 d 19.98 d 19.39 b 1.03 c
注:同一处理天数同列数据后不同小写字母表示差异达 5%显著水平。
Note:Different small letters in a column of the same treatment days mean significant at the 5% level.
Liu Can-yu,Wang Yun,Zhang Yi,Cao Bi-li,Xu Kun.
Effects of Pb stress on reactive oxygen metabolism in ginger leaves.
2220 Acta Horticulturae Sinica,2015,42 (11):2215–2222.
异,因此 1 350 mg · kg-1 Pb 处理的抗坏血酸库较小,AsA/DHA 降低;处理后 120 d(根茎膨大期)
抗坏血酸库相关参数与处理后 80 d(发棵期)类似,表明较长时间较高的 Pb 胁迫使抗坏血酸循环
遭到破坏。
由表 1 还可以看出,处理后 40 d(幼苗期)姜叶片 GSSG + GSH、GSH、GSSG 含量及 GSH/GSSG
比值,均随 Pb 的增加呈上升趋势,增幅较大的 1 350 mg · kg-1 Pb 处理分别比对照增加了 97.7%、
117.1%、56.1%、38.1%;处理后 80 d(发棵期)尽管姜叶片 GSSG + GSH 含量随 Pb 的增加略有增
加,但主要是 GSSG 含量的增加,GSH 含量呈降低趋势;虽然处理后 120 d 时 150 mg · kg-1Pb 处理
的 GSSG + GSH、GSH、GSSG 含量仍较对照为高,但施 Pb 处理的 GSH/GSSG 均较对照显著降低,
表明 Pb 胁迫已损伤了谷胱甘肽循环体系。
3 讨论
Pb 胁迫可增强植株活性氧的产生,进而导致氧化胁迫(Malecka et al.,2001),这是植物 Pb 毒
害的重要特征之一(Pourrut et al.,2011),其中,活性氧造成的最大伤害是膜质过氧化和离子渗漏
(Sharma & Dubey,2005)。Qureshi 等(2007)研究认为,Pb 诱导的活性氧胁迫程度与 Pb 处理浓
度呈正相关。Kanwal 等(2014)研究发现,Pb 胁迫可增加油菜叶中 H2O2 含量,且呈剂量效应。但
本研究中姜根茎膨大期,1 350 mg · kg-1 Pb 胁迫处理的叶片生成速率及 H2O2 含量反而较 150、450
mg · kg-1 Pb 胁迫处理显著下降,这可能是由于过多的、H2O2 不能被及时清除,进而相互作用质
子化成毒性更强的 · OH 自由基之故(孙光闻 等,2004),而 · OH 被认为是细胞过氧化伤害的根本
原因(Shi et al.,2007;Zhang et al.,2009),这与 MDA 含量和膜透性显著增加的结果一致。
Gupta 等(2009)研究发现,在一定 Pb 浓度范围内,Pb 处理可通过增强玉米叶片 SOD、CAT
活性维持活性氧的平衡。Qureshi 等(2007)认为,狭叶番泻中 SOD 活性随 Pb 胁迫浓度的升高而增
强,但 CAT 活性则在较高浓度 Pb 胁迫下受到显著抑制。Yan 等(2006)研究发现,刺枯草在较高
浓度 Pb 胁迫下或经过长期处理后,其叶片 SOD、POD、CAT 的活性均明显下降,但低浓度下则激
活了 SOD、POD 的活性。本试验中 Pb 胁迫初期,姜叶片 SOD、POD、CAT 活性的上升,表明 Pb
胁迫可激活姜叶片保护酶活性,但随胁迫时间的延长,过高的铅胁迫导致保护酶活性下降,表明植
株自我调控能力降低,这可能与植株吸收较多的 Pb 离子可与 SOD 酶蛋白中的–SH 或–COOH 基
团结合(Rauser,1995;Pourrut et al.,2011),或取代 POD 和 CAT 中铁离子,阻碍植物对酶结构组
成所必需的矿质离子的结合有关(Bajguz,2011;Pourrut et al.,2011)。
抗坏血酸—谷胱甘肽循环(AsA–GSH 循环)是植物体内另一重要的抗氧化系统,可通过
AsA/DHA、GSH/GSSG 等维持细胞内的氧化还原环境(曾斌 等,2008)。APX 以 AsA 为电子供体,
可直接清除 H2O2,同时 AsA 被氧化形成 MDHA 和 DHA;DHAR 和 MDHAR 两种酶对于维持 AsA
含量有重要作用,可协同作用将 MDHA 和 DHA 再生成 AsA(Haroldsen et al.,2011)。此外,GR
作为 AsA–GSH 循环中最后一步的关键酶可将 GSSG 还原为 GSH,而 GSH 可直接与活性氧反应。
但本试验中发现,Pb 胁迫仅使幼苗期姜叶片 APX、DHAR、MDHAR、GR 活性增强,AsA/DHA、
GSH/GSSG 比值升高,且增长率显著大于 SOD、POD,而随着胁迫时间的延长及外施 Pb 的升高,
相关酶活性及 AsA 和 GSH 含量较对照下降速率远大于 SOD、POD 及 CAT 较对照下降速率,表明
姜叶片AsA-GSH循环系统对 Pb胁迫较为敏感,仅在 Pb胁迫早期发挥作用,而胁迫中后期则以 SOD、
POD 及 CAT 清除活性氧为主。
刘灿玉,王 允,张 逸,曹逼力,徐 坤.
铅胁迫对姜叶片活性氧代谢的影响.
园艺学报,2015,42 (11):2215–2222. 2221

References
Anderson J V,Chevone B I,Hess J L. 1992. Seasonal variation in the antioxidant system of eastern white pine needles. Plant Physiology,98 (2):
501–508.
Bajguz A. 2011. Suppression of Chlorella vulgaris growth by cadmium,lead,and copper stress and its restoration by endogenous brassinolide.
Archives of Environmental Contamination and Toxicology,60 (3):406–416.
Cakmak I,Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and
glutathione reductase in bean leaves. Plant Physiology,98 (4):1222–1227.
Cavalcanti F R,Oliveira J T A,Martins-Miranda A S,Viégas R A,Silveira J A G. 2004. Superoxide dismutase,catalase and peroxidase activities
do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytologist,163 (3):563–571.
Chen Z,Gallie D R. 2006. Dehydroascorbate reductase affects leaf growth,development,and function. Plant Physiology,142 (2):775–787.
El-Nekeety A A,El-Kady A A,Soliman M S,Hassan N S,Abdel-Wahhab M A. 2009. Protective effect of Aquilegia vulgaris(L.)against lead
acetate-induced oxidative stress in rats. Food and Chemical Toxicology,47 (9):2209–2215.
Franck T,Kevers C,Gaspar T. 1995. Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of
Prunus avium L.L. raised in vitro. Plant Growth Regulation,16 (3):253–256.
Gay C,Gebicki J M. 2000. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Analytical Biochemistry,
284 (2):217–220.
Grover P,Rekhadevi P V,Danadevi K,Vuyyun S B,Mahboob M,Rahman M F. 2010. Genotoxicity evaluation in workers occupationally exposed
to lead. International Journal of Hygiene and Environmental Health,213 (2):99–106.
Gupta D K,Huang H G,Yang X E,Razafindrabe B H N,Inouhe M. 2010. The detoxification of lead in Sedum alfredii H. is not related to
phytochelatins but the glutathione. Journal of Hazardous Materials,177 (1):437–444.
Gupta D K,Nicoloso F T,Schetinger M R C,Rossato L V,Pereira L B,Castro G Y,Srivastava S,Tripathi R D. 2009. Antioxidant defense
mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials,172 (1):479–484.
Haroldsen V M,Chi-Ham C L,Kulkarni S,Lorence A,Bennett A B. 2011. Constitutively expressed DHAR and MDHAR influence fruit,but not
foliar ascorbate levels in tomato. Plant Physiology and Biochemistry,49 (10):1244–1249.
Kanwal U,Ali S,Shakoor M B,Farid M,Hussain S,Yasmeen T,Adrees M,Bharwana S H,Abbas F. 2014. EDTA ameliorates phytoextraction
of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environmental Science and
Pollution Research,21 (16):9899–9910.
Law M Y,Charles S A,Halliwell B. 1983. Glutathione and ascorbic acid in spinach(Spinacia oleracea)chloroplasts. Biochemical Journal,210:
899–903.
Malecka A,Jarmuszkiewicz W,Tomaszewska B. 2001. Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta
Bioquimica Polonica,48 (3):687–698.
Pourrut B,Shahid M,Dumat C,Winterton P,Pinelli E. 2011. Lead uptake,toxicity,and detoxification in plants. Reviews of Environmental
Contamination and Toxicology,213:113–136.
Prochazkova D,Sairam R K,Srivastava G C,Singh D V. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves.
Plant Science,161 (4):765–771.
Qiao Sha-sha,Zhang Yong-qing,Yang Li-wen,Pei Hong-bin,Sun Hong-shuai. 2011. Effects of organic manure on wheat growth under lead stress.
Chinese Journal of Applied Ecology,22 (4):1094–1100. (in Chinese)
乔莎莎,张永清,杨丽雯,裴红宾,孙红帅. 2011. 有机肥对铅胁迫下小麦生长的影响. 应用生态学报,22 (4):1094–1100.
Qureshi M I,Abdin M Z,Qadir S,IQBAL M. 2007. Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biologia
Plantarum,51 (1):121–128.
Rauckman E J,Rosen G M,Kitchell B B. 1979. Superoxide radical as an intermediate in the oxidation of hydroxylamines by mixed function amine
oxidase. Molecular Pharmacology,15 (1):131–137.
Rauser W E. 1995. Phytochelatins and related peptides. Structure,biosynthesis,and function. Plant Physiology,109 (4):1141–1149.
Liu Can-yu,Wang Yun,Zhang Yi,Cao Bi-li,Xu Kun.
Effects of Pb stress on reactive oxygen metabolism in ginger leaves.
2222 Acta Horticulturae Sinica,2015,42 (11):2215–2222.
Reddy Y A,Chalamaiah M,Ramesh B,Balaji G,Indira P. 2014. Ameliorating activity of ginger(Zingiber officinale) extract against lead induced
renal toxicity in male rats. Journal of Food Science and Technology,51 (5):908–914.
Shalini V,Dubey R S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant
Science,164 (4):645–655.
Sharma P,Dubey R S. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology,17 (1):35–52.
Shi Qing-hua,Ding Fei,Wang Xiu-feng,Wei Min. 2007. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt
stress. Plant Physiology and Biochemistry,45 (8):542–550.
Singh R,Tripathi R D,Dwivedi S,Kumar A,Trivedi P K,Chakrabarty D. 2010. Lead bioaccumulation potential of an aquatic macrophyte Najas
indica are related to antioxidant system. Bioresource Technology,101 (9):3025–3032.
Srivastava D,Singh A,Baunthiyal M. 2015. Lead toxicity and tolerance in plants. Journal of Plant Science & Research,2 (2):1–5.
Sun Guang-wen,Zhu Zhu-jun,Fang Xue-zhi. 2004. Effects of different cadmium levels on active oxygen metabolism and H2O2 scavenging system in
Brassica campestris L. ssp. chinensis. Scientia Agricultura Sinica,37 (12):2012–2015. (in Chinese)
孙光闻,朱祝军,方学智. 2004. 镉对白菜活性氧代谢及 H2O2 清除系统的影响. 中国农业科学,37 (12):2012–2015.
Wang Pei-fang,Zhang Song-he,Wang Chao,Lu Jie. 2012. Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant
Vallisneria natans. Ecotoxicology and Environmental Safety,78:28–34.
Xu Ming-fei,Zheng Ji-ci,Ruan Mei-ying,Wang Gang-jun,Zhang Yong-zhi,Yu Lin-huo. 2008. Comparison of the amounts of heavy metals
accumulated by different groups of vegetables. Acta Agriculturae Zhejiangensis,20 (1):29–34. (in Chinese)
徐明飞,郑纪慈,阮美颖,王钢军,张永志,俞林火. 2008. 不同类型蔬菜重金属(Pb,As,Cd,Hg)积累量的比较. 浙江农业学报,
20 (1):29–34.
Yan Xue,Yu Dan,Wang He-yue,Wang Jin-wang. 2006. Response of submerged plant(Vallisneria spinulosa)clones to lead stress in the heterogenous
soil. Chemosphere,63 (9):1459–1465.
Yao Guang,Gao Hui-yuan,Wang Wei-wei,Zhang Li-tao,Bu Jian-wen. 2009. The effects of Pb-stress on functions of photosystems and
photosynthetic rate in maize seedling leaves. Acta Ecologica Sinica,29 (3):1162–1169. (in Chinese)
姚 广,高辉远,王未未,张立涛,部建雯. 2009. 铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响. 生态学报,29 (3):1162–1169.
Zeng Bin,Wang Fei-juan,Zhu Cheng,Sun Zong-xiu. 2008. Effect of AsA-GSH cycle on Hg2+-tolerance in rice mutant. Acta Agronomica Sinica,
34 (5):823–830. (in Chinese)
曾 斌,王飞娟,朱 诚,孙宗修. 2008. AsA-GSH 循环对水稻突变体耐汞性的作用. 作物学报,34 (5):823–830.
Zhang Yi-kai,Han Xiao-jiao,Chen Xiu-ling,Jin Hong,Cui Xiu-min. 2009. Exogenous nitric oxide on antioxidative system and ATPase activities
from tomato seedlings under copper stress. Scientia Horticulturae,123 (2):217–223.
Zhao Shi-jie,Shi Guo-an,Dong Xin-chun. 2002. Plant physiology expriments. Beijing:China Agricultural Scientech Press. (in Chinese)
赵世杰,史国安,董新纯. 2002. 植物生理学实验指导. 北京:中国农业科学技术出版社.